1


Triple Integrals in Cylindrical Coordinates
Useful for circle-symmetrical integration
regions and integrand functions
Switch to polar coordinates for 2 of the 3
coordinates, leave the third as is
x

r cos

y

r sin

z

z

f ( x, y , z )
f (r , , z )
dx dy dz r dr d dz

Equivalent to integrate first inz , then in polar
coordinates on the projection to thexy plane

2
Example 1

Convert the point r , , z
rectangular

5
,3
6

to

1, 3, 2

to

4,

coordinates.
Example 2
Convert the point x, y, z
cylindrical coordinates.

3
Example 3

Find an equation in cylindrical coordinates for the
surface represented
z

x2

y2 .

Example 4
Find an equation in rectangular coordinates for
the surface represented by
r 3sec .
4
Example 5

Using cylindrical coordinates, evaluate
a2 x2

a
0

0

a2 x2 y 2
0

x2 dz d y dx ;

a 0 .

Example 6
Find the volume of the solid that is bounded
above
x2 y 2 z 2 9
2

2

x y 4.
and below by the sphere
inside the cylinder

and
5


Triple Integrals in Spherical Coordinates
Switch to spherical coordinates: radius,
longitude, latitude
x

sin cos

y

sin sin

z

cos

x2

y2

z2

2

6
Switch to rectangular coordinates
x2
cos

y2

z2
z

1

x2
tan

1

y2

z2

y
x

7
Example 7

Convert

, ,

2,

2 5
,
3 6

to rectangular

coordinates and cylindrical coordinates.

Example 8
If the rectangular coordinates of point P are 1, 3, 2
find the spherical coordinates of P.
8
Example 9

Find an equation in spherical coordinates for the
surface represented by the equation
x2

y2

z2.

9
dV

2

sin

d d d

A typical triple integral in
spherical coordinates has
the form

f x, y, z dV
G
h2

g2

h1

g1

,
,

f

, ,

2

sin

d d d
10
Example 10

Use spherical coordinates to find the volume of
the
x 2 y 2 z 2 4a 2
solid enclosed by the sphere
z 0.
and
the plane 11
Example
Find the volume of the solid region Q bounded by
the cone z
x2

y2

z2

x2

y2

and the sphere

2 z.
11
Example 12
Use spherical coordinates to evaluate
4 y2

2
0

0

8 x2 y 2
x2 y 2

z 2 dz dx d y.

12

14.6 triple integrals in cylindrical and spherical coordinates

  • 1.
  • 2.
     Triple Integrals inCylindrical Coordinates Useful for circle-symmetrical integration regions and integrand functions Switch to polar coordinates for 2 of the 3 coordinates, leave the third as is x r cos y r sin z z f ( x, y , z ) f (r , , z ) dx dy dz r dr d dz Equivalent to integrate first inz , then in polar coordinates on the projection to thexy plane 2
  • 3.
    Example 1 Convert thepoint r , , z rectangular 5 ,3 6 to 1, 3, 2 to 4, coordinates. Example 2 Convert the point x, y, z cylindrical coordinates. 3
  • 4.
    Example 3 Find anequation in cylindrical coordinates for the surface represented z x2 y2 . Example 4 Find an equation in rectangular coordinates for the surface represented by r 3sec . 4
  • 5.
    Example 5 Using cylindricalcoordinates, evaluate a2 x2 a 0 0 a2 x2 y 2 0 x2 dz d y dx ; a 0 . Example 6 Find the volume of the solid that is bounded above x2 y 2 z 2 9 2 2 x y 4. and below by the sphere inside the cylinder and 5
  • 6.
     Triple Integrals inSpherical Coordinates Switch to spherical coordinates: radius, longitude, latitude x sin cos y sin sin z cos x2 y2 z2 2 6
  • 7.
    Switch to rectangularcoordinates x2 cos y2 z2 z 1 x2 tan 1 y2 z2 y x 7
  • 8.
    Example 7 Convert , , 2, 25 , 3 6 to rectangular coordinates and cylindrical coordinates. Example 8 If the rectangular coordinates of point P are 1, 3, 2 find the spherical coordinates of P. 8
  • 9.
    Example 9 Find anequation in spherical coordinates for the surface represented by the equation x2 y2 z2. 9
  • 10.
    dV 2 sin d d d Atypical triple integral in spherical coordinates has the form f x, y, z dV G h2 g2 h1 g1 , , f , , 2 sin d d d 10
  • 11.
    Example 10 Use sphericalcoordinates to find the volume of the x 2 y 2 z 2 4a 2 solid enclosed by the sphere z 0. and the plane 11 Example Find the volume of the solid region Q bounded by the cone z x2 y2 z2 x2 y2 and the sphere 2 z. 11
  • 12.
    Example 12 Use sphericalcoordinates to evaluate 4 y2 2 0 0 8 x2 y 2 x2 y 2 z 2 dz dx d y. 12