SlideShare a Scribd company logo
Velocity & Acceleration in
Terms of x
Velocity & Acceleration in
Terms of x
If v = f(x);
Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Proof:
dt
dv
dt
xd
2
2
Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Proof:
dt
dv
dt
xd
2
2
dt
dx
dx
dv

Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Proof:
dt
dv
dt
xd
2
2
dt
dx
dx
dv

v
dx
dv

Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Proof:
dt
dv
dt
xd
2
2
dt
dx
dx
dv

v
dx
dv






 2
2
1
v
dv
d
dx
dv
Velocity & Acceleration in
Terms of x
If v = f(x);





 2
2
2
2
1
v
dx
d
dt
xd
Proof:
dt
dv
dt
xd
2
2
dt
dx
dx
dv

v
dx
dv






 2
2
1
v
dv
d
dx
dv





 2
2
1
v
dx
d
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xv
dx
d
23
2
1 2






xx 23
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
NOTE:
02
v
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
NOTE:
02
v
026 2
 xx
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
NOTE:
02
v
026 2
 xx
  032  xx
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
NOTE:
02
v
026 2
 xx
  032  xx
30  x
e.g. (i) A particle moves in a straight line so that
Find its velocity in terms of x given that v = 2 when x = 1.
xx 23
xv
dx
d
23
2
1 2






cxxv  22
3
2
1
   
0
1132
2
1
i.e.
2,1when
22



c
c
vx
22
26 xxv 
2
26 xxv 
NOTE:
02
v
026 2
 xx
  032  xx
30  x
Particle moves between x = 0
and x = 3 and nowhere else.
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






cxv  32
2
1
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
3
32
2
2
xv
xv


2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
3
32
2
2
xv
xv


3
2x
dt
dx

2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
3
32
2
2
xv
xv


3
2x
dt
dx

(Choose –ve to satisfy
the initial conditions)
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
3
32
2
2
xv
xv


3
2x
dt
dx

2
3
2x
(Choose –ve to satisfy
the initial conditions)
2
3xx 
m/s2
(ii) A particle’s acceleration is given by . Initially, the particle is
1 unit to the right of O, and is traveling with a velocity of in
the negative direction. Find x in terms of t.
22
3
2
1
xv
dx
d






 
0
12
2
1
i.e.
2,1,0when
32



c
c
vxt
cxv  32
2
1
3
32
2
2
xv
xv


3
2x
dt
dx

2
3
2x
(Choose –ve to satisfy
the initial conditions)
2
3
2
1 
 x
dx
dt
2
3
2
1 
 x
dx
dt
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
x
x
1
2
1
2
2
1








2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
x
x
1
2
1
2
2
1













  1
1
2
x
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
x
x
1
2
1
2
2
1













  1
1
2
x
x
t
2
2 
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
x
x
1
2
1
2
2
1













  1
1
2
x
x
t
2
2 
 2
2
2
 t
x
2
3
2
1 
 x
dx
dt
c
x
cx
cxt





2
2
2
2
1
2
1
2
1
when t = 0, x = 1
2
20i.e.


c
c
2
2

x
t
OR 


x
dxxt
1
2
3
2
1
x
x
1
2
1
2
2
1













  1
1
2
x
x
t
2
2 
 2
2
2
 t
x
 2
2
2


t
x
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
     
1 1
25 16 4
2 2
1
2
c
c
  

A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
     
1 1
25 16 4
2 2
1
2
c
c
  

12 242
 xxv
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
     
1 1
25 16 4
2 2
1
2
c
c
  

12 242
 xxv
 222
1 xv
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
     
1 1
25 16 4
2 2
1
2
c
c
  

12 242
 xxv
 222
1 xv
12
 xv
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by
2004 Extension 1 HSC Q5a)
xxx 22 3

(i) Show that 12
 xx
xxv
dx
d
22
2
1 32






cxxv  242
2
1
2
1
When x = 2, v = 5
     
1 1
25 16 4
2 2
1
2
c
c
  

12 242
 xxv
 222
1 xv
12
 xv
Note: v > 0, in order
to satisfy initial
conditions
(ii) Hence find an expression for x in terms of t
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

2tantan 11 
 xt
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

2tantan 11 
 xt
2tantan 11 
 tx
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

2tantan 11 
 xt
2tantan 11 
 tx
 2tantan 1
 tx
(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

2tantan 11 
 xt
2tantan 11 
 tx
 2tantan 1
 tx
t
t
x
tan21
2tan



(ii) Hence find an expression for x in terms of t
12
 x
dt
dx
 

xt
x
dx
dt
2
2
0
1
 x
xt 2
1
tan

2tantan 11 
 xt
2tantan 11 
 tx
 2tantan 1
 tx
t
t
x
tan21
2tan



Exercise 3E; 1 to 3 acfh,
7 , 9, 11, 13, 15, 17, 18,
20, 21, 24*

More Related Content

What's hot

introduction-brownian-motion final
introduction-brownian-motion finalintroduction-brownian-motion final
introduction-brownian-motion finalK Thanh P Ng
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
Reza Rahimi
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Daisuke Satow
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
Fredy Mojica
 
12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)Nigel Simmons
 
M.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum MechanicsM.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum Mechanics
Pankaj Nagpure, Shri Shivaji Science College, Amravati
 
Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)
Shu Tanaka
 
M.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum MechanicsM.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum Mechanics
Pankaj Nagpure, Shri Shivaji Science College, Amravati
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 converted
cairo university
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
foxtrot jp R
 
H02402058066
H02402058066H02402058066
H02402058066
inventionjournals
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
Grigory Yaroslavtsev
 
thermodynamics
thermodynamicsthermodynamics
thermodynamics
kcrycss
 
Brownian motion by krzysztof burdzy(university of washington)
Brownian motion by krzysztof burdzy(university of washington)Brownian motion by krzysztof burdzy(university of washington)
Brownian motion by krzysztof burdzy(university of washington)Kumar
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
Dimen
DimenDimen
Temp kgrindlerverthree
Temp kgrindlerverthreeTemp kgrindlerverthree
Temp kgrindlerverthree
foxtrot jp R
 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
foxtrot jp R
 

What's hot (20)

introduction-brownian-motion final
introduction-brownian-motion finalintroduction-brownian-motion final
introduction-brownian-motion final
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
 
12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)
 
M.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum MechanicsM.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum Mechanics
 
Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)
 
M.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum MechanicsM.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum Mechanics
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 converted
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
 
H02402058066
H02402058066H02402058066
H02402058066
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
 
thermodynamics
thermodynamicsthermodynamics
thermodynamics
 
Lec02
Lec02Lec02
Lec02
 
Brownian motion by krzysztof burdzy(university of washington)
Brownian motion by krzysztof burdzy(university of washington)Brownian motion by krzysztof burdzy(university of washington)
Brownian motion by krzysztof burdzy(university of washington)
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Dimen
DimenDimen
Dimen
 
Temp kgrindlerverthree
Temp kgrindlerverthreeTemp kgrindlerverthree
Temp kgrindlerverthree
 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
 

Viewers also liked

اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبةاتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
قال تعالى: "كتاب أنزلناه إليك مبارك ليدبروا آياته وليتذكر أولو الألباب".
 
Relatorio de Observaçao Clube desportivo de odiáxere
Relatorio de Observaçao Clube desportivo de odiáxereRelatorio de Observaçao Clube desportivo de odiáxere
Relatorio de Observaçao Clube desportivo de odiáxere
António Seromenho
 
En un mercat persa 3 copia
En un mercat persa  3  copiaEn un mercat persa  3  copia
En un mercat persa 3 copiaanmca
 
11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)Nigel Simmons
 
X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)Nigel Simmons
 
X2 t04 03 t results (2013)
X2 t04 03 t results (2013)X2 t04 03 t results (2013)
X2 t04 03 t results (2013)Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2103)
12 x1 t02 02 integrating exponentials (2103)12 x1 t02 02 integrating exponentials (2103)
12 x1 t02 02 integrating exponentials (2103)Nigel Simmons
 
12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)Nigel Simmons
 
X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)Nigel Simmons
 
X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)Nigel Simmons
 
X2 T07 02 resisted motion
X2 T07 02 resisted motionX2 T07 02 resisted motion
X2 T07 02 resisted motionNigel Simmons
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)Nigel Simmons
 
X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
X2 t08 04 inequality techniques (2013)
X2 t08 04 inequality techniques (2013)X2 t08 04 inequality techniques (2013)
X2 t08 04 inequality techniques (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 

Viewers also liked (20)

اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبةاتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
اتباع الأثر في قراءة أبي جعفر من طريقي الدرة والطيبة
 
Relatorio de Observaçao Clube desportivo de odiáxere
Relatorio de Observaçao Clube desportivo de odiáxereRelatorio de Observaçao Clube desportivo de odiáxere
Relatorio de Observaçao Clube desportivo de odiáxere
 
En un mercat persa 3 copia
En un mercat persa  3  copiaEn un mercat persa  3  copia
En un mercat persa 3 copia
 
Cagla2
Cagla2Cagla2
Cagla2
 
22
2222
22
 
11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)
 
X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)
 
X2 t04 03 t results (2013)
X2 t04 03 t results (2013)X2 t04 03 t results (2013)
X2 t04 03 t results (2013)
 
12 x1 t02 02 integrating exponentials (2103)
12 x1 t02 02 integrating exponentials (2103)12 x1 t02 02 integrating exponentials (2103)
12 x1 t02 02 integrating exponentials (2103)
 
12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)12 x1 t04 05 displacement, velocity, acceleration (2013)
12 x1 t04 05 displacement, velocity, acceleration (2013)
 
X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)
 
X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)
 
X2 T07 02 resisted motion
X2 T07 02 resisted motionX2 T07 02 resisted motion
X2 T07 02 resisted motion
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)
 
X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
X2 t08 04 inequality techniques (2013)
X2 t08 04 inequality techniques (2013)X2 t08 04 inequality techniques (2013)
X2 t08 04 inequality techniques (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

Similar to 12 x1 t07 02 v and a in terms of x (2013)

12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
Maxim Eingorn
 
12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)Nigel Simmons
 
L17,18_Lorentz transformation,Length contraction & Time dilation.pdf
L17,18_Lorentz transformation,Length contraction & Time dilation.pdfL17,18_Lorentz transformation,Length contraction & Time dilation.pdf
L17,18_Lorentz transformation,Length contraction & Time dilation.pdf
KhushiAgarwal495419
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
MOHANRAJ PHYSICS
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
TayebaTakbirOrnila
 
Lecture 02.pdf
Lecture 02.pdfLecture 02.pdf
Lecture 02.pdf
jm_gecko
 
12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)Nigel Simmons
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
Abhaykumar vishwakarma
 
12 x1 t07 03 simple harmonic motion (2012)
12 x1 t07 03 simple harmonic motion (2012)12 x1 t07 03 simple harmonic motion (2012)
12 x1 t07 03 simple harmonic motion (2012)Nigel Simmons
 
Relativity
RelativityRelativity
Relativity
Hem Bhattarai
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
Chandan Singh
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionCheng-Hsien Li
 
Chapter3powerpoint 090825235704-phpapp02
Chapter3powerpoint 090825235704-phpapp02Chapter3powerpoint 090825235704-phpapp02
Chapter3powerpoint 090825235704-phpapp02
Cleophas Rwemera
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
Dr. Virendra Kumar Verma
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Qiang LI
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shellsdicosmo178
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 

Similar to 12 x1 t07 02 v and a in terms of x (2013) (20)

12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)
 
L17,18_Lorentz transformation,Length contraction & Time dilation.pdf
L17,18_Lorentz transformation,Length contraction & Time dilation.pdfL17,18_Lorentz transformation,Length contraction & Time dilation.pdf
L17,18_Lorentz transformation,Length contraction & Time dilation.pdf
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
 
Lecture 02.pdf
Lecture 02.pdfLecture 02.pdf
Lecture 02.pdf
 
12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
12 x1 t07 03 simple harmonic motion (2012)
12 x1 t07 03 simple harmonic motion (2012)12 x1 t07 03 simple harmonic motion (2012)
12 x1 t07 03 simple harmonic motion (2012)
 
Relativity
RelativityRelativity
Relativity
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet Evolution
 
Chapter3powerpoint 090825235704-phpapp02
Chapter3powerpoint 090825235704-phpapp02Chapter3powerpoint 090825235704-phpapp02
Chapter3powerpoint 090825235704-phpapp02
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 

Recently uploaded (20)

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 

12 x1 t07 02 v and a in terms of x (2013)

  • 1. Velocity & Acceleration in Terms of x
  • 2. Velocity & Acceleration in Terms of x If v = f(x);
  • 3. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd
  • 4. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd Proof: dt dv dt xd 2 2
  • 5. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd Proof: dt dv dt xd 2 2 dt dx dx dv 
  • 6. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd Proof: dt dv dt xd 2 2 dt dx dx dv  v dx dv 
  • 7. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd Proof: dt dv dt xd 2 2 dt dx dx dv  v dx dv        2 2 1 v dv d dx dv
  • 8. Velocity & Acceleration in Terms of x If v = f(x);       2 2 2 2 1 v dx d dt xd Proof: dt dv dt xd 2 2 dt dx dx dv  v dx dv        2 2 1 v dv d dx dv       2 2 1 v dx d
  • 9. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23
  • 10. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xv dx d 23 2 1 2       xx 23
  • 11. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1
  • 12. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx
  • 13. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv 
  • 14. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv 
  • 15. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv  NOTE: 02 v
  • 16. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv  NOTE: 02 v 026 2  xx
  • 17. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv  NOTE: 02 v 026 2  xx   032  xx
  • 18. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv  NOTE: 02 v 026 2  xx   032  xx 30  x
  • 19. e.g. (i) A particle moves in a straight line so that Find its velocity in terms of x given that v = 2 when x = 1. xx 23 xv dx d 23 2 1 2       cxxv  22 3 2 1     0 1132 2 1 i.e. 2,1when 22    c c vx 22 26 xxv  2 26 xxv  NOTE: 02 v 026 2  xx   032  xx 30  x Particle moves between x = 0 and x = 3 and nowhere else.
  • 20. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t.
  • 21. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d      
  • 22. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d       cxv  32 2 1
  • 23. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1
  • 24. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1 3 32 2 2 xv xv  
  • 25. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1 3 32 2 2 xv xv   3 2x dt dx 
  • 26. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1 3 32 2 2 xv xv   3 2x dt dx  (Choose –ve to satisfy the initial conditions)
  • 27. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1 3 32 2 2 xv xv   3 2x dt dx  2 3 2x (Choose –ve to satisfy the initial conditions)
  • 28. 2 3xx  m/s2 (ii) A particle’s acceleration is given by . Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of in the negative direction. Find x in terms of t. 22 3 2 1 xv dx d         0 12 2 1 i.e. 2,1,0when 32    c c vxt cxv  32 2 1 3 32 2 2 xv xv   3 2x dt dx  2 3 2x (Choose –ve to satisfy the initial conditions) 2 3 2 1   x dx dt
  • 35. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1
  • 36. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1 x x 1 2 1 2 2 1        
  • 37. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1 x x 1 2 1 2 2 1                1 1 2 x
  • 38. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1 x x 1 2 1 2 2 1                1 1 2 x x t 2 2 
  • 39. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1 x x 1 2 1 2 2 1                1 1 2 x x t 2 2   2 2 2  t x
  • 40. 2 3 2 1   x dx dt c x cx cxt      2 2 2 2 1 2 1 2 1 when t = 0, x = 1 2 20i.e.   c c 2 2  x t OR    x dxxt 1 2 3 2 1 x x 1 2 1 2 2 1                1 1 2 x x t 2 2   2 2 2  t x  2 2 2   t x
  • 41. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx
  • 42. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32      
  • 43. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1
  • 44. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5
  • 45. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5       1 1 25 16 4 2 2 1 2 c c    
  • 46. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5       1 1 25 16 4 2 2 1 2 c c     12 242  xxv
  • 47. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5       1 1 25 16 4 2 2 1 2 c c     12 242  xxv  222 1 xv
  • 48. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5       1 1 25 16 4 2 2 1 2 c c     12 242  xxv  222 1 xv 12  xv
  • 49. A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by 2004 Extension 1 HSC Q5a) xxx 22 3  (i) Show that 12  xx xxv dx d 22 2 1 32       cxxv  242 2 1 2 1 When x = 2, v = 5       1 1 25 16 4 2 2 1 2 c c     12 242  xxv  222 1 xv 12  xv Note: v > 0, in order to satisfy initial conditions
  • 50. (ii) Hence find an expression for x in terms of t
  • 51. (ii) Hence find an expression for x in terms of t 12  x dt dx
  • 52. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1
  • 53. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan 
  • 54. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan  2tantan 11   xt
  • 55. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan  2tantan 11   xt 2tantan 11   tx
  • 56. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan  2tantan 11   xt 2tantan 11   tx  2tantan 1  tx
  • 57. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan  2tantan 11   xt 2tantan 11   tx  2tantan 1  tx t t x tan21 2tan   
  • 58. (ii) Hence find an expression for x in terms of t 12  x dt dx    xt x dx dt 2 2 0 1  x xt 2 1 tan  2tantan 11   xt 2tantan 11   tx  2tantan 1  tx t t x tan21 2tan    Exercise 3E; 1 to 3 acfh, 7 , 9, 11, 13, 15, 17, 18, 20, 21, 24*