SlideShare a Scribd company logo
Types of Proof
Types of Proof
1. Deductive Proof
Start with known facts and deduce what you are trying to prove.
Types of Proof
1. Deductive Proof
Start with known facts and deduce what you are trying to prove.
2. Inductive Proof
Assume what you are trying to prove and induce a solution.
Types of Proof
1. Deductive Proof
Start with known facts and deduce what you are trying to prove.
2. Inductive Proof
Assume what you are trying to prove and induce a solution.
3. Proof by Contradiction
Assume the opposite of what you are trying to prove and create a
contradiction.
Contradiction means the original assumption is incorrect, therefore
the opposite must be true.
Inequality Techniques
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
pq
qp



2
22
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
pq
qp



2
22
OR
2 2
Assume
2
p q
pq


Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
pq
qp



2
22
OR
2 2
Assume
2
p q
pq


2 2
2pq p q 
2 2
2
0 2
0 ( )
p pq q
p q
  
 
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
pq
qp



2
22
OR
2 2
Assume
2
p q
pq


2 2
2pq p q 
2 2
2
0 2
0 ( )
p pq q
p q
  
 
2
But ( ) 0p q 
Inequality Techniques
0proveeasier tobecanit,proveTo  yxyx
  
2
Prove1995e.g.
22
qp
pqi


pq
qp


2
22
2
2 22
qpqp 

 
2
2
qp 

0
pq
qp



2
22
OR
2 2
Assume
2
p q
pq


2 2
2pq p q 
2 2
2
0 2
0 ( )
p pq q
p q
  
 
2
But ( ) 0p q 
2 2
2
p q
pq

 
   acbcabcbaii  222
Provea)1994
   acbcabcbaii  222
Provea)1994
  0
2
ba
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
3
1
prove,1Ifb)  bcacabcba
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
3
1
prove,1Ifb)  bcacabcba
   bcacabcbacba  2
2222
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
3
1
prove,1Ifb)  bcacabcba
   bcacabcbacba  2
2222
    bcacabbcacabcba  2
2
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
3
1
prove,1Ifb)  bcacabcba
   bcacabcbacba  2
2222
    bcacabbcacabcba  2
2
   2
3 cbabcacab 
   acbcabcbaii  222
Provea)1994
  0
2
ba
02 22
 baba
abba 222

bccb
acca
2
2
22
22


bcacabcba 222222 222

bcacabcba  222
3
1
prove,1Ifb)  bcacabcba
   bcacabcbacba  2
2222
    bcacabbcacabcba  2
2
   2
3 cbabcacab 
 
3
1
13


bcacab
bcacab
  3
3
1
Provec) abccba 
  3
3
1
Provec) abccba 
bcacabcba  222
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
03333
 abccba
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
03333
 abccba
  abccba  333
3
1
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
03333
 abccba
  abccba  333
3
1
3
1
3
1
3
1
,,let ccbbaa 
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
03333
 abccba
  abccba  333
3
1
3
1
3
1
3
1
,,let ccbbaa 
  3
1
3
1
3
1
3
1
cbacba 
  3
3
1
Provec) abccba 
bcacabcba  222
0222
 bcacabcba
   0222
 bcacabcbacba
022322
2223222223


bcacabcccbca
cbabcabbcbbaabccabaacaba
03333
 abccba
  abccba  333
3
1
3
1
3
1
3
1
,,let ccbbaa 
  3
1
3
1
3
1
3
1
cbacba 
  3
3
1
abccba 
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
  3
3
1
xyzzyx  AM GM
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
  3
3
1
xyzzyx 
33 xyzzyx 
AM GM
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
  3
3
1
xyzzyx 
33 xyzzyx 
   33 xzyzxyxzyzxy 
AM GM
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
  3
3
1
xyzzyx 
33 xyzzyx 
   33 xzyzxyxzyzxy 
3 222
3 zyxxzyzxy 
AM GM
n
n
n
aaa
n
aaa


21
21
MeanGeometricMeanArithmetic



    1prove,8111Supposed)  xyzzyx
   
81
8111


xyzyzxzzxyyx
zyx
  3
3
1
xyzzyx 
33 xyzzyx 
   33 xzyzxyxzyzxy 
3 222
3 zyxxzyzxy 
 2
33 xyzxzyzxy 
AM GM
81  xyzyzxzxyzyx
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
    8331
3
3
2
33  xyzxyzxyz
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
    8331
3
3
2
33  xyzxyzxyz
  81
3
3  xyz
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
    8331
3
3
2
33  xyzxyzxyz
  81
3
3  xyz
21 3  xyz
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
    8331
3
3
2
33  xyzxyzxyz
  81
3
3  xyz
21 3  xyz
13 xyz
81  xyzyzxzxyzyx
  8331
2
33  xyzxyzxyz
    8331
3
3
2
33  xyzxyzxyz
  81
3
3  xyz
21 3  xyz
13 xyz
1xyz
OR
 1 2x x  AM GM
OR
 1 2x x 
 1 2y y 
 1 2z z 
AM GM
OR
 1 2x x 
 1 2y y 
 1 2z z 
 (1 )(1 ) 1 2 2 2
8
x y z x y z
xyz
     

AM GM
OR
 1 2x x 
 1 2y y 
 1 2z z 
 (1 )(1 ) 1 2 2 2
8
x y z x y z
xyz
     

8 8 xyz 
AM GM
OR
 1 2x x 
 1 2y y 
 1 2z z 
 (1 )(1 ) 1 2 2 2
8
x y z x y z
xyz
     

8 8 xyz 
1 1
1
1
xyz
xyz
xyz



AM GM
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
  3 3
1 1 1 1
3 3
9
a b c abc
a b c abc
 
      
 

 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
  3 3
1 1 1 1
3 3
9
a b c abc
a b c abc
 
      
 

1 1 1 9
a b c a b c
  
 
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
  3 3
1 1 1 1
3 3
9
a b c abc
a b c abc
 
      
 

1 1 1 9
a b c a b c
  
 
 
1 1 1 9
2
2 2 2 9
a b b c a c a b c
a b b c a c a b c
  
    
  
    
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
  3 3
1 1 1 1
3 3
9
a b c abc
a b c abc
 
      
 

1 1 1 9
a b c a b c
  
 
 
1 1 1 9
2
2 2 2 9
a b b c a c a b c
a b b c a c a b c
  
    
  
    
9 2 2 2 1 1 1
a b c a b b c a c a b c
     
    
 
9 2 2 2 1 1 1
Proveiii
a b c a b b c a c a b c
     
    
 
1 1 1
2 2
4
a b ab
a b ab
 
    
 

1 1 4
a b a b
 

1 1 4
1 1 4
b c b c
a c a c
 

 

2 2 2 4 4 4
a b c a b b c a c
    
  
1 1 1 2 2 2
a b c a b b c a c
    
  
  3 3
1 1 1 1
3 3
9
a b c abc
a b c abc
 
      
 

1 1 1 9
a b c a b c
  
 
 
1 1 1 9
2
2 2 2 9
a b b c a c a b c
a b b c a c a b c
  
    
  
    
9 2 2 2 1 1 1
a b c a b b c a c a b c
     
    
Inequalities Sheet
Exercise 10D
Note: Cambridge 8H (Book 1); 28

More Related Content

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

X2 t08 04 inequality techniques (2013)

  • 2. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove.
  • 3. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove. 2. Inductive Proof Assume what you are trying to prove and induce a solution.
  • 4. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove. 2. Inductive Proof Assume what you are trying to prove and induce a solution. 3. Proof by Contradiction Assume the opposite of what you are trying to prove and create a contradiction. Contradiction means the original assumption is incorrect, therefore the opposite must be true.
  • 7. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi  
  • 8. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22
  • 9. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp  
  • 10. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0
  • 11. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0 pq qp    2 22
  • 12. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0 pq qp    2 22 OR 2 2 Assume 2 p q pq  
  • 13. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0 pq qp    2 22 OR 2 2 Assume 2 p q pq   2 2 2pq p q  2 2 2 0 2 0 ( ) p pq q p q     
  • 14. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0 pq qp    2 22 OR 2 2 Assume 2 p q pq   2 2 2pq p q  2 2 2 0 2 0 ( ) p pq q p q      2 But ( ) 0p q 
  • 15. Inequality Techniques 0proveeasier tobecanit,proveTo  yxyx    2 Prove1995e.g. 22 qp pqi   pq qp   2 22 2 2 22 qpqp     2 2 qp   0 pq qp    2 22 OR 2 2 Assume 2 p q pq   2 2 2pq p q  2 2 2 0 2 0 ( ) p pq q p q      2 But ( ) 0p q  2 2 2 p q pq   
  • 16.    acbcabcbaii  222 Provea)1994
  • 17.    acbcabcbaii  222 Provea)1994   0 2 ba
  • 18.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba
  • 19.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222 
  • 20.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22  
  • 21.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222 
  • 22.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222
  • 23.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222 3 1 prove,1Ifb)  bcacabcba
  • 24.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222 3 1 prove,1Ifb)  bcacabcba    bcacabcbacba  2 2222
  • 25.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222 3 1 prove,1Ifb)  bcacabcba    bcacabcbacba  2 2222     bcacabbcacabcba  2 2
  • 26.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222 3 1 prove,1Ifb)  bcacabcba    bcacabcbacba  2 2222     bcacabbcacabcba  2 2    2 3 cbabcacab 
  • 27.    acbcabcbaii  222 Provea)1994   0 2 ba 02 22  baba abba 222  bccb acca 2 2 22 22   bcacabcba 222222 222  bcacabcba  222 3 1 prove,1Ifb)  bcacabcba    bcacabcbacba  2 2222     bcacabbcacabcba  2 2    2 3 cbabcacab    3 1 13   bcacab bcacab
  • 28.   3 3 1 Provec) abccba 
  • 29.   3 3 1 Provec) abccba  bcacabcba  222
  • 30.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba
  • 31.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba
  • 32.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba
  • 33.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba 03333  abccba
  • 34.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba 03333  abccba   abccba  333 3 1
  • 35.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba 03333  abccba   abccba  333 3 1 3 1 3 1 3 1 ,,let ccbbaa 
  • 36.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba 03333  abccba   abccba  333 3 1 3 1 3 1 3 1 ,,let ccbbaa    3 1 3 1 3 1 3 1 cbacba 
  • 37.   3 3 1 Provec) abccba  bcacabcba  222 0222  bcacabcba    0222  bcacabcbacba 022322 2223222223   bcacabcccbca cbabcabbcbbaabccabaacaba 03333  abccba   abccba  333 3 1 3 1 3 1 3 1 ,,let ccbbaa    3 1 3 1 3 1 3 1 cbacba    3 3 1 abccba 
  • 40. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx
  • 41. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx   3 3 1 xyzzyx  AM GM
  • 42. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx   3 3 1 xyzzyx  33 xyzzyx  AM GM
  • 43. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx   3 3 1 xyzzyx  33 xyzzyx     33 xzyzxyxzyzxy  AM GM
  • 44. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx   3 3 1 xyzzyx  33 xyzzyx     33 xzyzxyxzyzxy  3 222 3 zyxxzyzxy  AM GM
  • 45. n n n aaa n aaa   21 21 MeanGeometricMeanArithmetic        1prove,8111Supposed)  xyzzyx     81 8111   xyzyzxzzxyyx zyx   3 3 1 xyzzyx  33 xyzzyx     33 xzyzxyxzyzxy  3 222 3 zyxxzyzxy   2 33 xyzxzyzxy  AM GM
  • 47. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz
  • 48. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz     8331 3 3 2 33  xyzxyzxyz
  • 49. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz     8331 3 3 2 33  xyzxyzxyz   81 3 3  xyz
  • 50. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz     8331 3 3 2 33  xyzxyzxyz   81 3 3  xyz 21 3  xyz
  • 51. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz     8331 3 3 2 33  xyzxyzxyz   81 3 3  xyz 21 3  xyz 13 xyz
  • 52. 81  xyzyzxzxyzyx   8331 2 33  xyzxyzxyz     8331 3 3 2 33  xyzxyzxyz   81 3 3  xyz 21 3  xyz 13 xyz 1xyz
  • 53. OR  1 2x x  AM GM
  • 54. OR  1 2x x   1 2y y   1 2z z  AM GM
  • 55. OR  1 2x x   1 2y y   1 2z z   (1 )(1 ) 1 2 2 2 8 x y z x y z xyz        AM GM
  • 56. OR  1 2x x   1 2y y   1 2z z   (1 )(1 ) 1 2 2 2 8 x y z x y z xyz        8 8 xyz  AM GM
  • 57. OR  1 2x x   1 2y y   1 2z z   (1 )(1 ) 1 2 2 2 8 x y z x y z xyz        8 8 xyz  1 1 1 1 xyz xyz xyz    AM GM
  • 58.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c           
  • 59.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab          
  • 60.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b   
  • 61.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c      
  • 62.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c        
  • 63.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c        
  • 64.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c           3 3 1 1 1 1 3 3 9 a b c abc a b c abc            
  • 65.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c           3 3 1 1 1 1 3 3 9 a b c abc a b c abc             1 1 1 9 a b c a b c     
  • 66.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c           3 3 1 1 1 1 3 3 9 a b c abc a b c abc             1 1 1 9 a b c a b c        1 1 1 9 2 2 2 2 9 a b b c a c a b c a b b c a c a b c                
  • 67.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c           3 3 1 1 1 1 3 3 9 a b c abc a b c abc             1 1 1 9 a b c a b c        1 1 1 9 2 2 2 2 9 a b b c a c a b c a b b c a c a b c                 9 2 2 2 1 1 1 a b c a b b c a c a b c           
  • 68.   9 2 2 2 1 1 1 Proveiii a b c a b b c a c a b c              1 1 1 2 2 4 a b ab a b ab           1 1 4 a b a b    1 1 4 1 1 4 b c b c a c a c       2 2 2 4 4 4 a b c a b b c a c         1 1 1 2 2 2 a b c a b b c a c           3 3 1 1 1 1 3 3 9 a b c abc a b c abc             1 1 1 9 a b c a b c        1 1 1 9 2 2 2 2 9 a b b c a c a b c a b b c a c a b c                 9 2 2 2 1 1 1 a b c a b b c a c a b c            Inequalities Sheet Exercise 10D Note: Cambridge 8H (Book 1); 28