SlideShare a Scribd company logo
1 of 70
Resisted Motion
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                      (Newton’s 3rd Law)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
                              NOTE: greatest height still occurs
                                    when v = 0
Case 3 (downwards motion)
Case 3 (downwards motion)
Case 3 (downwards motion)




      m
       x
Case 3 (downwards motion)




      m
       x    mg
Case 3 (downwards motion)

            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R                        R
                             xg
                             
                                     m
      m
       x    mg
Case 3 (downwards motion)
                                      m  mg  R
                                       x
            R                                  R
                                       xg
                                       
                                               m
      m
       x    mg
                            NOTE: terminal velocity occurs
                                  when   0
                                        x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2

                    x  0, v  u
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x                                m   mg  kv 2
                                           x
                                                     k 2
               mg kv 2                        g  v
                                           x
                                                     m
                    x  0, v  u
dv  mg  kv 2
v 
 dx     m
dv  mg  kv 2
v 
 dx     m
 dx    mv
    
 dv  mg  kv 2
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
           u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
        m
        2k
           logmg  kv 2 u0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2 
     log             
     2k     mg 
     m    ku 2 
     log1    
     2k   mg 
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2             the greatest height
     log             
     2k       mg                      m      ku 2 
                                      is log1         metres
     m      ku 2                      2k     mg 
     log1       
     2k     mg 
k 2
   g  v
x
          m
k 2
    g  v
 x
           m
dv  mg  kv 2
    
dt         m
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
         u
       m      dv
       k  mg  v 2
   
         0
            k
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
    m      dv
    k  mg  v 2
   
      0
         k
                              u
    m k         1   k 
           tan    mg v 
                           
    k  mg                 0
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                         
       kg                        
     m     1   k 
       tan   mg u 
                     
     kg             
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                                                 m      1   k 
       kg                          it takes     tan    mg u  seconds
                                                                   
                                                  kg              
     m     1   k 
       tan   mg u 
                                       to reach the greatest height.
     kg             
(ii) A body of mass 5kg is dropped from a height at which the
     gravitational acceleration is g.
     Assuming that air resistance is proportional to speed v, the
     constant of proportion being 1 , find;
                                    8
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.

             1
               v
             8
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
                                             40log40 g  v 0
                                                                   v


                                             40log40 g  v   log40 g 
                                                     40 g 
                                             40 log          
                                                     40 g  v 
t       40 g 
    log          
40       40 g  v 
t       40 g 
        log          
    40       40 g  v 
               t
 40 g
         e   40
40 g  v
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g             t
                
40 g  v  40 ge 40
                              t
                         
      v  40 g  40 ge       40


                     
                       t
      v  40 g 1  e 40 
                        
                        
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity occurs when   0
                                 x
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                         OR
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                  OR
                          
                                                                  
                                                                    t
b) the terminal velocity                   lim v  lim 40 g 1  e 40 
                                                                     
                                           t     t 
   terminal velocity1 occurs when   0
                                  x                                  
         i.e.0  g  v                            40 g
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                     OR
                          
                                                                     
                                                                       t
b) the terminal velocity                      lim v  lim 40 g 1  e 40 
                                                                        
                                              t     t 
   terminal velocity1 occurs when   0
                                  x                                     
         i.e.0  g  v                               40 g
                     40
             v  40 g                     terminal velocity is 40 g m/s
c) The distance it has fallen after time t
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                        t
                             
                                   t
                                       
          x  40 g t  40e       40
                                       
                                      0
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40

                               0
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40                            Exercise 8C;
                               0                       2, 4, 5, 6, 8, 10, 13, 16
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g

More Related Content

Viewers also liked

오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あbanera3
 
X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)Nigel Simmons
 
Xóa xăm bằng laser
Xóa xăm bằng laserXóa xăm bằng laser
Xóa xăm bằng laserThang Van
 
라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 박 양도
 
Xamarin - why not ?
Xamarin -  why not ?Xamarin -  why not ?
Xamarin - why not ?Dan Ardelean
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirezRogerRamirez9
 

Viewers also liked (14)

XADAT.NL
XADAT.NLXADAT.NL
XADAT.NL
 
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
 
X38 Fact Sheet
X38 Fact SheetX38 Fact Sheet
X38 Fact Sheet
 
X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)
 
Проект X2C
Проект X2CПроект X2C
Проект X2C
 
Xóa xăm bằng laser
Xóa xăm bằng laserXóa xăm bằng laser
Xóa xăm bằng laser
 
44060601
4406060144060601
44060601
 
Xarxa turística
Xarxa turísticaXarxa turística
Xarxa turística
 
Xandros os
Xandros osXandros os
Xandros os
 
Xarxes PR3
Xarxes PR3Xarxes PR3
Xarxes PR3
 
X3 Base Training Certificate
X3 Base Training CertificateX3 Base Training Certificate
X3 Base Training Certificate
 
라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v
 
Xamarin - why not ?
Xamarin -  why not ?Xamarin -  why not ?
Xamarin - why not ?
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirez
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 

X2 T07 02 resisted motion

  • 2. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion.
  • 3. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law)
  • 4. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 5. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 6. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x
  • 7. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x R
  • 8. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R
  • 9. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m
  • 10. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 11. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 12. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x
  • 13. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg
  • 14. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg R
  • 15. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m x mg R
  • 16. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R
  • 17. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R NOTE: greatest height still occurs when v = 0
  • 18. Case 3 (downwards motion)
  • 19. Case 3 (downwards motion)
  • 20. Case 3 (downwards motion) m x
  • 21. Case 3 (downwards motion) m x mg
  • 22. Case 3 (downwards motion) R m x mg
  • 23. Case 3 (downwards motion) m  mg  R x R m x mg
  • 24. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg
  • 25. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x
  • 26. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 27. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 28. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x
  • 29. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg
  • 30. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2
  • 31. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2 x  0, v  u
  • 32. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x m   mg  kv 2 x k 2 mg kv 2    g  v x m x  0, v  u
  • 33. dv  mg  kv 2 v  dx m
  • 34. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2
  • 35. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0
  • 36. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0
  • 37. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   log  2k  mg  m  ku 2   log1   2k  mg 
  • 38. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   the greatest height  log  2k  mg  m  ku 2  is log1   metres m  ku 2  2k  mg   log1   2k  mg 
  • 39. k 2    g  v x m
  • 40. k 2    g  v x m dv  mg  kv 2  dt m
  • 41. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k
  • 42. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0
  • 43. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  kg     m 1  k   tan   mg u   kg  
  • 44. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  m 1  k  kg      it takes tan   mg u  seconds  kg   m 1  k   tan   mg u   to reach the greatest height. kg  
  • 45. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8
  • 46. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 47. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 48. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x
  • 49. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x 5g
  • 50. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 1 v 8 5 x 5g
  • 51. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 5 x 5g
  • 52. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40
  • 53. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v
  • 54. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v  40log40 g  v 0 v  40log40 g  v   log40 g   40 g   40 log   40 g  v 
  • 55. t  40 g   log  40  40 g  v 
  • 56. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v
  • 57. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g
  • 58. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40     
  • 59. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity
  • 60. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity occurs when   0 x
  • 61. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 62. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR   b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 63. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g
  • 64. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g  terminal velocity is 40 g m/s
  • 65. c) The distance it has fallen after time t
  • 66. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt  
  • 67. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0 
  • 68. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e 40   0
  • 69. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40  0   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g
  • 70. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40 Exercise 8C;  0 2, 4, 5, 6, 8, 10, 13, 16   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g