SlideShare a Scribd company logo
Optical Amplifiers and its Future Uses By :- Paul SouryaChatterjee ECE – 1034 6th Sem. Academy Of Technology
INTRODUCTION The optical fiber amplifier was invented by H. J. Shaw and Michel Digonnet at Stanford University, California (1980s).
Optical communication A typical communications system includes a transmitter, an optical fiber, a receiver, multiplexers and demultiplexers, amplifiers, switches and other components. The transmitter incorporates information to be communicated into an optical signal and transmits the optical signal via the optical fiber to the receiver. The receiver recovers the original information from the received optical signal.
Optical amplifiers vs. regenerators
Amplifier comparisons
Semiconductor Optical Amplifier p Single pass chip gain: G increases exponentially with length
Gain ~ wavelength curve Single SOA ,[object Object]
  Spanning from 1250-1650 nm,[object Object],[object Object]
Erbium Doped Fiber Amplifier ,[object Object]
All optical and fiber compatible
Wide bandwidth 20 ~ 70 nm
High gain, 20 ~ 40 dB
High output power,	>  200mW ,[object Object]
Low distortion and low noise (NF < 5dB),[object Object]
2 Types of Raman Amplifier
However, Distributed Amplifier requires 500 mW  power and Lumped Amplifier  require upto 1W.
Noisein optical amplifiers
Must be measured electrically. ce
Noise figure Noise Figure (dB) ,[object Object],[object Object]
Gain Saturation
Amplifier Gain vs. Power ,[object Object]
Power amplifiers usually operate at saturation.,[object Object]
Their applications

More Related Content

What's hot

Transmission characteristics of optical fibers
Transmission characteristics of optical fibersTransmission characteristics of optical fibers
Transmission characteristics of optical fibers
aibad ahmed
 
Chapter6 optical sources
Chapter6 optical sourcesChapter6 optical sources
Chapter6 optical sources
vijju005
 

What's hot (20)

Optical Fiber
Optical FiberOptical Fiber
Optical Fiber
 
optical fibre
optical fibreoptical fibre
optical fibre
 
EDFA amplifier ppt
EDFA amplifier pptEDFA amplifier ppt
EDFA amplifier ppt
 
Transmission characteristics of optical fibers
Transmission characteristics of optical fibersTransmission characteristics of optical fibers
Transmission characteristics of optical fibers
 
Semiconductor Optical Amplifier
Semiconductor Optical AmplifierSemiconductor Optical Amplifier
Semiconductor Optical Amplifier
 
Dispersion in optical fibers
Dispersion in optical fibersDispersion in optical fibers
Dispersion in optical fibers
 
ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersion
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
 
LED & LASER sources of light
LED & LASER sources of lightLED & LASER sources of light
LED & LASER sources of light
 
Optical modulator (8,12,17,29)
Optical modulator (8,12,17,29)Optical modulator (8,12,17,29)
Optical modulator (8,12,17,29)
 
Raman amplifiers
Raman amplifiersRaman amplifiers
Raman amplifiers
 
Opto modulator
Opto modulatorOpto modulator
Opto modulator
 
Antenna arrays
Antenna arraysAntenna arrays
Antenna arrays
 
Optical fiber Communication
Optical fiber Communication Optical fiber Communication
Optical fiber Communication
 
Photodetector (Photodiode)
Photodetector (Photodiode)Photodetector (Photodiode)
Photodetector (Photodiode)
 
Erbium-Doped Fiber Amplifier (EDFA)
Erbium-Doped Fiber Amplifier (EDFA)Erbium-Doped Fiber Amplifier (EDFA)
Erbium-Doped Fiber Amplifier (EDFA)
 
Laser diodes
Laser diodesLaser diodes
Laser diodes
 
Microwave components
Microwave componentsMicrowave components
Microwave components
 
Chapter6 optical sources
Chapter6 optical sourcesChapter6 optical sources
Chapter6 optical sources
 
Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber Communication
 

Viewers also liked

Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
Semiconductor Optical Amplifiers: Linear Amplification,  Space Switches, and ...Semiconductor Optical Amplifiers: Linear Amplification,  Space Switches, and ...
Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
CPqD
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
rahulohlan14
 
Rare earth doped fibers
Rare earth doped fibersRare earth doped fibers
Rare earth doped fibers
Pritesh Desai
 
Operational Amplifiers And Logic Gates
Operational Amplifiers And Logic GatesOperational Amplifiers And Logic Gates
Operational Amplifiers And Logic Gates
dheva B
 
Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)
Bin Biny Bino
 
Fir and iir filter_design
Fir and iir filter_designFir and iir filter_design
Fir and iir filter_design
shrinivasgnaik
 
Comparison among fiber amplifiers
Comparison among fiber amplifiersComparison among fiber amplifiers
Comparison among fiber amplifiers
Saimunur Rahman
 

Viewers also liked (20)

Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
Semiconductor Optical Amplifiers: Linear Amplification,  Space Switches, and ...Semiconductor Optical Amplifiers: Linear Amplification,  Space Switches, and ...
Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
 
Introduction to optical amplifiers
Introduction to optical amplifiersIntroduction to optical amplifiers
Introduction to optical amplifiers
 
Optical amplifiers
Optical amplifiersOptical amplifiers
Optical amplifiers
 
Optical Amplifier and Networks
Optical Amplifier and NetworksOptical Amplifier and Networks
Optical Amplifier and Networks
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
 
High gain semiconductor optical amplifiers
High gain semiconductor optical amplifiersHigh gain semiconductor optical amplifiers
High gain semiconductor optical amplifiers
 
Rare Earth Metals by Madison Peters
Rare Earth Metals by Madison PetersRare Earth Metals by Madison Peters
Rare Earth Metals by Madison Peters
 
USGS: The Principal Rare Earth Elements Deposits of the United States
USGS: The Principal Rare Earth Elements Deposits of the United StatesUSGS: The Principal Rare Earth Elements Deposits of the United States
USGS: The Principal Rare Earth Elements Deposits of the United States
 
Rare earth doped fibers
Rare earth doped fibersRare earth doped fibers
Rare earth doped fibers
 
Erbium Doped Fiber Lasers
Erbium Doped Fiber LasersErbium Doped Fiber Lasers
Erbium Doped Fiber Lasers
 
Operational Amplifiers And Logic Gates
Operational Amplifiers And Logic GatesOperational Amplifiers And Logic Gates
Operational Amplifiers And Logic Gates
 
Environmental impacts of renewable energy production&quot;
Environmental impacts of renewable energy production&quot;Environmental impacts of renewable energy production&quot;
Environmental impacts of renewable energy production&quot;
 
Natural gas
Natural gasNatural gas
Natural gas
 
Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)
 
digital filters
digital filtersdigital filters
digital filters
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Fir and iir filter_design
Fir and iir filter_designFir and iir filter_design
Fir and iir filter_design
 
Comparison among fiber amplifiers
Comparison among fiber amplifiersComparison among fiber amplifiers
Comparison among fiber amplifiers
 
Solution of operational amplifier & linear integrated circuits 6th edition by...
Solution of operational amplifier & linear integrated circuits 6th edition by...Solution of operational amplifier & linear integrated circuits 6th edition by...
Solution of operational amplifier & linear integrated circuits 6th edition by...
 

Similar to Optical Amplifier Paul

Aeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noiseAeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noise
0mehdi
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
audio amplifier - Hamdard University
audio amplifier - Hamdard Universityaudio amplifier - Hamdard University
audio amplifier - Hamdard University
Arbaz Khan
 
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
Arun K Mohan
 
IGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.pptIGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.ppt
grssieee
 

Similar to Optical Amplifier Paul (20)

An Overview of EDFA Gain Flattening by Using Hybrid Amplifier
An Overview of EDFA Gain Flattening by Using Hybrid AmplifierAn Overview of EDFA Gain Flattening by Using Hybrid Amplifier
An Overview of EDFA Gain Flattening by Using Hybrid Amplifier
 
AMPLIFIERS.pptx
AMPLIFIERS.pptxAMPLIFIERS.pptx
AMPLIFIERS.pptx
 
performance analysis of hg edfa and ln eycdfa
performance analysis of hg edfa and ln eycdfa performance analysis of hg edfa and ln eycdfa
performance analysis of hg edfa and ln eycdfa
 
Experimental study on a broadband erbium
Experimental study on a broadband erbiumExperimental study on a broadband erbium
Experimental study on a broadband erbium
 
Optical amplifiers and networking
Optical amplifiers and networking Optical amplifiers and networking
Optical amplifiers and networking
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
I41035057
I41035057I41035057
I41035057
 
Aeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noiseAeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noise
 
Gain and noise figure analysis of erbium doped fiber amplifiers
Gain and noise figure analysis of erbium doped fiber amplifiersGain and noise figure analysis of erbium doped fiber amplifiers
Gain and noise figure analysis of erbium doped fiber amplifiers
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
transmission media
 transmission media transmission media
transmission media
 
Optical amplification
Optical amplificationOptical amplification
Optical amplification
 
audio amplifier - Hamdard University
audio amplifier - Hamdard Universityaudio amplifier - Hamdard University
audio amplifier - Hamdard University
 
Amin Arbabian - Stanford Engineering - Internet of Things as Connected Intell...
Amin Arbabian - Stanford Engineering - Internet of Things as Connected Intell...Amin Arbabian - Stanford Engineering - Internet of Things as Connected Intell...
Amin Arbabian - Stanford Engineering - Internet of Things as Connected Intell...
 
Mj2420512054
Mj2420512054Mj2420512054
Mj2420512054
 
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
 
Radioonlinereport
RadioonlinereportRadioonlinereport
Radioonlinereport
 
IGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.pptIGARSS2011_Kawamura.ppt
IGARSS2011_Kawamura.ppt
 
Antenna parameters part 1: Frequency bands, Gain and Radiation Pattern
Antenna parameters part 1: Frequency bands, Gain and Radiation PatternAntenna parameters part 1: Frequency bands, Gain and Radiation Pattern
Antenna parameters part 1: Frequency bands, Gain and Radiation Pattern
 
Opamp1
Opamp1Opamp1
Opamp1
 

More from Bise Mond (13)

Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
 
Software defined radio....
Software defined radio....Software defined radio....
Software defined radio....
 
Satellite Application
Satellite ApplicationSatellite Application
Satellite Application
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexing
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Quantum Cryptography
Quantum  CryptographyQuantum  Cryptography
Quantum Cryptography
 
Free Space Optics
Free  Space  OpticsFree  Space  Optics
Free Space Optics
 
Stereo FM
Stereo FMStereo FM
Stereo FM
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Optical Computing
Optical ComputingOptical Computing
Optical Computing
 
Infrared Technology
Infrared TechnologyInfrared Technology
Infrared Technology
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
 

Recently uploaded

ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
ashishpaul799
 

Recently uploaded (20)

Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resources
 
2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptx
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdf....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdf
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matrices
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 

Optical Amplifier Paul

Editor's Notes

  1. Say how signals can be sent optically – brief.
  2. An optical amplifier is one of key components realizing the long distance and large capacity of optical communication system. Technologies associated with the communication of information have evolved rapidly over the last several decades. Optical information communication technologies have evolved as the technology of choice for backbone information communication systems due to their ability to provide large bandwidth, fast transmission speeds and high channel quality. A typical communications system includes a transmitter, an optical fiber, a receiver, multiplexers and demultiplexers, amplifiers, switches and other components. The transmitter incorporates information to be communicated into an optical signal and transmits the optical signal via the optical fiber to the receiver. The receiver recovers the original information from the received optical signal. A multiplexer combines the individual optical signals from each optical fiber into a multiple channel optical signal and launches the multiple channel optical signal into an optical fiber. A demultiplexer separates the channels out of the multiple-channel optical signal and launches them into separate fibers. Then each receiving portion of a transceiver accepts an optical signal from a fiber and converts it to an electric signal. In an optical communication system, light emitted from a transmitter that is transmitted through an optical transmission line suffers transmission loss that reduces the signal arriving at a receiver. When the power of light arriving at a receiver is smaller than a predetermined value, the receiving error prevents normal optical communication from being performed. Optical communication networks, in particular long-haul networks of lengths greater than 600 kilometers, inevitably suffer from signal attenuation due to variety of factors including scattering, absorption, and bending.
  3. Before the advent of optical amplifiers, regenerators were used to refresh or strengthen the weakened optical signals. Regenerators convert the optical signal to an electrical signal, clean the electric signal, and convert the electrical signal back to an optical signal for continued transmission in the optical communication network. Regenerators, however, can typically only amplify one channel or a single wavelength. Optical amplifiers are an improvement to regenerators because optical amplifiers can amplify light signals of multiple wavelengths simultaneously. Optical amplifiers provide a valuable tool for optical communication systems because of their ability to amplify, regenerate, or otherwise control optical energy to be communicated to a next destination. Optical amplifiers are superior to regenerators because they are not as sensitive to bit rates and modulation formats as regenerators. Optical amplifiers can also be used with multiple wavelengths while regenerators are often specific to a particular wavelength
  4. high coupling efficiency, isolatorsSOA can be operated in saturation, or unsaturated. gain clampingthe optical fiber itself acts as a gain medium that transfers energy from pump lasers to the optical data signal travelingtherethrough. In semiconductor optical amplifiers, an electrical current is used to pump the active region of a semiconductor device. A typical semiconductor optical amplifier (SOA) is a waveguide structure with a semiconductor gain medium (either bulk or multi-quantum well), similar to a semiconductor laser. An SOA has multiple layers formed from compound semiconductor materials that are grown on a semiconductor substrate. Semiconductor gain medium is sandwiched between a substrate and a semiconductor layer. These two layers have a lower index of refraction than gain medium and tend to confine the optical mode within gain medium, as does passivation layer. Passivation layer serves to protect the waveguide and substrate surfaces and reduce surface leakage currents, as well as to act as a cladding layer.
  5. EDFA has revolutionized optical communicationsOnly disadv : cant b used at ckt board lvl.
  6. EDFAs rely on a pump laser to excite erbium atoms doping several meters of optical fiberEDFAs typically comprise at least one pump laser whose output is optically coupled to the input of one or more serially connected coils of erbium-doped optical fiber. When a light signal passes through the excited doped fiber, the erbium reverts to its unexcited energy state and gives up the pump energy as a photon of the same wavelength as the light signal triggering the reversion. The pump light usually has a wavelength of 980 or 1480 nm. When a transmission signal, using having a wavelength in the 1550 nm range, propagates through the amplifying fiber, this light stimulates the erbium atoms to release their stored energy as additional 1550 nm light waves which continues as the transmission signals propagates through the amplifying fiber.
  7. The principal difference between C- and L-band amplifiers is that a longer length of doped fibre is used in L-band amplifiers. The longer length of fibre allows a lower inversion level to be used, thereby giving at longer wavelengths (due to the band-structure of Erbium in silica) while still providing a useful amount of gain.EDFAs have two commonly-used pumping bands - 980 nm and 1480 nm. The 980 nm band has a higher absorption cross-section and is generally used where low-noise performance is required. The absorption band is relatively narrow and so wavelength stabilised laser sources are typically needed. The1480 nm band has a lower, but broader, absorption cross-section and is generally used for higher power amplifiers. A combination of 980 nm and 1480 nm pumping is generally utilised in amplifiers
  8. In a Raman amplifier, the signal is intensified by Raman amplification. stimulated raman scattering (SRS), Unlike the EDFA and SOA the amplification effect is achieved by a nonlinear interaction between the signal and a pump laser within an optical fibre.Wavelength set by pump light wavelength used.
  9. The pump light may be coupled into the transmission fibre in the same direction as the signal (co-directional pumping), in the opposite direction (contra-directional pumping) or both. Contra-directional pumping is more common as the transfer of noise from the pump to the signal is reduced.The pump power required for Raman amplification is higher than that required by the EDFA, with in excess of 500 mW being required to achieve useful levels of gain in a distributed amplifier. Lumped amplifiers, where the pump light can be safely contained to avoid safety implications of high optical powers, may use over 1W of optical power.
  10. The principal source of noise in DFAs is Amplified Spontaneous Emission (ASE), which has a spectrum approximately the same as the gain spectrum of the amplifier. Noise figure in an ideal DFA is 3 dB, while practical amplifiers can have noise figure as large as 6-8 dB.As well as decaying via stimulated emission, electrons in the upper energy level can also decay by spontaneous emission, which occurs at random, depending upon the glass structure and inversion level. Photons are emitted spontaneously in all directions, but a proportion of those will be emitted in a direction that falls within the numerical aperture of the fibre and are thus captured and guided by the fibre. Those photons captured may then interact with other dopant ions, and are thus amplified by stimulated emission. The initial spontaneous emission is therefore amplified in the same manner as the signals, hence the term Amplified Spontaneous Emission. ASE is emitted by the amplifier in both the forward and reverse directions, but only the forward ASE is a direct concern to system performance since that noise will co-propagate with the signal to the receiver where it degrades system performance. Counter-propagating ASE can, however, lead to degradation of the amplifier&apos;s performance since the ASE can deplete the inversion level and thereby reduce the gain of the amplifier.
  11. SSE – SIGNAL SPONTANEOUS EMISSIONS
  12. Gain is achieved in a DFA due to population inversion of the dopant ions. The inversion level of a DFA is set, primarily, by the power of the pump wavelength and the power at the amplified wavelengths. As the signal power increases, or the pump power decreases, the inversion level will reduce and thereby the gain of the amplifier will be reduced. This effect is known as gain saturation - as the signal level increases, the amplifier saturates and cannot produce any more output power, and therefore the gain reduces. Saturation is also commonly known as gain compression.To achieve optimum noise performance DFAs are operated under a significant amount of gain compression (10 dB typically), since that reduces the rate of spontaneous emission, thereby reducing ASE. Another advantage of operating the DFA in the gain saturation region is that small fluctuations in the input signal power are reduced in the output amplified signal: smaller input signal powers experience larger (less saturated) gain, while larger input powers see less gain.The leading edge of the pulse is amplified, until the saturation energy of the gain medium is reached. In some condition, the width(FWHM) of the pulse is reduced.