B.E. 4th Semester
Maths-IV: 140001
Numerical Analysis
Prof. K.K.Pokar
Assistant Professor in Mathematics
Government Engineering College,Bhuj
Numerical Methods
Bisection Method
Bisection Method
Bisection Method
BisectionMethod
Algorithm for Bisection Method
Step-1:
 Find the two points a and b
such that f(a) f(b) < 0
 Compute
 Evaluate
Step-2:
Decision Making for Replacing a
/ b with new value
f(x0)
f(x0)=0 f(x0) > 0 f(x0) < 0
If f(x0)=0
Then x0 is the required
root/solution
of the given equation
f(x) = 0
If f(x0) > 0
Then x0 replaces any one of a & b
If f(x0) < 0
Then x0 replaces any one of a & b
Step-3:
Repeating Step-2 for in place of
till the desired accuracy is obtained
Example: Find a real root of the
equation
 Step-1:
 Find the two points a and b such that f(a) f(b)
< 0
 Compute
 Evaluate
Step-2:
Decision Making for Replacing 2
/ 3 with new value =2.5
f(x0)=2.125
f(x0)=0 f(x0) > 0 f(x0) < 0
If f(x0)=2.125 > 0
Then x0 =2.5 replaces any one of 2 &
3
Step-2:Decision Making for
Replacing 2 / 2.5 with
new value 2.25
f(2.25)=-1.859375
f(x0)=0 f(x0) > 0 f(x0) < 0
If f(2.25) < 0
Then 2.25 replaces any one of 2 &
2.5
Root lies
b/w
2.25 and
2.5
Table form
n a f(a) b f(b) M=(a+b)/2 f(M)
0 2 -5 3 13 2.5 2.125
1 2 -5 2.5 2.125 2.25 -1.85938
2 2.25 -1.85938 2.5 2.125 2.375 0.021484
3 2.25 -1.85938 2.375 0.021484 2.3125 -0.94604
4 2.3125 -0.94604 2.375 0.021484 2.34375 -0.46915
5 2.34375 -0.46915 2.375 0.021484 2.359375 -0.22556
6 2.359375 -0.22556 2.375 0.021484 2.367188 -0.10247
7 2.367188 -0.10247 2.375 0.021484 2.371094 -0.0406
8 2.371094 -0.0406 2.375 0.021484 2.373047 -0.00959
9 2.373047 -0.00959 2.375 0.021484 2.374023 0.005942
10 2.373047 -0.00959 2.374023 0.005942 2.373535 -0.00182
11 2.373535 -0.00182 2.374023 0.005942 2.373779 0.002059
12 2.373535 -0.00182 2.373779 0.002059 2.373657 0.000118
Understanding the table
n a f(a) b f(b) M=(a+b)/
2
f(M)
0 2 -5 3 3 2.5 2.125
1 2 -5 2.5 2.125 2.25 -1.85938
2 2.25 -1.85938 2.5 2.125 2.375 0.021484
3 2.25 -1.85938 2.375 0.021484 2.3125 -0.94604
4 2.3125 -0.94604 2.375 0.021484 2.34375 -0.46915
5 2.34375 -0.46915 2.375 0.021484 2.359375 -0.22556
6 2.359375 -0.22556 2.375 0.021484 2.367188 -0.10247
7 2.367188 -0.10247 2.375 0.021484 2.371094 -0.0406
8 2.371094 -0.0406 2.375 0.021484 2.373047 -0.00959
9 2.373047 -0.00959 2.375 0.021484 2.374023 0.005942
10 2.373047 -0.00959 2.374023 0.005942 2.373535 -0.00182
11 2.373535 -0.00182 2.374023 0.005942 2.373779 0.002059
12 2.373535 -0.00182 2.373779 0.002059 2.373657 0.000118
Bisection method

Bisection method

  • 1.
    B.E. 4th Semester Maths-IV:140001 Numerical Analysis Prof. K.K.Pokar Assistant Professor in Mathematics Government Engineering College,Bhuj
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
    Algorithm for BisectionMethod Step-1:  Find the two points a and b such that f(a) f(b) < 0  Compute  Evaluate
  • 7.
    Step-2: Decision Making forReplacing a / b with new value f(x0) f(x0)=0 f(x0) > 0 f(x0) < 0
  • 8.
    If f(x0)=0 Then x0is the required root/solution of the given equation f(x) = 0
  • 9.
    If f(x0) >0 Then x0 replaces any one of a & b
  • 10.
    If f(x0) <0 Then x0 replaces any one of a & b
  • 11.
    Step-3: Repeating Step-2 forin place of till the desired accuracy is obtained
  • 12.
    Example: Find areal root of the equation  Step-1:  Find the two points a and b such that f(a) f(b) < 0  Compute  Evaluate
  • 13.
    Step-2: Decision Making forReplacing 2 / 3 with new value =2.5 f(x0)=2.125 f(x0)=0 f(x0) > 0 f(x0) < 0
  • 14.
    If f(x0)=2.125 >0 Then x0 =2.5 replaces any one of 2 & 3
  • 15.
    Step-2:Decision Making for Replacing2 / 2.5 with new value 2.25 f(2.25)=-1.859375 f(x0)=0 f(x0) > 0 f(x0) < 0
  • 16.
    If f(2.25) <0 Then 2.25 replaces any one of 2 & 2.5 Root lies b/w 2.25 and 2.5
  • 17.
    Table form n af(a) b f(b) M=(a+b)/2 f(M) 0 2 -5 3 13 2.5 2.125 1 2 -5 2.5 2.125 2.25 -1.85938 2 2.25 -1.85938 2.5 2.125 2.375 0.021484 3 2.25 -1.85938 2.375 0.021484 2.3125 -0.94604 4 2.3125 -0.94604 2.375 0.021484 2.34375 -0.46915 5 2.34375 -0.46915 2.375 0.021484 2.359375 -0.22556 6 2.359375 -0.22556 2.375 0.021484 2.367188 -0.10247 7 2.367188 -0.10247 2.375 0.021484 2.371094 -0.0406 8 2.371094 -0.0406 2.375 0.021484 2.373047 -0.00959 9 2.373047 -0.00959 2.375 0.021484 2.374023 0.005942 10 2.373047 -0.00959 2.374023 0.005942 2.373535 -0.00182 11 2.373535 -0.00182 2.374023 0.005942 2.373779 0.002059 12 2.373535 -0.00182 2.373779 0.002059 2.373657 0.000118
  • 18.
    Understanding the table na f(a) b f(b) M=(a+b)/ 2 f(M) 0 2 -5 3 3 2.5 2.125 1 2 -5 2.5 2.125 2.25 -1.85938 2 2.25 -1.85938 2.5 2.125 2.375 0.021484 3 2.25 -1.85938 2.375 0.021484 2.3125 -0.94604 4 2.3125 -0.94604 2.375 0.021484 2.34375 -0.46915 5 2.34375 -0.46915 2.375 0.021484 2.359375 -0.22556 6 2.359375 -0.22556 2.375 0.021484 2.367188 -0.10247 7 2.367188 -0.10247 2.375 0.021484 2.371094 -0.0406 8 2.371094 -0.0406 2.375 0.021484 2.373047 -0.00959 9 2.373047 -0.00959 2.375 0.021484 2.374023 0.005942 10 2.373047 -0.00959 2.374023 0.005942 2.373535 -0.00182 11 2.373535 -0.00182 2.374023 0.005942 2.373779 0.002059 12 2.373535 -0.00182 2.373779 0.002059 2.373657 0.000118