SlideShare a Scribd company logo
1 of 18
Process Optimization
Term assignment
Submitted to : Prof . Amit Kumar
By : (Group VI)
19bch049 - Punit patel
19bch050 - Raj patel
19bch051 - Riya patel
19bch052 - Sahil patel
19bch053 - Yash patel
Bracketing Method
 In bracketing methods, the method starts with an interval that
contains the root and a procedure is used to obtain a smaller interval
containing the root.
 Such methods are always convergent.
 Examples of bracketing methods:
 Bisection method
 False position method
Bisection Method
ABOUT BISECTION METHOD
 Assumptions:
Given an interval [a, b]
f(x) is continuous on [a, b]
f(a) and f(b) have opposite signs.
 These assumptions ensure the existence of at least one zero in the interval [a, b] and the
bisection method can be used to obtain a smaller interval that contains the zero.
 For that we perform the following steps:
1. Compute the mid point c = (a + b) / 2
2. Evaluate f(c)
3. If f(a) f(c) < 0 then new interval [a, c]
If f(a) f(c) > 0 then new interval [c, b]
4. Repeat the procedure until we get convergence.
a
b
f(a)
f(b)
c
a C1 C2
CONTD..
 If f(c) > 0, let anew = a and bnew = c and repeat
process.
 If f(c) < 0, let anew = c and bnew = b and repeat
process.
 This reassignment ensures the root is always
bracketed!! initial point β€˜a’
root β€˜d’
initial point β€˜b’
a
c b
d
 Bisection is an iterative process, where the initial interval is halved
until the size of the interval decreases below some predefined
tolerance ο₯:|a - b| ο‚³ ο₯ or f(x) falls below a tolerance :|f(c ) – f(c-1)| ο‚£
.
Example 1: Determine the real root of
𝒇 𝒙 = πŸ“π’™πŸ‘
βˆ’ πŸ“π’™πŸ
+ πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Bisection Method.
Solution: Lets find the interval first,
π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2
π‘₯ = 1 ⟹ 𝑓 1 = 4
∴ π‘₯ ∈ [0, 1]
Lets start the Bisection iterations now,
π‘₯1 =
0+1
2
= 0.5, 𝑓 π‘₯1 = 𝑓 0.5 = 0.375 > 0∴ π‘₯ ∈ [0, 0.5]
π‘₯2 =
0 + 0.5
2
= 0.25, 𝑓 π‘₯2 = 𝑓 0.25 =-0.7344 < 0
∴ π‘₯ ∈ [0.25, 0.5]
π‘₯3 =
0.25 + 0.5
2
= 0.375, 𝑓 π‘₯3 = 𝑓 0.375 =-0.1895<0
∴ π‘₯ ∈ [0.375, 0.5]
< 0
> 0
π‘₯4 =
0.375 + 0.5
2
= 0.4375, 𝑓 π‘₯4 = 𝑓 0.4375 = 0.0867 > 0∴ π‘₯ ∈ [0.375, 0.4375]
π‘₯5 =
0.375 + 0.4375
2
= 0.4063, 𝑓 π‘₯5 = 𝑓 0.4063 = -0.0522 < 0
∴ π‘₯ ∈ [0.4063, 0.4375]
π‘₯6 =
0.4063 + 0.4375
2
= 0.4219,𝑓 π‘₯6 = 𝑓 0.4219 = 0.0169 > 0
∴ π‘₯ ∈ [0.4063, 0.4219]
π‘₯7 =
0.4063 + 0.4219
2
= 0.4141,𝑓 π‘₯7 = 𝑓 0.4141 = -0.0177 < 0
∴ π‘₯ ∈ [0.4141, 0.4219]
π‘₯8 =
0.4141 + 0.4219
2
= 0.418, 𝑓 π‘₯8 = 𝑓 0.418 = -0.00044 < 0
∴ π‘₯ ∈ [0.418, 0.4219]
π‘₯9 =
0.418 + 0.4219
2
= 0.42, 𝑓 π‘₯9 = 𝑓 0.42 = 0.0084 > 0 ∴ π‘₯ ∈ [0.42, 0.4219]
|0.42 – 0.4219| = 0.0019 β‰ˆ 0
∴ 𝒙 = 𝟎. πŸ’πŸ is one of the approximate real root of the given equation
correct up to 2 decimal places.
Example 2: Determine the negative real root of 𝒇 𝒙 = π’™πŸ‘
+ πŸπŸπ’™ + 35 using Bisection Method correct up to 2
decimal places.
Solution: Lets find the interval first, π‘₯ = 0 ⟹ 𝑓 0 = 35
π‘₯ = βˆ’1 ⟹ 𝑓 βˆ’1 =13
∴ π‘₯ ∈ [βˆ’2, βˆ’1]
Lets start the Bisection iterations now,
π‘₯1 =
βˆ’2βˆ’1
2
= βˆ’1.5, 𝑓 π‘₯1 = 𝑓 βˆ’1.5 = 0.125 > 0 ∴ π‘₯ ∈ [βˆ’2, βˆ’1.5]
π‘₯2 =
βˆ’2 βˆ’ 1.5
2
= βˆ’1.75, 𝑓 π‘₯2 = 𝑓 βˆ’1.75 = -7.12 < 0
∴ π‘₯ ∈ [βˆ’1.75, βˆ’1.5]
π‘₯3 =
βˆ’1.75 βˆ’ 1.5
2
= βˆ’1.625, 𝑓 π‘₯3 = 𝑓 βˆ’1.625 = -3.42 < 0
∴ π‘₯ ∈ [βˆ’1.625, βˆ’1.5]
> 0
> 0
π‘₯ = βˆ’2 ⟹ 𝑓 βˆ’2 = -15
< 0
π‘₯4 =
βˆ’1.625 βˆ’ 1.5
2
= βˆ’1.563, 𝑓 π‘₯4 = 𝑓 βˆ’1.563 = -1.641 < 0 ∴ π‘₯ ∈ [βˆ’1.563, βˆ’1.5]
π‘₯5 =
βˆ’1.563 βˆ’ 1.5
2
= βˆ’1.532, 𝑓 π‘₯5 = 𝑓 βˆ’1.532 = -0.768 < 0 ∴ π‘₯ ∈ [βˆ’1.532, βˆ’1.5]
π‘₯6 =
βˆ’1.532 βˆ’ 1.5
2
= βˆ’1.516, 𝑓 π‘₯6 = 𝑓 βˆ’1.516 = -0.32 < 0 ∴ π‘₯ ∈ [βˆ’1.516, βˆ’1.5]
π‘₯7 =
βˆ’1.516 βˆ’ 1.5
2
= βˆ’1.508, 𝑓 π‘₯7 = 𝑓 βˆ’1.508 = -0.097 < 0∴ π‘₯ ∈ [βˆ’1.508, βˆ’1.5]
π‘₯8 =
βˆ’1.508 βˆ’ 1.5
2
= βˆ’1.504, 𝑓 π‘₯8 = 𝑓 βˆ’1.504 = 0.014 > 0 ∴ π‘₯ ∈ [βˆ’1.508, βˆ’1.504]
|(-1.508) – (-1.504)| = 0.004 β‰ˆ 0
∴ 𝒙 = βˆ’πŸ.504 is one of the approximate negative real root of the give
correct up to 2 decimal places.
False Position Method
(Regula -Falsi)
ABOUT REGULA-FALSI METHOD
This technique is similar to the bisection
method except that the next iteration is
taken as the line of interception between
the pair of x-values and the x-axis rather
than at the midpoint.
(a, f(a))
(b, f(b))
By two point line
formula,
π’š βˆ’ π’šπŸ
π’šπŸ βˆ’ π’šπŸ
=
𝒙 βˆ’ π’™πŸ
π’™πŸ βˆ’ π’™πŸ
⟹
𝒇(𝒙) βˆ’ 𝒇(𝒂)
𝒇(𝒂) βˆ’ 𝒇(𝒃)
=
𝒙 βˆ’ 𝒂
𝒂 βˆ’ 𝒃
⟹
βˆ’π’‡(𝒂)
𝒇(𝒂) βˆ’ 𝒇(𝒃)
=
π’™πŸ βˆ’ 𝒂
𝒂 βˆ’ 𝒃
𝒇𝒐𝒓 𝒙 = π’™πŸ, 𝒇 𝒙 = 𝟎 ⟹ π’™πŸ = 𝒂 βˆ’
(𝒂 βˆ’ 𝒃)𝒇(𝒂)
𝒇(𝒂) βˆ’ 𝒇(𝒃)
⟹ π’™πŸ =
βˆ’π’‚π’‡(𝒃) + 𝒃𝒇(𝒂)
𝒇(𝒂) βˆ’ 𝒇(𝒃)
⟹ π’™πŸ =
𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)
𝒇(𝒃) βˆ’ 𝒇(𝒂)
Iterative formula for
Method of False Position
X
f(x)
Root
a
b
π’™πŸ π’™πŸ
CONTD..
Assumptions:
Given an interval [a, b]
f(x) is continuous on [a, b]
f(a) and f(b) have opposite signs.
 These assumptions ensure the existence of at least one zero in the interval [a, b] and
the false position method can be used to obtain a smaller interval that contains the
zero.
 For that we perform the following steps:
1. Compute the in between point on x-axis,
2. Evaluate f(π’™πŸ)
3. If f(a) f(π’™πŸ) < 0 then new interval [a, π’™πŸ]
If f(a) f(π’™πŸ) > 0 then new interval [π’™πŸ, b]
4. Repeat the procedure until 𝒇(π’™π’Š) < tolerance value.
π’™πŸ =
𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)
𝒇(𝒃) βˆ’ 𝒇(𝒂)
Solution: Lets find the interval first,
π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2 < 0
π‘₯ = 1 ⟹ 𝑓 1 = 4 > 0
∴ π‘₯ ∈ [0, 1]
Lets start the iterations now,
Example 1: Determine the real root of
𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Method of False
Position.
π’™πŸ =
𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)
𝒇(𝒃) βˆ’ 𝒇(𝒂)
=
πŸŽπ’‡ 𝟏 βˆ’ πŸπ’‡(𝟎)
𝒇(𝟏) βˆ’ 𝒇(𝟎)
=
𝟎 βˆ’ 𝟏(βˆ’πŸ)
πŸ’ βˆ’ (βˆ’πŸ)
=
𝟐
πŸ”
= 𝟎. πŸ‘πŸ‘πŸ‘
𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ‘πŸ‘ = -0.372 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ‘πŸ‘, 𝟏]
π’™πŸ =
π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ)
=
𝟎. πŸ‘πŸ‘πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ‘πŸ‘)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ‘πŸ‘)
=
𝟎. πŸ‘πŸ‘πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸ‘πŸ•πŸ)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸ‘πŸ•πŸ)
= 𝟎. πŸ‘πŸ–πŸ—πŸ–
𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ–πŸ—πŸ– = -0.125 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ–πŸ—πŸ–, 𝟏]
π’™πŸ‘ =
π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ) =
𝟎. πŸ‘πŸ–πŸ—πŸ–π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ–πŸ—πŸ–)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ–πŸ—πŸ–)
=
𝟎. πŸ‘πŸ–πŸ—πŸ–(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸπŸπŸ“)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸπŸπŸ“) = 𝟎.4083
𝒇 π’™πŸ‘ = 𝒇 𝟎. πŸ’πŸŽπŸ–πŸ‘ = -0.043 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸŽπŸ–πŸ‘, 𝟏]
π’™πŸ’ =
π’™πŸ‘π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ‘)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ‘)
=
𝟎. πŸ’πŸŽπŸ–πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸŽπŸ–πŸ‘)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸŽπŸ–πŸ‘)
=
𝟎. πŸ’πŸŽπŸ–πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸ’πŸ‘)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸ’πŸ‘)
= 𝟎.415
𝒇 π’™πŸ’ = 𝒇 𝟎. πŸ’πŸπŸ“ = -0.014 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ“, 𝟏]
π’™πŸ“ =
π’™πŸ’π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ’)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ’)
=
𝟎. πŸ’πŸπŸ“π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ“)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ“)
=
𝟎. πŸ’πŸπŸ“(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸπŸ’)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸπŸ’)
= 𝟎.417
𝒇 π’™πŸ“ = 𝒇 𝟎. πŸ’πŸπŸ• = -0.005 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•, 𝟏]
π’™πŸ” =
π’™πŸ“π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ“)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ“)
=
𝟎. πŸ’πŸπŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•)
=
𝟎. πŸ’πŸπŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸ“)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸ“)
= 𝟎.4177
𝒇 π’™πŸ” = 𝒇 𝟎. πŸ’πŸπŸ•πŸ• = -0.0018 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ•, 𝟏]
π’™πŸ• =
π’™πŸ”π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ”)
𝒇(𝒃) βˆ’ 𝒇(π’™πŸ”)
=
𝟎. πŸ’πŸπŸ•πŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•πŸ•)
𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•πŸ•)
=
𝟎. πŸ’πŸπŸ•πŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–)
πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–)
= 𝟎.4179
𝒇 π’™πŸ• = 𝒇 𝟎. πŸ’πŸπŸ•πŸ— = -0.0009 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ—, 𝟏]
∴ 𝒙 = 𝟎. πŸ’πŸπŸ•πŸ— is one of the approximate real root of the given equatio
correct up to 3 decimal places.
|f(0.4179)| = 0.0009 β‰ˆ 0
Example 2: Determine the real root of 𝒍𝒏 π’™πŸ’ = 𝟎. πŸ• using
Regula – Falsi Method correct up to three decimal places.
Solution: Lets find the interval for,
π‘₯ = 1 ⟹ 𝑓 1 = βˆ’0.7
π‘₯ = 2 ⟹ 𝑓 2 = 2.073
∴ π‘₯ ∈ [1, 2]
Lets start the iterations now,
𝒇 𝒙 = 𝒍𝒏 π’™πŸ’ βˆ’ 𝟎. πŸ•
π’™πŸ =
𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)
𝒇(𝒃) βˆ’ 𝒇(𝒂)
=
πŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏)
𝒇(𝟐) βˆ’ 𝒇(𝟏)
=
𝟐. πŸŽπŸ•πŸ‘ βˆ’ 𝟐(βˆ’πŸŽ. πŸ•)
𝟐. πŸŽπŸ•πŸ‘ βˆ’ (βˆ’πŸŽ. πŸ•)
= 𝟏. πŸπŸ“πŸ
𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ“πŸ = 0.199 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ“πŸ]
< 0
> 0
π’™πŸ =
𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂)
𝒇(π’™πŸ) βˆ’ 𝒇(𝒂)
=
πŸπ’‡ 𝟏. πŸπŸ“πŸ βˆ’ 𝟏. πŸπŸ“πŸπ’‡(𝟏)
𝒇(𝟏. πŸπŸ“πŸ) βˆ’ 𝒇(𝟏)
=
𝟎. πŸπŸ—πŸ— βˆ’ 𝟏. πŸπŸ“πŸ(βˆ’πŸŽ. πŸ•)
𝟎. πŸπŸ—πŸ— βˆ’ (βˆ’πŸŽ. πŸ•)
= 𝟏.196
𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ—πŸ” = 0.016 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ”]
π’™πŸ‘ =
𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂)
𝒇(π’™πŸ) βˆ’ 𝒇(𝒂)
=
πŸπ’‡ 𝟏. πŸπŸ—πŸ” βˆ’ 𝟏. πŸπŸ—πŸ”π’‡(𝟏)
𝒇(𝟏. πŸπŸ—πŸ”) βˆ’ 𝒇(𝟏)
=
𝟎. πŸŽπŸπŸ” βˆ’ 𝟏. πŸπŸ—πŸ”(βˆ’πŸŽ. πŸ•)
𝟎. πŸŽπŸπŸ” βˆ’ (βˆ’πŸŽ. πŸ•)
= 𝟏.192
𝒇 π’™πŸ‘ = 𝒇 𝟏. πŸπŸ—πŸ = 0.0025 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ]
π’™πŸ’ =
𝒂𝒇 π’™πŸ‘ βˆ’ π’™πŸ‘π’‡(𝒂)
𝒇(π’™πŸ‘) βˆ’ 𝒇(𝒂)
=
πŸπ’‡ 𝟏. πŸπŸ—πŸ βˆ’ 𝟏. πŸπŸ—πŸπ’‡(𝟏)
𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏)
=
𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ 𝟏. πŸπŸ—πŸ(βˆ’πŸŽ. πŸ•)
𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ (βˆ’πŸŽ. πŸ•)
= 𝟏.1913
𝒇 π’™πŸ’ = 𝒇 𝟏. πŸπŸ—πŸπŸ‘ = 0.00002 > 0∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸ‘]
π’™πŸ“ =
𝒂𝒇 π’™πŸ’ βˆ’ π’™πŸ’π’‡(𝒂)
𝒇(π’™πŸ’) βˆ’ 𝒇(𝒂)
=
πŸπ’‡ 𝟏. πŸπŸ—πŸπŸ‘ βˆ’ 𝟏. πŸπŸ—πŸπŸ‘π’‡(𝟏)
𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏)
=
𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ 𝟏. πŸπŸ—πŸπŸ‘(βˆ’πŸŽ. πŸ•)
𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ (βˆ’πŸŽ. πŸ•)
= 𝟏.19129
𝒇 π’™πŸ“ = 𝒇 𝟏. πŸπŸ—πŸπŸπŸ— = 0.00001 > 0
∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸπŸ—]
∴ 𝒙 = 𝟏. πŸπŸ—πŸπŸπŸ— is the approximate real root of the given equation correct up to 3
PO_groupVI_Term assignment.pptx

More Related Content

Similar to PO_groupVI_Term assignment.pptx

Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .happycocoman
Β 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptxAngeloReyes58
Β 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesDanielaAngulo25
Β 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VRai University
Β 
engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vKundan Kumar
Β 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullahAli Abdullah
Β 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsQUESTJOURNAL
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
Β 
NA_Lecture-7.pdf
NA_Lecture-7.pdfNA_Lecture-7.pdf
NA_Lecture-7.pdfRayhan331
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
Β 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxSoftcare Solution
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„anasKhalaf4
Β 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisHamza Nawaz
Β 

Similar to PO_groupVI_Term assignment.pptx (20)

Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
Β 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
Β 
Aed.pptx
Aed.pptxAed.pptx
Aed.pptx
Β 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdades
Β 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Β 
engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-v
Β 
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Β 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
Β 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 
Math
MathMath
Math
Β 
NA_Lecture-7.pdf
NA_Lecture-7.pdfNA_Lecture-7.pdf
NA_Lecture-7.pdf
Β 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
Β 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Β 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysis
Β 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...Call girls in Ahmedabad High profile
Β 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
Β 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
Β 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
Β 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
Β 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 

PO_groupVI_Term assignment.pptx

  • 1. Process Optimization Term assignment Submitted to : Prof . Amit Kumar By : (Group VI) 19bch049 - Punit patel 19bch050 - Raj patel 19bch051 - Riya patel 19bch052 - Sahil patel 19bch053 - Yash patel
  • 2. Bracketing Method  In bracketing methods, the method starts with an interval that contains the root and a procedure is used to obtain a smaller interval containing the root.  Such methods are always convergent.  Examples of bracketing methods:  Bisection method  False position method
  • 4. ABOUT BISECTION METHOD  Assumptions: Given an interval [a, b] f(x) is continuous on [a, b] f(a) and f(b) have opposite signs.  These assumptions ensure the existence of at least one zero in the interval [a, b] and the bisection method can be used to obtain a smaller interval that contains the zero.  For that we perform the following steps: 1. Compute the mid point c = (a + b) / 2 2. Evaluate f(c) 3. If f(a) f(c) < 0 then new interval [a, c] If f(a) f(c) > 0 then new interval [c, b] 4. Repeat the procedure until we get convergence. a b f(a) f(b) c a C1 C2
  • 5. CONTD..  If f(c) > 0, let anew = a and bnew = c and repeat process.  If f(c) < 0, let anew = c and bnew = b and repeat process.  This reassignment ensures the root is always bracketed!! initial point β€˜a’ root β€˜d’ initial point β€˜b’ a c b d  Bisection is an iterative process, where the initial interval is halved until the size of the interval decreases below some predefined tolerance ο₯:|a - b| ο‚³ ο₯ or f(x) falls below a tolerance :|f(c ) – f(c-1)| ο‚£ .
  • 6. Example 1: Determine the real root of 𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Bisection Method. Solution: Lets find the interval first, π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2 π‘₯ = 1 ⟹ 𝑓 1 = 4 ∴ π‘₯ ∈ [0, 1] Lets start the Bisection iterations now, π‘₯1 = 0+1 2 = 0.5, 𝑓 π‘₯1 = 𝑓 0.5 = 0.375 > 0∴ π‘₯ ∈ [0, 0.5] π‘₯2 = 0 + 0.5 2 = 0.25, 𝑓 π‘₯2 = 𝑓 0.25 =-0.7344 < 0 ∴ π‘₯ ∈ [0.25, 0.5] π‘₯3 = 0.25 + 0.5 2 = 0.375, 𝑓 π‘₯3 = 𝑓 0.375 =-0.1895<0 ∴ π‘₯ ∈ [0.375, 0.5] < 0 > 0
  • 7. π‘₯4 = 0.375 + 0.5 2 = 0.4375, 𝑓 π‘₯4 = 𝑓 0.4375 = 0.0867 > 0∴ π‘₯ ∈ [0.375, 0.4375] π‘₯5 = 0.375 + 0.4375 2 = 0.4063, 𝑓 π‘₯5 = 𝑓 0.4063 = -0.0522 < 0 ∴ π‘₯ ∈ [0.4063, 0.4375] π‘₯6 = 0.4063 + 0.4375 2 = 0.4219,𝑓 π‘₯6 = 𝑓 0.4219 = 0.0169 > 0 ∴ π‘₯ ∈ [0.4063, 0.4219] π‘₯7 = 0.4063 + 0.4219 2 = 0.4141,𝑓 π‘₯7 = 𝑓 0.4141 = -0.0177 < 0 ∴ π‘₯ ∈ [0.4141, 0.4219] π‘₯8 = 0.4141 + 0.4219 2 = 0.418, 𝑓 π‘₯8 = 𝑓 0.418 = -0.00044 < 0 ∴ π‘₯ ∈ [0.418, 0.4219] π‘₯9 = 0.418 + 0.4219 2 = 0.42, 𝑓 π‘₯9 = 𝑓 0.42 = 0.0084 > 0 ∴ π‘₯ ∈ [0.42, 0.4219] |0.42 – 0.4219| = 0.0019 β‰ˆ 0 ∴ 𝒙 = 𝟎. πŸ’πŸ is one of the approximate real root of the given equation correct up to 2 decimal places.
  • 8. Example 2: Determine the negative real root of 𝒇 𝒙 = π’™πŸ‘ + πŸπŸπ’™ + 35 using Bisection Method correct up to 2 decimal places. Solution: Lets find the interval first, π‘₯ = 0 ⟹ 𝑓 0 = 35 π‘₯ = βˆ’1 ⟹ 𝑓 βˆ’1 =13 ∴ π‘₯ ∈ [βˆ’2, βˆ’1] Lets start the Bisection iterations now, π‘₯1 = βˆ’2βˆ’1 2 = βˆ’1.5, 𝑓 π‘₯1 = 𝑓 βˆ’1.5 = 0.125 > 0 ∴ π‘₯ ∈ [βˆ’2, βˆ’1.5] π‘₯2 = βˆ’2 βˆ’ 1.5 2 = βˆ’1.75, 𝑓 π‘₯2 = 𝑓 βˆ’1.75 = -7.12 < 0 ∴ π‘₯ ∈ [βˆ’1.75, βˆ’1.5] π‘₯3 = βˆ’1.75 βˆ’ 1.5 2 = βˆ’1.625, 𝑓 π‘₯3 = 𝑓 βˆ’1.625 = -3.42 < 0 ∴ π‘₯ ∈ [βˆ’1.625, βˆ’1.5] > 0 > 0 π‘₯ = βˆ’2 ⟹ 𝑓 βˆ’2 = -15 < 0
  • 9. π‘₯4 = βˆ’1.625 βˆ’ 1.5 2 = βˆ’1.563, 𝑓 π‘₯4 = 𝑓 βˆ’1.563 = -1.641 < 0 ∴ π‘₯ ∈ [βˆ’1.563, βˆ’1.5] π‘₯5 = βˆ’1.563 βˆ’ 1.5 2 = βˆ’1.532, 𝑓 π‘₯5 = 𝑓 βˆ’1.532 = -0.768 < 0 ∴ π‘₯ ∈ [βˆ’1.532, βˆ’1.5] π‘₯6 = βˆ’1.532 βˆ’ 1.5 2 = βˆ’1.516, 𝑓 π‘₯6 = 𝑓 βˆ’1.516 = -0.32 < 0 ∴ π‘₯ ∈ [βˆ’1.516, βˆ’1.5] π‘₯7 = βˆ’1.516 βˆ’ 1.5 2 = βˆ’1.508, 𝑓 π‘₯7 = 𝑓 βˆ’1.508 = -0.097 < 0∴ π‘₯ ∈ [βˆ’1.508, βˆ’1.5] π‘₯8 = βˆ’1.508 βˆ’ 1.5 2 = βˆ’1.504, 𝑓 π‘₯8 = 𝑓 βˆ’1.504 = 0.014 > 0 ∴ π‘₯ ∈ [βˆ’1.508, βˆ’1.504] |(-1.508) – (-1.504)| = 0.004 β‰ˆ 0 ∴ 𝒙 = βˆ’πŸ.504 is one of the approximate negative real root of the give correct up to 2 decimal places.
  • 11. ABOUT REGULA-FALSI METHOD This technique is similar to the bisection method except that the next iteration is taken as the line of interception between the pair of x-values and the x-axis rather than at the midpoint. (a, f(a)) (b, f(b)) By two point line formula, π’š βˆ’ π’šπŸ π’šπŸ βˆ’ π’šπŸ = 𝒙 βˆ’ π’™πŸ π’™πŸ βˆ’ π’™πŸ ⟹ 𝒇(𝒙) βˆ’ 𝒇(𝒂) 𝒇(𝒂) βˆ’ 𝒇(𝒃) = 𝒙 βˆ’ 𝒂 𝒂 βˆ’ 𝒃 ⟹ βˆ’π’‡(𝒂) 𝒇(𝒂) βˆ’ 𝒇(𝒃) = π’™πŸ βˆ’ 𝒂 𝒂 βˆ’ 𝒃 𝒇𝒐𝒓 𝒙 = π’™πŸ, 𝒇 𝒙 = 𝟎 ⟹ π’™πŸ = 𝒂 βˆ’ (𝒂 βˆ’ 𝒃)𝒇(𝒂) 𝒇(𝒂) βˆ’ 𝒇(𝒃) ⟹ π’™πŸ = βˆ’π’‚π’‡(𝒃) + 𝒃𝒇(𝒂) 𝒇(𝒂) βˆ’ 𝒇(𝒃) ⟹ π’™πŸ = 𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂) 𝒇(𝒃) βˆ’ 𝒇(𝒂) Iterative formula for Method of False Position X f(x) Root a b π’™πŸ π’™πŸ
  • 12. CONTD.. Assumptions: Given an interval [a, b] f(x) is continuous on [a, b] f(a) and f(b) have opposite signs.  These assumptions ensure the existence of at least one zero in the interval [a, b] and the false position method can be used to obtain a smaller interval that contains the zero.  For that we perform the following steps: 1. Compute the in between point on x-axis, 2. Evaluate f(π’™πŸ) 3. If f(a) f(π’™πŸ) < 0 then new interval [a, π’™πŸ] If f(a) f(π’™πŸ) > 0 then new interval [π’™πŸ, b] 4. Repeat the procedure until 𝒇(π’™π’Š) < tolerance value. π’™πŸ = 𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂) 𝒇(𝒃) βˆ’ 𝒇(𝒂)
  • 13. Solution: Lets find the interval first, π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2 < 0 π‘₯ = 1 ⟹ 𝑓 1 = 4 > 0 ∴ π‘₯ ∈ [0, 1] Lets start the iterations now, Example 1: Determine the real root of 𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Method of False Position. π’™πŸ = 𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂) 𝒇(𝒃) βˆ’ 𝒇(𝒂) = πŸŽπ’‡ 𝟏 βˆ’ πŸπ’‡(𝟎) 𝒇(𝟏) βˆ’ 𝒇(𝟎) = 𝟎 βˆ’ 𝟏(βˆ’πŸ) πŸ’ βˆ’ (βˆ’πŸ) = 𝟐 πŸ” = 𝟎. πŸ‘πŸ‘πŸ‘ 𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ‘πŸ‘ = -0.372 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ‘πŸ‘, 𝟏]
  • 14. π’™πŸ = π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ) = 𝟎. πŸ‘πŸ‘πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ‘πŸ‘) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ‘πŸ‘) = 𝟎. πŸ‘πŸ‘πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸ‘πŸ•πŸ) πŸ’ βˆ’ (βˆ’πŸŽ. πŸ‘πŸ•πŸ) = 𝟎. πŸ‘πŸ–πŸ—πŸ– 𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ–πŸ—πŸ– = -0.125 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ–πŸ—πŸ–, 𝟏] π’™πŸ‘ = π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ) = 𝟎. πŸ‘πŸ–πŸ—πŸ–π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ–πŸ—πŸ–) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ–πŸ—πŸ–) = 𝟎. πŸ‘πŸ–πŸ—πŸ–(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸπŸπŸ“) πŸ’ βˆ’ (βˆ’πŸŽ. πŸπŸπŸ“) = 𝟎.4083 𝒇 π’™πŸ‘ = 𝒇 𝟎. πŸ’πŸŽπŸ–πŸ‘ = -0.043 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸŽπŸ–πŸ‘, 𝟏] π’™πŸ’ = π’™πŸ‘π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ‘) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ‘) = 𝟎. πŸ’πŸŽπŸ–πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸŽπŸ–πŸ‘) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸŽπŸ–πŸ‘) = 𝟎. πŸ’πŸŽπŸ–πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸ’πŸ‘) πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸ’πŸ‘) = 𝟎.415 𝒇 π’™πŸ’ = 𝒇 𝟎. πŸ’πŸπŸ“ = -0.014 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ“, 𝟏] π’™πŸ“ = π’™πŸ’π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ’) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ’) = 𝟎. πŸ’πŸπŸ“π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ“) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ“) = 𝟎. πŸ’πŸπŸ“(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸπŸ’) πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸπŸ’) = 𝟎.417 𝒇 π’™πŸ“ = 𝒇 𝟎. πŸ’πŸπŸ• = -0.005 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•, 𝟏]
  • 15. π’™πŸ” = π’™πŸ“π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ“) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ“) = 𝟎. πŸ’πŸπŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•) = 𝟎. πŸ’πŸπŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸ“) πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸ“) = 𝟎.4177 𝒇 π’™πŸ” = 𝒇 𝟎. πŸ’πŸπŸ•πŸ• = -0.0018 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ•, 𝟏] π’™πŸ• = π’™πŸ”π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ”) 𝒇(𝒃) βˆ’ 𝒇(π’™πŸ”) = 𝟎. πŸ’πŸπŸ•πŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•πŸ•) 𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•πŸ•) = 𝟎. πŸ’πŸπŸ•πŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–) πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–) = 𝟎.4179 𝒇 π’™πŸ• = 𝒇 𝟎. πŸ’πŸπŸ•πŸ— = -0.0009 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ—, 𝟏] ∴ 𝒙 = 𝟎. πŸ’πŸπŸ•πŸ— is one of the approximate real root of the given equatio correct up to 3 decimal places. |f(0.4179)| = 0.0009 β‰ˆ 0
  • 16. Example 2: Determine the real root of 𝒍𝒏 π’™πŸ’ = 𝟎. πŸ• using Regula – Falsi Method correct up to three decimal places. Solution: Lets find the interval for, π‘₯ = 1 ⟹ 𝑓 1 = βˆ’0.7 π‘₯ = 2 ⟹ 𝑓 2 = 2.073 ∴ π‘₯ ∈ [1, 2] Lets start the iterations now, 𝒇 𝒙 = 𝒍𝒏 π’™πŸ’ βˆ’ 𝟎. πŸ• π’™πŸ = 𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂) 𝒇(𝒃) βˆ’ 𝒇(𝒂) = πŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏) 𝒇(𝟐) βˆ’ 𝒇(𝟏) = 𝟐. πŸŽπŸ•πŸ‘ βˆ’ 𝟐(βˆ’πŸŽ. πŸ•) 𝟐. πŸŽπŸ•πŸ‘ βˆ’ (βˆ’πŸŽ. πŸ•) = 𝟏. πŸπŸ“πŸ 𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ“πŸ = 0.199 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ“πŸ] < 0 > 0
  • 17. π’™πŸ = 𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂) 𝒇(π’™πŸ) βˆ’ 𝒇(𝒂) = πŸπ’‡ 𝟏. πŸπŸ“πŸ βˆ’ 𝟏. πŸπŸ“πŸπ’‡(𝟏) 𝒇(𝟏. πŸπŸ“πŸ) βˆ’ 𝒇(𝟏) = 𝟎. πŸπŸ—πŸ— βˆ’ 𝟏. πŸπŸ“πŸ(βˆ’πŸŽ. πŸ•) 𝟎. πŸπŸ—πŸ— βˆ’ (βˆ’πŸŽ. πŸ•) = 𝟏.196 𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ—πŸ” = 0.016 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ”] π’™πŸ‘ = 𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂) 𝒇(π’™πŸ) βˆ’ 𝒇(𝒂) = πŸπ’‡ 𝟏. πŸπŸ—πŸ” βˆ’ 𝟏. πŸπŸ—πŸ”π’‡(𝟏) 𝒇(𝟏. πŸπŸ—πŸ”) βˆ’ 𝒇(𝟏) = 𝟎. πŸŽπŸπŸ” βˆ’ 𝟏. πŸπŸ—πŸ”(βˆ’πŸŽ. πŸ•) 𝟎. πŸŽπŸπŸ” βˆ’ (βˆ’πŸŽ. πŸ•) = 𝟏.192 𝒇 π’™πŸ‘ = 𝒇 𝟏. πŸπŸ—πŸ = 0.0025 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ] π’™πŸ’ = 𝒂𝒇 π’™πŸ‘ βˆ’ π’™πŸ‘π’‡(𝒂) 𝒇(π’™πŸ‘) βˆ’ 𝒇(𝒂) = πŸπ’‡ 𝟏. πŸπŸ—πŸ βˆ’ 𝟏. πŸπŸ—πŸπ’‡(𝟏) 𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏) = 𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ 𝟏. πŸπŸ—πŸ(βˆ’πŸŽ. πŸ•) 𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ (βˆ’πŸŽ. πŸ•) = 𝟏.1913 𝒇 π’™πŸ’ = 𝒇 𝟏. πŸπŸ—πŸπŸ‘ = 0.00002 > 0∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸ‘] π’™πŸ“ = 𝒂𝒇 π’™πŸ’ βˆ’ π’™πŸ’π’‡(𝒂) 𝒇(π’™πŸ’) βˆ’ 𝒇(𝒂) = πŸπ’‡ 𝟏. πŸπŸ—πŸπŸ‘ βˆ’ 𝟏. πŸπŸ—πŸπŸ‘π’‡(𝟏) 𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏) = 𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ 𝟏. πŸπŸ—πŸπŸ‘(βˆ’πŸŽ. πŸ•) 𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ (βˆ’πŸŽ. πŸ•) = 𝟏.19129 𝒇 π’™πŸ“ = 𝒇 𝟏. πŸπŸ—πŸπŸπŸ— = 0.00001 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸπŸ—] ∴ 𝒙 = 𝟏. πŸπŸ—πŸπŸπŸ— is the approximate real root of the given equation correct up to 3

Editor's Notes

  1. 6
  2. 8