SlideShare a Scribd company logo
PRML復々習レーン#3
 前回までのあらすじ
    2012-07-16
  Yoshihiko Suhara
   @sleepy_yoshi

                     v.1.1
前回のおさらい
• 復々習レーンの復習を15分程度でやります
 – 得られた結論にポイントを絞る   ポイントだよ



 – 「よーするに」な内容


• 目的
 – 前回の復習
 – 不参加の方に流れを伝えるため
 – 自分自身の勉強のため

                             2
前回の範囲
• 2.3 ガウス分布
  –   2.3.1 条件付きガウス分布
  –   2.3.2 周辺ガウス分布
  –   2.3.3 ガウス変数に対するベイズの定理
  –   2.3.4 ガウス分布の最尤推定
  –   2.3.5 逐次推定
  –   2.3.6 ガウス分布に対するベイズ推論
  –   2.3.7 スチューデントのt分布
  –   2.3.8 周期変数
  –   2.3.9 混合ガウス分布
• 2.4 指数型分布族
  – 2.4.1 最尤推定と十分推定量
  – 2.4.2 共役事前分布              ここまで
  – 2.4.3 無情報事前分布

                                3
2.3 ガウス分布



            4
ポイントだよ
                        2.3 ガウス分布
       ガウス分布は全ての基本
平均パラメータ𝝁,共分散パラメータ𝚺 (精度𝚲 = 𝚺 −1 )の
  ガウス分布の確率密度関数は以下のとおり
                    1       1             1          𝑇 𝚺 −1
•     𝒩 𝑥 𝜇, Σ =        𝐷       1 exp −       𝒙− 𝝁            𝒙− 𝝁
                                          2
                   2𝜋   2   𝚺2
• 注意点
     – 単峰性であること
                            𝐷+1 𝐷
     – パラメータ数は                      + 𝐷個であるため,計算が困難
                             2
             • 共分散行列に制限を設ける (a: 一般,b: 対角, c: 等分散)




                                                                     5
ポイントだよ
         2.3.1 条件付きガウス分布
          𝑝 𝒙 𝑎 , 𝒙 𝑏 がガウス分布のとき,
         条件付き分布𝑝 𝒙 𝒂 |𝒙 𝑏 もガウス分布


                                   コレ




                                   6
ポイントだよ
         2.3.2 周辺ガウス分布
     𝑝 𝒙 𝑎 , 𝒙 𝑏 がガウス分布のとき,
  周辺分布𝑝 𝒙 𝒂 = 𝑝 𝒙 𝑎 , 𝒙 𝑏 d𝒙 𝑏 もガウス分布




                        コレ




                                        7
2.3.3 ガウス分布に対するベイズ推定
    ポイントだよ




      𝒙の周辺ガウス分布𝑝(𝒙)と条件付きガウス分布𝑝(𝒚|𝒙)が
              以下で与えられたとき
       𝒚の周辺分布と𝒙の条件付き分布は以下で表現できる
•    𝒙の周辺ガウス分布𝑝(𝒙)と条件付きガウス分布𝑝(𝒚|𝒙)
     – 𝑝 𝒙 = 𝒩 𝒙 𝝁, 𝚲−1
     – 𝑝 𝒚|𝒙 = 𝒩 𝒚 𝑨𝒙 + 𝒃, 𝑳−1

•    𝒚の周辺分布と𝒙の条件付き分布
     – 𝑝 𝒚 = 𝒩 𝒚 𝑨𝝁 + 𝒃, 𝑳−1 + 𝑨𝚲−1 𝑨 𝑇
     – 𝑝 𝒙 𝒚 = 𝒩 𝒙 𝚺 𝑨 𝑇 𝑳 𝒚 − 𝒃 + 𝑨𝝁 , 𝚺
     – ただし 𝚺 = 𝚲 + 𝑨 𝑇 𝑳𝑨 −1

• 同時確率 𝑝 𝒛 = 𝑝 𝒙 𝑝 𝒚 𝒙 = 𝑝 𝒚 𝑝 𝒙 𝒚

                                            8
2.3.4 ガウス分布の最尤推定
ポイントだよ




         平均と分散の最尤推定量は以下のとおり
          なお分散の最尤推定量 ≠ 不偏推定量

• 十分統計量
         𝑁               𝑁
 –       𝑛=1   𝒙𝑛と       𝑛=1   𝒙𝑛 𝒙𝑇
                                   𝑛


• 最尤推定量
                         1     𝑁
 – 平均: 𝝁ML =                   𝑛=1   𝒙𝑛
                          𝑁
                         1     𝑁                             𝑇
 – 分散: 𝚺        𝑀𝐿   =         𝑛=1   𝒙 𝑛 − 𝝁ML   𝒙 𝑛 − 𝝁ML
                         𝑁

                                                                 9
ポイントだよ
               2.3.5 逐次推定
データを逐次的に用いて分布のパラメータを推定する
 場合にはRobbins-Monroアルゴリズムを利用できる

• Robbins-Monroアルゴリズム
  – 𝑓 𝜃 ∗ = 0の根𝜃 ∗ を求めるアルゴリズム
              𝜃 𝑁 = 𝜃 𝑁−1 − 𝑎 𝑁−1 𝑧 𝜃 𝑁−1
• 最尤推定解は対数尤度関数の停留点
  – 最尤推定解を求めることは,回帰関数の根を求めることに相当
  – 他にも3.1.3の確率的勾配法でも利用



                                            10
2.3.6 ガウス分布に対するベイズ推論
 ポイントだよ




   ガウス分布における各パラメータの事後分布と
       共役事前分布は以下の通り

     事後分布          1変量          多変量
平均パラメータ(分散既知)    ガウス分布         ガウス分布
精度パラメータ(平均既知)    ガンマ分布        ウィシャート分布
分散パラメータ(平均既知)    逆ガンマ分布      逆ウィシャート分布
平均,精度パラメータ      ガウス―ガンマ分布   ガウス―ウィシャート分布


• パラメータの事後分布∝尤度×事前分布
• ベイズ推定で求めるのはパラメータの分布
                                           11
2.3.7 スチューデントのt分布
 ポイントだよ




      t分布は,平均は同じで精度が異なるような
        ガウス分布を無限個足し合わせたもの

• t分布の頑健性




          t分布     t分布 vs. ガウス分布

• 最尤推定解は解析的には求まらない (⇒ EM法)        12
ポイントだよ
                   2.3.8 周期変数
            周期性を持つ確率変数を扱う場合には
            極座標とフォン・ミーゼス分布を用いる
  • フォン・ミーゼス分布
                             1
             𝑝 𝜃 𝜃0 , 𝑚 =          exp 𝑚 cos 𝜃 − 𝜃0
                          2𝜋𝐼0 (𝑚)


                                                      Richard von Mises
                                                         (1883-1953)




赤の単位円で条件づけられた
2次元ガウス分布という解釈                                          Fritz Von13
                                                                 Erich
                         極座標                   直交座標     (1929-1997)
ポイントだよ
          2.3.9 混合ガウス分布
    単一のガウス分布では表現が難しい場合には
         混合ガウス分布を用いる




                   𝐾
• 混合ガウス分布: 𝑝 𝒙 =   𝑘=1   𝜋 𝑘 𝒩 𝒙 𝝁 𝑘, 𝚺 𝑘
• 対数尤度関数
  – 解析的には最尤解を求められることができないため,EMアル
    ゴリズムを用いる
                                            14
2.4 指数型分布族



             15
ポイントだよ
           2.4 指数型分布族
         これまでの話題を一般化するため,
         指数型分布族という単位で考える

• 指数型分布族の例
 – ベルヌーイ分布,多項分布,正規分布,ポアソン
   分布など

• 指数型分布族の一般形
         𝑝 𝒙 𝜼 = ℎ 𝒙 𝑔 𝜼 exp 𝜼 𝑇 𝒖 𝒙
                                       16
2.4.1 最尤推定量と十分統計量
ポイントだよ




      指数型分布族の関数形から
  最尤推定量と十分統計量を求めることができる

• 以下の式を解けば最尤推定量を得ることができる
                                 𝑁
                            1
         −𝛻 ln 𝑔 𝜼   𝑀𝐿   =           𝒖 𝒙𝑛
                            𝑁
                                𝑛=1      十分統計量




                                                 17
さぁ今日も一日
つづく    がんばるぞ




            18

More Related Content

What's hot

PRML2.3.8~2.5 Slides in charge
PRML2.3.8~2.5 Slides in chargePRML2.3.8~2.5 Slides in charge
PRML2.3.8~2.5 Slides in charge
Junpei Matsuda
 
PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2
KunihiroTakeoka
 
[PRML] パターン認識と機械学習(第2章:確率分布)
[PRML] パターン認識と機械学習(第2章:確率分布)[PRML] パターン認識と機械学習(第2章:確率分布)
[PRML] パターン認識と機械学習(第2章:確率分布)
Ryosuke Sasaki
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
Keisuke Sugawara
 
PRML2.3.1-2.3.3
PRML2.3.1-2.3.3PRML2.3.1-2.3.3
PRML2.3.1-2.3.3
とっきー Ishikawa
 
PRML chap.10 latter half
PRML chap.10 latter halfPRML chap.10 latter half
PRML chap.10 latter half
Narihira Takuya
 
PRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじPRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじ
sleepy_yoshi
 
PRML 8.4-8.4.3
PRML 8.4-8.4.3 PRML 8.4-8.4.3
PRML 8.4-8.4.3
KunihiroTakeoka
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
Keisuke Sugawara
 
MLaPP 5章 「ベイズ統計学」
MLaPP 5章 「ベイズ統計学」MLaPP 5章 「ベイズ統計学」
MLaPP 5章 「ベイズ統計学」
moterech
 
PRML 2.3節
PRML 2.3節PRML 2.3節
PRML 2.3節
Rei Takami
 
Bishop prml 9.3_wk77_100408-1504
Bishop prml 9.3_wk77_100408-1504Bishop prml 9.3_wk77_100408-1504
Bishop prml 9.3_wk77_100408-1504Wataru Kishimoto
 
PRML 6.4-6.5
PRML 6.4-6.5PRML 6.4-6.5
PRML 6.4-6.5
正志 坪坂
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
PRML_titech 2.3.1 - 2.3.7
PRML_titech 2.3.1 - 2.3.7PRML_titech 2.3.1 - 2.3.7
PRML_titech 2.3.1 - 2.3.7
Takafumi Sakakibara
 
Stanでガウス過程
Stanでガウス過程Stanでガウス過程
Stanでガウス過程
Hiroshi Shimizu
 
PRML輪読#2
PRML輪読#2PRML輪読#2
PRML輪読#2
matsuolab
 
Fisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight MapsFisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight Maps
Takao Yamanaka
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
Hiroshi Nakagawa
 

What's hot (20)

Prml 2.3
Prml 2.3Prml 2.3
Prml 2.3
 
PRML2.3.8~2.5 Slides in charge
PRML2.3.8~2.5 Slides in chargePRML2.3.8~2.5 Slides in charge
PRML2.3.8~2.5 Slides in charge
 
PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2
 
[PRML] パターン認識と機械学習(第2章:確率分布)
[PRML] パターン認識と機械学習(第2章:確率分布)[PRML] パターン認識と機械学習(第2章:確率分布)
[PRML] パターン認識と機械学習(第2章:確率分布)
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
 
PRML2.3.1-2.3.3
PRML2.3.1-2.3.3PRML2.3.1-2.3.3
PRML2.3.1-2.3.3
 
PRML chap.10 latter half
PRML chap.10 latter halfPRML chap.10 latter half
PRML chap.10 latter half
 
PRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじPRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじ
 
PRML 8.4-8.4.3
PRML 8.4-8.4.3 PRML 8.4-8.4.3
PRML 8.4-8.4.3
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
MLaPP 5章 「ベイズ統計学」
MLaPP 5章 「ベイズ統計学」MLaPP 5章 「ベイズ統計学」
MLaPP 5章 「ベイズ統計学」
 
PRML 2.3節
PRML 2.3節PRML 2.3節
PRML 2.3節
 
Bishop prml 9.3_wk77_100408-1504
Bishop prml 9.3_wk77_100408-1504Bishop prml 9.3_wk77_100408-1504
Bishop prml 9.3_wk77_100408-1504
 
PRML 6.4-6.5
PRML 6.4-6.5PRML 6.4-6.5
PRML 6.4-6.5
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
PRML_titech 2.3.1 - 2.3.7
PRML_titech 2.3.1 - 2.3.7PRML_titech 2.3.1 - 2.3.7
PRML_titech 2.3.1 - 2.3.7
 
Stanでガウス過程
Stanでガウス過程Stanでガウス過程
Stanでガウス過程
 
PRML輪読#2
PRML輪読#2PRML輪読#2
PRML輪読#2
 
Fisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight MapsFisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight Maps
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
 

Viewers also liked

PRML 2.3節 - ガウス分布
PRML 2.3節 - ガウス分布PRML 2.3節 - ガウス分布
PRML 2.3節 - ガウス分布
Yuki Soma
 
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
sleepy_yoshi
 
PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5
sleepy_yoshi
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論
sleepy_yoshi
 
クラシックな機械学習の入門  5. サポートベクターマシン
クラシックな機械学習の入門  5. サポートベクターマシンクラシックな機械学習の入門  5. サポートベクターマシン
クラシックな機械学習の入門  5. サポートベクターマシン
Hiroshi Nakagawa
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
sleepy_yoshi
 
PRML第3章@京大PRML輪講
PRML第3章@京大PRML輪講PRML第3章@京大PRML輪講
PRML第3章@京大PRML輪講
Sotetsu KOYAMADA(小山田創哲)
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)
sleepy_yoshi
 
正則化つき線形モデル(「入門機械学習第6章」より)
正則化つき線形モデル(「入門機械学習第6章」より)正則化つき線形モデル(「入門機械学習第6章」より)
正則化つき線形モデル(「入門機械学習第6章」より)Eric Sartre
 

Viewers also liked (9)

PRML 2.3節 - ガウス分布
PRML 2.3節 - ガウス分布PRML 2.3節 - ガウス分布
PRML 2.3節 - ガウス分布
 
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
 
PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論
 
クラシックな機械学習の入門  5. サポートベクターマシン
クラシックな機械学習の入門  5. サポートベクターマシンクラシックな機械学習の入門  5. サポートベクターマシン
クラシックな機械学習の入門  5. サポートベクターマシン
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
 
PRML第3章@京大PRML輪講
PRML第3章@京大PRML輪講PRML第3章@京大PRML輪講
PRML第3章@京大PRML輪講
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)
 
正則化つき線形モデル(「入門機械学習第6章」より)
正則化つき線形モデル(「入門機械学習第6章」より)正則化つき線形モデル(「入門機械学習第6章」より)
正則化つき線形モデル(「入門機械学習第6章」より)
 

Similar to PRML復々習レーン#3 前回までのあらすじ

色々な確率分布とその応用
色々な確率分布とその応用色々な確率分布とその応用
色々な確率分布とその応用
Hiroki Iida
 
PRML輪読#9
PRML輪読#9PRML輪読#9
PRML輪読#9
matsuolab
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSampling
daiki hojo
 
MLaPP 4章 「ガウシアンモデル」
MLaPP 4章 「ガウシアンモデル」MLaPP 4章 「ガウシアンモデル」
MLaPP 4章 「ガウシアンモデル」
Shinichi Tamura
 
WAICとWBICのご紹介
WAICとWBICのご紹介WAICとWBICのご紹介
WAICとWBICのご紹介
Tomoki Matsumoto
 
Prml1.2.4
Prml1.2.4Prml1.2.4
Prml1.2.4
Tomoyuki Hioki
 
Prml 2_3_8
Prml 2_3_8Prml 2_3_8
Prml 2_3_8brownbro
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
基礎からのベイズ統計学 3章(3.1~3.3)
基礎からのベイズ統計学 3章(3.1~3.3)基礎からのベイズ統計学 3章(3.1~3.3)
基礎からのベイズ統計学 3章(3.1~3.3)
TeranishiKeisuke
 
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Ryutaro Yamauchi
 
ベイズ統計学の概論的紹介-old
ベイズ統計学の概論的紹介-oldベイズ統計学の概論的紹介-old
ベイズ統計学の概論的紹介-old
Naoki Hayashi
 
Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3
Toshihiko Iio
 
第4回スキル養成講座 講義スライド
第4回スキル養成講座 講義スライド第4回スキル養成講座 講義スライド
第4回スキル養成講座 講義スライド
keiodig
 
確率的自己位置推定
確率的自己位置推定確率的自己位置推定
確率的自己位置推定
Horiguchi Shuhei
 
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2Hiroyuki Kato
 
0712-2
0712-20712-2
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
hoxo_m
 
研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節Koji Matsuda
 
統計学第三回
統計学第三回統計学第三回
統計学第三回nakashimans
 

Similar to PRML復々習レーン#3 前回までのあらすじ (20)

色々な確率分布とその応用
色々な確率分布とその応用色々な確率分布とその応用
色々な確率分布とその応用
 
PRML輪読#9
PRML輪読#9PRML輪読#9
PRML輪読#9
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSampling
 
MLaPP 4章 「ガウシアンモデル」
MLaPP 4章 「ガウシアンモデル」MLaPP 4章 「ガウシアンモデル」
MLaPP 4章 「ガウシアンモデル」
 
Prml 10 1
Prml 10 1Prml 10 1
Prml 10 1
 
WAICとWBICのご紹介
WAICとWBICのご紹介WAICとWBICのご紹介
WAICとWBICのご紹介
 
Prml1.2.4
Prml1.2.4Prml1.2.4
Prml1.2.4
 
Prml 2_3_8
Prml 2_3_8Prml 2_3_8
Prml 2_3_8
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
基礎からのベイズ統計学 3章(3.1~3.3)
基礎からのベイズ統計学 3章(3.1~3.3)基礎からのベイズ統計学 3章(3.1~3.3)
基礎からのベイズ統計学 3章(3.1~3.3)
 
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[論文解説]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 
ベイズ統計学の概論的紹介-old
ベイズ統計学の概論的紹介-oldベイズ統計学の概論的紹介-old
ベイズ統計学の概論的紹介-old
 
Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3Prml 1.3~1.6 ver3
Prml 1.3~1.6 ver3
 
第4回スキル養成講座 講義スライド
第4回スキル養成講座 講義スライド第4回スキル養成講座 講義スライド
第4回スキル養成講座 講義スライド
 
確率的自己位置推定
確率的自己位置推定確率的自己位置推定
確率的自己位置推定
 
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2
PRML上巻勉強会 at 東京大学 資料 第2章2.3.3 〜 2.5.2
 
0712-2
0712-20712-2
0712-2
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
 
研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節研究室内PRML勉強会 11章2-4節
研究室内PRML勉強会 11章2-4節
 
統計学第三回
統計学第三回統計学第三回
統計学第三回
 

More from sleepy_yoshi

KDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
KDD2014勉強会: Large-Scale High-Precision Topic Modeling on TwitterKDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
KDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
sleepy_yoshi
 
KDD2013読み会: Direct Optimization of Ranking Measures
KDD2013読み会: Direct Optimization of Ranking MeasuresKDD2013読み会: Direct Optimization of Ranking Measures
KDD2013読み会: Direct Optimization of Ranking Measures
sleepy_yoshi
 
PRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじPRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじ
sleepy_yoshi
 
PRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじPRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじ
sleepy_yoshi
 
PRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじPRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじ
sleepy_yoshi
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
sleepy_yoshi
 
SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and RecommendationSEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
sleepy_yoshi
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
sleepy_yoshi
 
PRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじPRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじ
sleepy_yoshi
 
PRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじPRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじ
sleepy_yoshi
 
PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5
sleepy_yoshi
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
sleepy_yoshi
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじ
sleepy_yoshi
 
PRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじPRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじ
sleepy_yoshi
 
SIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to RankSIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to Rank
sleepy_yoshi
 
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
sleepy_yoshi
 
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical SearchWSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
sleepy_yoshi
 
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
sleepy_yoshi
 
SIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to RankSIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to Rank
sleepy_yoshi
 
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
sleepy_yoshi
 

More from sleepy_yoshi (20)

KDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
KDD2014勉強会: Large-Scale High-Precision Topic Modeling on TwitterKDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
KDD2014勉強会: Large-Scale High-Precision Topic Modeling on Twitter
 
KDD2013読み会: Direct Optimization of Ranking Measures
KDD2013読み会: Direct Optimization of Ranking MeasuresKDD2013読み会: Direct Optimization of Ranking Measures
KDD2013読み会: Direct Optimization of Ranking Measures
 
PRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじPRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじ
 
PRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじPRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじ
 
PRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじPRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじ
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
 
SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and RecommendationSEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
 
PRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじPRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじ
 
PRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじPRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじ
 
PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじ
 
PRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじPRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじ
 
SIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to RankSIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to Rank
 
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
DSIRNLP#3 LT: 辞書挟み込み型転置インデクスFIg4.5
 
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical SearchWSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
 
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)
 
SIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to RankSIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to Rank
 
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
 

Recently uploaded

論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
atsushi061452
 
【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow
Sony - Neural Network Libraries
 
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdfFIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance
 
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
NTT DATA Technology & Innovation
 
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdfFIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance
 
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
iPride Co., Ltd.
 
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
yassun7010
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
CRI Japan, Inc.
 
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
Matsushita Laboratory
 
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdfFIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdfFIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
harmonylab
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
Toru Tamaki
 
CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料
Yuuitirou528 default
 
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdfFIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance
 
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
Fukuoka Institute of Technology
 

Recently uploaded (16)

論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
 
【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow
 
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdfFIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
 
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
YugabyteDB適用に向けた取り組みと隠れた魅力 (DSS Asia 2024 発表資料)
 
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdfFIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
 
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その2) 2024/05/24の勉強会で発表されたものです。
 
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
 
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
 
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdfFIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
 
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdfFIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
 
CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料
 
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdfFIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdf
 
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
 

PRML復々習レーン#3 前回までのあらすじ

  • 1. PRML復々習レーン#3 前回までのあらすじ 2012-07-16 Yoshihiko Suhara @sleepy_yoshi v.1.1
  • 2. 前回のおさらい • 復々習レーンの復習を15分程度でやります – 得られた結論にポイントを絞る ポイントだよ – 「よーするに」な内容 • 目的 – 前回の復習 – 不参加の方に流れを伝えるため – 自分自身の勉強のため 2
  • 3. 前回の範囲 • 2.3 ガウス分布 – 2.3.1 条件付きガウス分布 – 2.3.2 周辺ガウス分布 – 2.3.3 ガウス変数に対するベイズの定理 – 2.3.4 ガウス分布の最尤推定 – 2.3.5 逐次推定 – 2.3.6 ガウス分布に対するベイズ推論 – 2.3.7 スチューデントのt分布 – 2.3.8 周期変数 – 2.3.9 混合ガウス分布 • 2.4 指数型分布族 – 2.4.1 最尤推定と十分推定量 – 2.4.2 共役事前分布 ここまで – 2.4.3 無情報事前分布 3
  • 5. ポイントだよ 2.3 ガウス分布 ガウス分布は全ての基本 平均パラメータ𝝁,共分散パラメータ𝚺 (精度𝚲 = 𝚺 −1 )の ガウス分布の確率密度関数は以下のとおり 1 1 1 𝑇 𝚺 −1 • 𝒩 𝑥 𝜇, Σ = 𝐷 1 exp − 𝒙− 𝝁 𝒙− 𝝁 2 2𝜋 2 𝚺2 • 注意点 – 単峰性であること 𝐷+1 𝐷 – パラメータ数は + 𝐷個であるため,計算が困難 2 • 共分散行列に制限を設ける (a: 一般,b: 対角, c: 等分散) 5
  • 6. ポイントだよ 2.3.1 条件付きガウス分布 𝑝 𝒙 𝑎 , 𝒙 𝑏 がガウス分布のとき, 条件付き分布𝑝 𝒙 𝒂 |𝒙 𝑏 もガウス分布 コレ 6
  • 7. ポイントだよ 2.3.2 周辺ガウス分布 𝑝 𝒙 𝑎 , 𝒙 𝑏 がガウス分布のとき, 周辺分布𝑝 𝒙 𝒂 = 𝑝 𝒙 𝑎 , 𝒙 𝑏 d𝒙 𝑏 もガウス分布 コレ 7
  • 8. 2.3.3 ガウス分布に対するベイズ推定 ポイントだよ 𝒙の周辺ガウス分布𝑝(𝒙)と条件付きガウス分布𝑝(𝒚|𝒙)が 以下で与えられたとき 𝒚の周辺分布と𝒙の条件付き分布は以下で表現できる • 𝒙の周辺ガウス分布𝑝(𝒙)と条件付きガウス分布𝑝(𝒚|𝒙) – 𝑝 𝒙 = 𝒩 𝒙 𝝁, 𝚲−1 – 𝑝 𝒚|𝒙 = 𝒩 𝒚 𝑨𝒙 + 𝒃, 𝑳−1 • 𝒚の周辺分布と𝒙の条件付き分布 – 𝑝 𝒚 = 𝒩 𝒚 𝑨𝝁 + 𝒃, 𝑳−1 + 𝑨𝚲−1 𝑨 𝑇 – 𝑝 𝒙 𝒚 = 𝒩 𝒙 𝚺 𝑨 𝑇 𝑳 𝒚 − 𝒃 + 𝑨𝝁 , 𝚺 – ただし 𝚺 = 𝚲 + 𝑨 𝑇 𝑳𝑨 −1 • 同時確率 𝑝 𝒛 = 𝑝 𝒙 𝑝 𝒚 𝒙 = 𝑝 𝒚 𝑝 𝒙 𝒚 8
  • 9. 2.3.4 ガウス分布の最尤推定 ポイントだよ 平均と分散の最尤推定量は以下のとおり なお分散の最尤推定量 ≠ 不偏推定量 • 十分統計量 𝑁 𝑁 – 𝑛=1 𝒙𝑛と 𝑛=1 𝒙𝑛 𝒙𝑇 𝑛 • 最尤推定量 1 𝑁 – 平均: 𝝁ML = 𝑛=1 𝒙𝑛 𝑁 1 𝑁 𝑇 – 分散: 𝚺 𝑀𝐿 = 𝑛=1 𝒙 𝑛 − 𝝁ML 𝒙 𝑛 − 𝝁ML 𝑁 9
  • 10. ポイントだよ 2.3.5 逐次推定 データを逐次的に用いて分布のパラメータを推定する 場合にはRobbins-Monroアルゴリズムを利用できる • Robbins-Monroアルゴリズム – 𝑓 𝜃 ∗ = 0の根𝜃 ∗ を求めるアルゴリズム 𝜃 𝑁 = 𝜃 𝑁−1 − 𝑎 𝑁−1 𝑧 𝜃 𝑁−1 • 最尤推定解は対数尤度関数の停留点 – 最尤推定解を求めることは,回帰関数の根を求めることに相当 – 他にも3.1.3の確率的勾配法でも利用 10
  • 11. 2.3.6 ガウス分布に対するベイズ推論 ポイントだよ ガウス分布における各パラメータの事後分布と 共役事前分布は以下の通り 事後分布 1変量 多変量 平均パラメータ(分散既知) ガウス分布 ガウス分布 精度パラメータ(平均既知) ガンマ分布 ウィシャート分布 分散パラメータ(平均既知) 逆ガンマ分布 逆ウィシャート分布 平均,精度パラメータ ガウス―ガンマ分布 ガウス―ウィシャート分布 • パラメータの事後分布∝尤度×事前分布 • ベイズ推定で求めるのはパラメータの分布 11
  • 12. 2.3.7 スチューデントのt分布 ポイントだよ t分布は,平均は同じで精度が異なるような ガウス分布を無限個足し合わせたもの • t分布の頑健性 t分布 t分布 vs. ガウス分布 • 最尤推定解は解析的には求まらない (⇒ EM法) 12
  • 13. ポイントだよ 2.3.8 周期変数 周期性を持つ確率変数を扱う場合には 極座標とフォン・ミーゼス分布を用いる • フォン・ミーゼス分布 1 𝑝 𝜃 𝜃0 , 𝑚 = exp 𝑚 cos 𝜃 − 𝜃0 2𝜋𝐼0 (𝑚) Richard von Mises (1883-1953) 赤の単位円で条件づけられた 2次元ガウス分布という解釈 Fritz Von13 Erich 極座標 直交座標 (1929-1997)
  • 14. ポイントだよ 2.3.9 混合ガウス分布 単一のガウス分布では表現が難しい場合には 混合ガウス分布を用いる 𝐾 • 混合ガウス分布: 𝑝 𝒙 = 𝑘=1 𝜋 𝑘 𝒩 𝒙 𝝁 𝑘, 𝚺 𝑘 • 対数尤度関数 – 解析的には最尤解を求められることができないため,EMアル ゴリズムを用いる 14
  • 16. ポイントだよ 2.4 指数型分布族 これまでの話題を一般化するため, 指数型分布族という単位で考える • 指数型分布族の例 – ベルヌーイ分布,多項分布,正規分布,ポアソン 分布など • 指数型分布族の一般形 𝑝 𝒙 𝜼 = ℎ 𝒙 𝑔 𝜼 exp 𝜼 𝑇 𝒖 𝒙 16
  • 17. 2.4.1 最尤推定量と十分統計量 ポイントだよ 指数型分布族の関数形から 最尤推定量と十分統計量を求めることができる • 以下の式を解けば最尤推定量を得ることができる 𝑁 1 −𝛻 ln 𝑔 𝜼 𝑀𝐿 = 𝒖 𝒙𝑛 𝑁 𝑛=1 十分統計量 17
  • 18. さぁ今日も一日 つづく がんばるぞ 18