SlideShare a Scribd company logo

Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)

EMNLP2011読み会の発表資料

1 of 45
Download to read offline
EMNLP2011読み会
Collaborative Ranking: A Case Study
on Entity Ranking (D11-1071)
2011-12-23
Yoshihiko Suhara
@sleepy_yoshi
1
今日読む論文
• Collaborative Ranking: A Case Study on Entity
Ranking
– by Zheng Chen, Heng Ji
2
一枚概要
• TAC-KBP2010 Entity Linkingタスク
– クエリに対してエンティティを回答
– 生成した候補をランキングすることで回答を選択
• Collaborative Ranking を提案
– (1) query-level collaboration
• Micro collaborative ranking
– (2) ranker-level collaboration
• Macro collaborative ranking
3
背景
4
Named Entity Recogtion の歴史
5
[McNamee+ 10]
6
Ad

Recommended

ACL2011読み会: Query Weighting for Ranking Model Adaptation
ACL2011読み会: Query Weighting for Ranking Model AdaptationACL2011読み会: Query Weighting for Ranking Model Adaptation
ACL2011読み会: Query Weighting for Ranking Model Adaptationsleepy_yoshi
 
SIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to RankSIGIR2012勉強会 23 Learning to Rank
SIGIR2012勉強会 23 Learning to Ranksleepy_yoshi
 
SIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to RankSIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to Ranksleepy_yoshi
 
DSIRNLP#1 ランキング学習ことはじめ
DSIRNLP#1 ランキング学習ことはじめDSIRNLP#1 ランキング学習ことはじめ
DSIRNLP#1 ランキング学習ことはじめsleepy_yoshi
 
Learning to rank for IR
Learning to rank for IRLearning to rank for IR
Learning to rank for IRtakaya imai
 
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical SearchWSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Search
WSDM2012読み会: Learning to Rank with Multi-Aspect Relevance for Vertical Searchsleepy_yoshi
 
情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案Mitsuo Yamamoto
 
Sigir2013 勉強会資料
Sigir2013 勉強会資料Sigir2013 勉強会資料
Sigir2013 勉強会資料Mitsuo Yamamoto
 

More Related Content

What's hot

機械学習を用いたWeb上の産学連携関連文書の抽出
機械学習を用いたWeb上の産学連携関連文書の抽出機械学習を用いたWeb上の産学連携関連文書の抽出
機械学習を用いたWeb上の産学連携関連文書の抽出National Institute of Informatics
 
NIPS2010読み会: A New Probabilistic Model for Rank Aggregation
NIPS2010読み会: A New Probabilistic Model for Rank AggregationNIPS2010読み会: A New Probabilistic Model for Rank Aggregation
NIPS2010読み会: A New Probabilistic Model for Rank Aggregationsleepy_yoshi
 
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJPYahoo!デベロッパーネットワーク
 
各言語の k-means 比較
各言語の k-means 比較各言語の k-means 比較
各言語の k-means 比較y-uti
 
はてなインターン「機械学習」
はてなインターン「機械学習」はてなインターン「機械学習」
はてなインターン「機械学習」Hatena::Engineering
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Satoshi Kato
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
Clustering _ishii_2014__ch10
Clustering  _ishii_2014__ch10Clustering  _ishii_2014__ch10
Clustering _ishii_2014__ch10Kota Mori
 
Optimizing Search Engines using Clickthrough Data
Optimizing Search Engines using Clickthrough DataOptimizing Search Engines using Clickthrough Data
Optimizing Search Engines using Clickthrough DataKoji Yoshida
 
パターン認識モデル初歩の初歩
パターン認識モデル初歩の初歩パターン認識モデル初歩の初歩
パターン認識モデル初歩の初歩t_ichioka_sg
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Ken Morishita
 
おしゃスタ@リクルート
おしゃスタ@リクルートおしゃスタ@リクルート
おしゃスタ@リクルートIssei Kurahashi
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
クラスタリングとレコメンデーション資料
クラスタリングとレコメンデーション資料クラスタリングとレコメンデーション資料
クラスタリングとレコメンデーション資料洋資 堅田
 
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)Takuma Yagi
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)Hidekazu Oiwa
 
それっぽく感じる機械学習
それっぽく感じる機械学習それっぽく感じる機械学習
それっぽく感じる機械学習Yuki Igarashi
 
能動学習による多関係データセットの構築
能動学習による多関係データセットの構築能動学習による多関係データセットの構築
能動学習による多関係データセットの構築Hiroshi Kajino
 
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)Hiroshi Kajino
 

What's hot (20)

機械学習を用いたWeb上の産学連携関連文書の抽出
機械学習を用いたWeb上の産学連携関連文書の抽出機械学習を用いたWeb上の産学連携関連文書の抽出
機械学習を用いたWeb上の産学連携関連文書の抽出
 
NIPS2010読み会: A New Probabilistic Model for Rank Aggregation
NIPS2010読み会: A New Probabilistic Model for Rank AggregationNIPS2010読み会: A New Probabilistic Model for Rank Aggregation
NIPS2010読み会: A New Probabilistic Model for Rank Aggregation
 
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP
第16回Lucene/Solr勉強会 – ランキングチューニングと定量評価 #SolrJP
 
各言語の k-means 比較
各言語の k-means 比較各言語の k-means 比較
各言語の k-means 比較
 
はてなインターン「機械学習」
はてなインターン「機械学習」はてなインターン「機械学習」
はてなインターン「機械学習」
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
 
FOBOS
FOBOSFOBOS
FOBOS
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
Clustering _ishii_2014__ch10
Clustering  _ishii_2014__ch10Clustering  _ishii_2014__ch10
Clustering _ishii_2014__ch10
 
Optimizing Search Engines using Clickthrough Data
Optimizing Search Engines using Clickthrough DataOptimizing Search Engines using Clickthrough Data
Optimizing Search Engines using Clickthrough Data
 
パターン認識モデル初歩の初歩
パターン認識モデル初歩の初歩パターン認識モデル初歩の初歩
パターン認識モデル初歩の初歩
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
 
おしゃスタ@リクルート
おしゃスタ@リクルートおしゃスタ@リクルート
おしゃスタ@リクルート
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
クラスタリングとレコメンデーション資料
クラスタリングとレコメンデーション資料クラスタリングとレコメンデーション資料
クラスタリングとレコメンデーション資料
 
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
オープンワールド認識 (第34回全脳アーキテクチャ若手の会 勉強会)
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)
 
それっぽく感じる機械学習
それっぽく感じる機械学習それっぽく感じる機械学習
それっぽく感じる機械学習
 
能動学習による多関係データセットの構築
能動学習による多関係データセットの構築能動学習による多関係データセットの構築
能動学習による多関係データセットの構築
 
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)
能動学習による多関係データセットの構築(IBIS2015 博士課程招待講演)
 

Viewers also liked

SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and RecommendationSEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and Recommendationsleepy_yoshi
 
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...sleepy_yoshi
 
PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5sleepy_yoshi
 
PRML復々習レーン#3 前回までのあらすじ
PRML復々習レーン#3 前回までのあらすじPRML復々習レーン#3 前回までのあらすじ
PRML復々習レーン#3 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじPRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじPRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじPRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじPRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5sleepy_yoshi
 
PRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじPRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじsleepy_yoshi
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1sleepy_yoshi
 
PRML復々習レーン#2 2.3.6 - 2.3.7
PRML復々習レーン#2 2.3.6 - 2.3.7PRML復々習レーン#2 2.3.6 - 2.3.7
PRML復々習レーン#2 2.3.6 - 2.3.7sleepy_yoshi
 
PRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじPRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじsleepy_yoshi
 
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++sleepy_yoshi
 
PRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじPRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじsleepy_yoshi
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelssleepy_yoshi
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-sleepy_yoshi
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算sleepy_yoshi
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するsleepy_yoshi
 

Viewers also liked (20)

SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and RecommendationSEXI2013読み会: Adult Query Classification for Web Search and Recommendation
SEXI2013読み会: Adult Query Classification for Web Search and Recommendation
 
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
ICML2012読み会 Scaling Up Coordinate Descent Algorithms for Large L1 regularizat...
 
PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5PRML復々習レーン#10 7.1.3-7.1.5
PRML復々習レーン#10 7.1.3-7.1.5
 
PRML復々習レーン#3 前回までのあらすじ
PRML復々習レーン#3 前回までのあらすじPRML復々習レーン#3 前回までのあらすじ
PRML復々習レーン#3 前回までのあらすじ
 
PRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじPRML復々習レーン#12 前回までのあらすじ
PRML復々習レーン#12 前回までのあらすじ
 
PRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじPRML復々習レーン#14 前回までのあらすじ
PRML復々習レーン#14 前回までのあらすじ
 
PRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじPRML復々習レーン#13 前回までのあらすじ
PRML復々習レーン#13 前回までのあらすじ
 
PRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじPRML復々習レーン#7 前回までのあらすじ
PRML復々習レーン#7 前回までのあらすじ
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじ
 
PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5PRML復々習レーン#3 3.1.3-3.1.5
PRML復々習レーン#3 3.1.3-3.1.5
 
PRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじPRML復々習レーン#10 前回までのあらすじ
PRML復々習レーン#10 前回までのあらすじ
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
 
PRML復々習レーン#2 2.3.6 - 2.3.7
PRML復々習レーン#2 2.3.6 - 2.3.7PRML復々習レーン#2 2.3.6 - 2.3.7
PRML復々習レーン#2 2.3.6 - 2.3.7
 
PRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじPRML復々習レーン#11 前回までのあらすじ
PRML復々習レーン#11 前回までのあらすじ
 
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
TokyoNLP#7 きれいなジャイアンのカカカカ☆カーネル法入門-C++
 
PRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじPRML復々習レーン#15 前回までのあらすじ
PRML復々習レーン#15 前回までのあらすじ
 
ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
 

Similar to Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)

Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingTomoya Oda
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習Preferred Networks
 
パターン認識 08 09 k-近傍法 lvq
パターン認識 08 09 k-近傍法 lvqパターン認識 08 09 k-近傍法 lvq
パターン認識 08 09 k-近傍法 lvqsleipnir002
 
CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)MasanoriSuganuma
 
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...Kotaro Yamazaki
 
A closer look at few shot classification
A closer look at few shot classificationA closer look at few shot classification
A closer look at few shot classificationKazuki Fujikawa
 
[DL輪読会]A closer look at few shot classification
[DL輪読会]A closer look at few shot classification[DL輪読会]A closer look at few shot classification
[DL輪読会]A closer look at few shot classificationDeep Learning JP
 
メトリクスによるソフトウェア品質評価・改善および製品品質実態
メトリクスによるソフトウェア品質評価・改善および製品品質実態メトリクスによるソフトウェア品質評価・改善および製品品質実態
メトリクスによるソフトウェア品質評価・改善および製品品質実態Hironori Washizaki
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫Masahiro Yasumoto
 
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...Generating Better Search Engine Text Advertisements with Deep Reinforcement L...
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...harmonylab
 
Webで役立つRDBの使い方
Webで役立つRDBの使い方Webで役立つRDBの使い方
Webで役立つRDBの使い方Soudai Sone
 
Deep learning for_extreme_multi-label_text_classification
Deep learning for_extreme_multi-label_text_classificationDeep learning for_extreme_multi-label_text_classification
Deep learning for_extreme_multi-label_text_classificationJunya Kamura
 
Jubatusでマルウェア分類
Jubatusでマルウェア分類Jubatusでマルウェア分類
Jubatusでマルウェア分類Shuzo Kashihara
 
第64回情報科学談話会(滝沢 寛之 准教授)
第64回情報科学談話会(滝沢 寛之 准教授) 第64回情報科学談話会(滝沢 寛之 准教授)
第64回情報科学談話会(滝沢 寛之 准教授) gsis gsis
 
Top-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender SystemTop-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender Systemharmonylab
 
Collaborativefilteringwith r
Collaborativefilteringwith rCollaborativefilteringwith r
Collaborativefilteringwith rTeito Nakagawa
 
修士論文発表資料
修士論文発表資料修士論文発表資料
修士論文発表資料Dai Hamada
 

Similar to Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会) (20)

Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習
 
ipsjifat201909
ipsjifat201909ipsjifat201909
ipsjifat201909
 
パターン認識 08 09 k-近傍法 lvq
パターン認識 08 09 k-近傍法 lvqパターン認識 08 09 k-近傍法 lvq
パターン認識 08 09 k-近傍法 lvq
 
CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)
 
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
 
A closer look at few shot classification
A closer look at few shot classificationA closer look at few shot classification
A closer look at few shot classification
 
[DL輪読会]A closer look at few shot classification
[DL輪読会]A closer look at few shot classification[DL輪読会]A closer look at few shot classification
[DL輪読会]A closer look at few shot classification
 
WSDM2018 presentation
WSDM2018 presentationWSDM2018 presentation
WSDM2018 presentation
 
メトリクスによるソフトウェア品質評価・改善および製品品質実態
メトリクスによるソフトウェア品質評価・改善および製品品質実態メトリクスによるソフトウェア品質評価・改善および製品品質実態
メトリクスによるソフトウェア品質評価・改善および製品品質実態
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫
 
SoCC12報告
SoCC12報告SoCC12報告
SoCC12報告
 
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...Generating Better Search Engine Text Advertisements with Deep Reinforcement L...
Generating Better Search Engine Text Advertisements with Deep Reinforcement L...
 
Webで役立つRDBの使い方
Webで役立つRDBの使い方Webで役立つRDBの使い方
Webで役立つRDBの使い方
 
Deep learning for_extreme_multi-label_text_classification
Deep learning for_extreme_multi-label_text_classificationDeep learning for_extreme_multi-label_text_classification
Deep learning for_extreme_multi-label_text_classification
 
Jubatusでマルウェア分類
Jubatusでマルウェア分類Jubatusでマルウェア分類
Jubatusでマルウェア分類
 
第64回情報科学談話会(滝沢 寛之 准教授)
第64回情報科学談話会(滝沢 寛之 准教授) 第64回情報科学談話会(滝沢 寛之 准教授)
第64回情報科学談話会(滝沢 寛之 准教授)
 
Top-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender SystemTop-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender System
 
Collaborativefilteringwith r
Collaborativefilteringwith rCollaborativefilteringwith r
Collaborativefilteringwith r
 
修士論文発表資料
修士論文発表資料修士論文発表資料
修士論文発表資料
 

Recently uploaded

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。iPride Co., Ltd.
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 

Recently uploaded (6)

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 

Collaborative Ranking: A Case Study on Entity Ranking (EMNLP2011読み会)