SlideShare a Scribd company logo
Polar Coordinates
                                                                Advanced Level Pure Mathematics




TARUNGEHLOT




Introduction                                               2
Relations between Cartesian and Polar Coordinates          3
Sketch of Graphs in Polar Coordinates                      5
Intersection of Two Curves in Polar Coordinates            10
Slope of a Tangent                                         11
Areas                                                      13
Arc Lengths                                                15

                                                  Page 1
Polar Coordinates
                                                                  Advanced Level Pure Mathematics

Surfaces of Revolution                                       16




Introduction

       Cartesian Coordinate plane   Polar Coordinate plane
        y
                                                   p (r,θ)

                                                  Page 2
Polar Coordinates
                                                                                                            Advanced Level Pure Mathematics

                        p (x, y)

                    y                                                                   vectorial angle θ
              x                       x                             0 origin                  polor axis
                                                                  (pole)                   (initial axis)
Example

        y
                                                                                       P(    2   , 45 )
                      p (1, 1)                                                2


                      1               x                       0                   45
              1

N.B.   (1)        is positive if it is measured anti-clockwise.

       (2)        is negative if it is measured clockwise.
                                                             0
                                    P (4,           )                 -
                                                6                         6
                    4
                                                                                       Q (4, - )
                        6                                                                        6
       0
       (3)    r can be negative.


                                 A(   2   , )                                     A(    2   , )
                                            3                                                3


                                                                                             Page 3
Polar Coordinates
                                                                                                     Advanced Level Pure Mathematics

                  2                                                                2
                                                                                       3

                                                                     2
                        3

    0                                                              B (-   2   , )
                                                                               3


        (4)     If r > 0 , P ( r,            ) = P ( r, 2n + ) ,    n     Z.

                e.g.        P ( r,       ) = P ( r, 3 ) = P ( r, - )
              p (r, 3 )
              p (r, )
                                     r
              p (r, - )                        0

        (5)     If r = 0 , O ( 0,            ) is called the pole or origin ,          R.



        (6)     If r > 0 , Q ( -r,            ) = Q ( r, + ) .




                                                3
                             0
                       4

                       Q (4, + ) or Q (-4,                    )
                                         3                3



                                                                                            Page 4
Polar Coordinates
                                                                                                                             Advanced Level Pure Mathematics
       (7)           Q is an imaginary point (which r<0) and P is a real point (which r>0) .

Relations between Cartesian and Polar Coordinates

                                                             2            2
                                                 r       x            y
           x     r co s
                                                                      y           y
           y     r sin                                   tan
                                                                  1

                                                                      x
                                                                                                  P (x, y)  P (r, )

                                                                                      r            y
                                                                                                            x (polar axis)
                                                                              0           x
Example              Express the Cartesian coordinates in polar coordinates
                     (a)            ( 2 3 , 2) ,                              (b)         ( 2 ,        2)



                     2          2
(a)    r         x          y           12           4   4
                      1     2                1       1
               tan                    tan
                           2 3                       3    6

       so the polar coordinates= ( 4 ,                        )
                                                         6


(b)




                                                                                                                 Page 5
Polar Coordinates
                                                                                         Advanced Level Pure Mathematics




Example       Express the polar coordinates in Cartesian coordinates
              (a)    (-2 , ) ,                     (b)     (2     3 ,       )
                                                                        6




                                                                                Page 6
Polar Coordinates
                                                                                                  Advanced Level Pure Mathematics


Definition    Polar Equations : r = f( )

Example       r=2cos , r=2(1-sin ) , r=3 , etc.

Example       Investigate the loci represented by the following polar equations.
              (a)       =   , where    is a constant.
              (b)       r = a , where a is a constant.
                                 1 y
(a)       =                  tan
                                    x
                             y
                                  tan       m (say)
                             x
                             y mx
       it is a straight line with inclination to the initial line and passing through the pole.

(b)




                                                                                       Page 7
Polar Coordinates
                                                                                        Advanced Level Pure Mathematics




Example       Express the following loci in polar coordinates :
              (a)    The straight line with normal form x cos     y sin   p.
                                  2       2
              (b)    The circle x     y       2 ax   0.




                                                                               Page 8
Polar Coordinates
                                                                                                                                 Advanced Level Pure Mathematics




Sketch of Graphs in Polar Coordinates
Example            Plot the polar curve r                    2 cos       for 0                   2   .

Solution
                                                        3                                    3
               0                                                             ….                   ….     2
                       4           3       2             4                                   2
           r   2       2       1           0        -        2       -2 ….                   0 ….         2

                       y

                                                    P( r,            )
                               r
                       0                                                                         x (polar axis)
                                       1             2
                                                    r=2cos

                                                2            2                   x
N.B.   (1)         r   2 cos               x            y         2
                                                                             2           2
                                                                         x           y
                                                         2                       2       2
                                           (x       1)           (y      0)          1            (which is a circle)




                                                                                                                        Page 9
Polar Coordinates
                                                                                                                                                     Advanced Level Pure Mathematics




       (2)       If f (     )        f ( ) , the polar curve is symmetric with respect to the initial line.
                                    (r, )


             0                                                         e.g.     r=2cos , r=2(1-cos )
                                -

                                    (r ,- )

       (3)       If f (     )            f ( ) , or f ( )        f(           ) , the curve is symmetric with respect to the         vertical line         .
                                                                                                                                                       2


    (-r, - )=(r, - )                                     (r, )

                                                                                e.g.    r=2sin , r=a(1+sin )
                                                         -
                                     0

       (4)       If f ( )           f(          ) , or        g (r )    g ( r ) , the curve is symmetric with respect to the pole.


                                                             (r, )

                                            0                                           e.g.    r2 = a2 sin2

                                                                                                         Page 10
Polar Coordinates
                                                                                                 Advanced Level Pure Mathematics


                  (-r, )
                 =(r, + )

I.     Cardioids

Example         Sketch the graph of the polar equation r          2 (1   cos ) for 0   2   .

Solution         Let f( ) = 2(1-cos )
                 f( ) = 2[1-cos(- )] = f( )
                The graph is symmetric wiyh respect to the initial line.

                0                                      2      3          5
                       6          4        3   2       3      4           6
            r   0 2-       3    2-     2   1   2       3    2+    2      2+   3   4

           The graph is
                                                           R=2(1-cos )


                               (4, )               0




Example         Sketch the graph of the polar equation r          2 (1   cos ) for 0   2   .



                                                                                       Page 11
Polar Coordinates
                                                                                                           Advanced Level Pure Mathematics

              Since f(- )=2[1+cos(- )]=2(1+cos )=f( ) so the graph is symmetric w.r.t. the initial line.




N.B.          r=a(1+sin )                                  r=a(1-sin )

                          (2a, )                   (0, )           0            (a, 0)
                                2




    (a, )           0       (a, 0)
                                                                            3
                                                                    (2a ,       )
                                                                            2



                                                                                     Page 12
Polar Coordinates
                                                                                              Advanced Level Pure Mathematics

II.    Limacons

Example       Sketch the graph of the polar equation r   2    4 cos       .




N.B. r=a+bcos        (0<a<b)                                 r=a+bcos         (0<b<a)


      0                                                               0




                                                                                    Page 13
Polar Coordinates
                                                                                Advanced Level Pure Mathematics


       r=a+bsin      (0<b<a)                r=a+bsin     (0<a<b)



                                               0

                 0


III.   n-Leafed Roses

       r=acos3       (a>0 , 0   2       )   r=asin3    (a>0 , 0        2    )
                                                   2
                                               =              =
                                                   3               3

                                =
                                    6




                                    5
                                =
                                    6



       r=acos2       (a>0 , 0   2       )   r=asin2    (a>0 , 0        2    )




                                                                  Page 14
Polar Coordinates
                                                                                            Advanced Level Pure Mathematics




Example       Sketch the graph of the polar equation r   a sin 3   , where a>0.




Example       Sketch the graph of the polar equation r   a cos 2 , where a>0.




                                                                                  Page 15
Polar Coordinates
                                                                           Advanced Level Pure Mathematics




IV.    Two-Leafed Lemniscates

       r2=a2cos2       (a>0 , 0   2   )   r2=a2sin2     (a>0 ,
                                                         0        2    )




V.     Spirals of Archimedes.

                                                  a
       r=a    (a>0 ,        0)            r   e       (a>0 ,      0)




                                                                 Page 16
Polar Coordinates
                                                                                                             Advanced Level Pure Mathematics


                                                                           a
                                                                r      e       (a<0 ,       0)




Intersection of Two Curves in Polar Coordinates
Example       Find the points of intersection of the circle r       2 and the cardioid r    2 (1   cos ) .




                                                                                           Page 17
Polar Coordinates
                                                                                                               Advanced Level Pure Mathematics




Example       Find the points of intersection of the circle r   2 cos   and the four-leafed rose r   sin 2 .




                                                                                      Page 18
Polar Coordinates
                                                                        Advanced Level Pure Mathematics




Slope of a Tangent

                             dx           dr
                                   cos             r sin
         x    r cos         d             d
         y    r sin         dy            dr
                                   sin             r cos
                            d             d
                                          dr
                                   sin             r cos
                             dy           d
                             dx            dr
                                   cos             r sin
                                          d
                                           dr
                                    tan            r
                                          d
                                    dr
                                           r tan
                                    d

       The angle      between the tangent at P to the polar

                                                              Page 19
Polar Coordinates
                                                                                 Advanced Level Pure Mathematics

       curve r=f( ) and radius vector OP is given by
                                                y      r=f( )
                       r
             tan                                            tangent at point p
                      dr
                      d


                                                                     p(r, )



                                                                         x
                                               0




                                                                 Page 20
Polar Coordinates
                                                                                                                             Advanced Level Pure Mathematics




Example       Given the polar curve r   2      2 cos   , 0       2    .

              (a)    Find   (i)     the slope of tangent at           ,
                                                                  4
                            (ii)    the points at which the tangent is horizontal,
                            (iii)   the points at which the tangent is vertical,
                            (iv)    the values of      at which the angle between the radius vector and tangent is       .
                                                                                                                     4
              (b)    Sketch the polar curve.




                                                                                     Page 21
Polar Coordinates
                              Advanced Level Pure Mathematics




                    Page 22
Polar Coordinates
                                                                                                                     Advanced Level Pure Mathematics

Areas
Theorem       The area enclosed by the polar curve r     f ( ) betweem the lines =       and       =   is given by
                                                                        r=f( )                 =
                      1    2
              A           r d                                                        =
                      2
              where r      f( )    0 on [ , ].



                                                                0
Example       Find the area enclosed by the cardioid r   a (1       cos ) , a>0.




                                                                                   Page 23
Polar Coordinates
                                                                                                                         Advanced Level Pure Mathematics


Example       Find the area of the inner loop of the curve r       2   4 cos       .

                                                                                                    2        4
Solution      Since the inner loop bounded by the curve corresponds to the interval                      ,           .
                                                                                                     3       3




N.B.       (1) r    f ( ), r   g( )
                                      1          2             2               1              2                  2
              Area enclosed      =        f( )       g( )          d   =               f( )          g( )            d
                                      2                                        2
                                                         =



                                                                                                  Page 24
Polar Coordinates
                                                                                                        Advanced Level Pure Mathematics

                                                                     =


                                                                         r = f( )
                                                          r = g( )



          (2) If the pole O lies within a closed polar curve, then
                                    2   1    2
               the area enclosed=           r d   .
                                    0   2



Example        (a)    Find the area inside the circle r   5 cos   and outside the limacon r 2 cos   .
               (b)    Find the area inside the circle r   5 cos   and the limacon r 2 cos .




                                                                                    Page 25
Polar Coordinates
                                                                                      Advanced Level Pure Mathematics




Arc Lengths
       The arc length S of the curve r     f ( ) form =   to   = is



       S      =     ds                                         dy      ds
                              2        2
              =          dx       dy                                  dx


                                                                            Page 26
Polar Coordinates
                                                                                                           Advanced Level Pure Mathematics
                            2               2
                      dx             dy
              =                                 d                                        r=f( )
                      d              d
                                                    2                      2
                                dr                            dr
              =       cos                 r sin         sin        r cos       d
                                d                             d
                            2
                      dr             2
              =                     r d
                      d


       provided that r is differentiable on ( , ) and the curve does not intersect itself on ( , ).


Example       Find the length of the circumference of the cardioid r           a (1   cos ) , where a>0.




                                                                                            Page 27
Polar Coordinates
                                                                                                                   Advanced Level Pure Mathematics




Example       Find the length of the curve of the circle r   5 cos   that is outside the limacon r   2   cos   .




                                                                                    Page 28
Polar Coordinates
                                                                                                                       Advanced Level Pure Mathematics




Surfaces of Revolution
Theorem       The area of surface revolution S of the curve from =   to   = about the inital line is

              S      2 yds

                                        2
                                  dr         2
                      2 r sin               r d                                r=f( )
                                  d
                                                                              ds

                                                                          y


                                                        0

Theorem       The area of surface revolution S of the curve from =   to   = about the line          (i.e. y-axis) is
                                                                                                2


              S       2 xds

                                        2
                                   dr        2
                      2 r cos               r d
                                  d


                                                                                   Page 29
Polar Coordinates
                                                                                                                   Advanced Level Pure Mathematics



                                                             x        ds




                                                     0
Example       Find the surface area generated by revolving the circle r    2a sin   , a>0 about the line       .
                                                                                                           2




                                                                                     Page 30
Polar Coordinates
                                                                                                                                 Advanced Level Pure Mathematics


Example       Find the surface area generated by revolving the cardioid r   a (1   cos ) , where a>0 , about the initial line.




                                                                                    Page 31
Polar Coordinates
                                                                                         Advanced Level Pure Mathematics




Example       The equation of a curve C in polar coordinates is
                     r   1   sin   , 0       2   .
              (a)    Sketch curve C.
              (b)    Find the area bounded by curve C.            [HKAL94] (5 marks)




                                                                               Page 32
Polar Coordinates
                                  Advanced Level Pure Mathematics




Example
                    y


                        Page 33
Polar Coordinates
                                                                                                                                      Advanced Level Pure Mathematics

                                          p

                                 Q


                           0          a           2a                     x



       Let C be the circle given by the polar equation r=2acos (where a>0) , P be a variable point on C and O be the origin. Let Q be a point lying on the line through O and P such
       that P and Q are on the same side of O and
                                              2
                               OP OQ      a .
                                                                 a
       Show that the Cartesian equation of the locus of Q is x       .
                                                                 2




                                                                                   Page 34

More Related Content

What's hot

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
ATUL KUMAR YADAV
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
Matthew Leingang
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
oscar
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations8laddu8
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
Isomorphism in Math
Isomorphism in MathIsomorphism in Math
Isomorphism in Math
Mahe Karim
 
Function Notation.ppt
Function Notation.pptFunction Notation.ppt
Function Notation.ppt
Ade John Gestole
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
sujathavvv
 
2.8.3 Special Parallelograms
2.8.3 Special Parallelograms2.8.3 Special Parallelograms
2.8.3 Special Parallelograms
smiller5
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
Manthan Chavda
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
NaliniSPatil
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
Jayanshu Gundaniya
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabolaJean Leano
 
linear transformation
linear transformationlinear transformation
linear transformation
mansi acharya
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
Kaushal Patel
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functionsNorthside ISD
 

What's hot (20)

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Analytical geometry
Analytical geometryAnalytical geometry
Analytical geometry
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
Isomorphism in Math
Isomorphism in MathIsomorphism in Math
Isomorphism in Math
 
Function Notation.ppt
Function Notation.pptFunction Notation.ppt
Function Notation.ppt
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
2.8.3 Special Parallelograms
2.8.3 Special Parallelograms2.8.3 Special Parallelograms
2.8.3 Special Parallelograms
 
0 calc7-1
0 calc7-10 calc7-1
0 calc7-1
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 
Parabola
ParabolaParabola
Parabola
 
calculus Ppt
calculus Pptcalculus Ppt
calculus Ppt
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functions
 

Viewers also liked

t6 polar coordinates
t6 polar coordinatest6 polar coordinates
t6 polar coordinatesmath260
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
nicportugal
 
Pc9-1 polar coordinates
Pc9-1 polar coordinatesPc9-1 polar coordinates
Pc9-1 polar coordinatesvhiggins1
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2kerrynix
 
Лекция 2 Сортировки, поиск и порядковые статистики
Лекция 2 Сортировки, поиск и порядковые статистикиЛекция 2 Сортировки, поиск и порядковые статистики
Лекция 2 Сортировки, поиск и порядковые статистики
simple_people
 
Calc presentation
Calc presentationCalc presentation
Calc presentationharudalsky
 
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)Mandilakhe Msutu
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
Area between curves
Area between curvesArea between curves
Area between curves
djfromal
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areas
Julio Banks
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bm
Sameer Mathur
 
11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)Nigel Simmons
 
PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar Coordinates
Stephen Kwong
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
Lawrence De Vera
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washersdicosmo178
 

Viewers also liked (20)

t6 polar coordinates
t6 polar coordinatest6 polar coordinates
t6 polar coordinates
 
Polar Co Ordinates
Polar Co OrdinatesPolar Co Ordinates
Polar Co Ordinates
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
 
Pc9-1 polar coordinates
Pc9-1 polar coordinatesPc9-1 polar coordinates
Pc9-1 polar coordinates
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2
 
Лекция 2 Сортировки, поиск и порядковые статистики
Лекция 2 Сортировки, поиск и порядковые статистикиЛекция 2 Сортировки, поиск и порядковые статистики
Лекция 2 Сортировки, поиск и порядковые статистики
 
Calc presentation
Calc presentationCalc presentation
Calc presentation
 
Curves
CurvesCurves
Curves
 
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)
USING POLAR COORDINATE SYSTEM TO UNDERSTAND EMISSION SOURCES (2)
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
10.8
10.810.8
10.8
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Resume1
Resume1Resume1
Resume1
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areas
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bm
 
11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)11 x1 t16 05 volumes (2012)
11 x1 t16 05 volumes (2012)
 
PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar Coordinates
 
Calc 7.2a
Calc 7.2aCalc 7.2a
Calc 7.2a
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers
 

Similar to Polar coordinates

Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
F4 05thestraightline-090716074030-phpapp02
F4 05thestraightline-090716074030-phpapp02F4 05thestraightline-090716074030-phpapp02
F4 05thestraightline-090716074030-phpapp02Ragulan Dev
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)Nigel Simmons
 
11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinatesNigel Simmons
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)Nigel Simmons
 
11 x1 t11 03 parametric coordinates (2012)
11 x1 t11 03 parametric coordinates (2012)11 x1 t11 03 parametric coordinates (2012)
11 x1 t11 03 parametric coordinates (2012)Nigel Simmons
 
11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)Nigel Simmons
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)Nigel Simmons
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
math266
 
18 polar coordinates x
18 polar coordinates x18 polar coordinates x
18 polar coordinates x
math260
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
math267
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)Nigel Simmons
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)Nigel Simmons
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and notesmktsj2
 
10. polar coordinates x
10. polar coordinates x10. polar coordinates x
10. polar coordinates x
harbormath240
 

Similar to Polar coordinates (20)

Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
F4 05thestraightline-090716074030-phpapp02
F4 05thestraightline-090716074030-phpapp02F4 05thestraightline-090716074030-phpapp02
F4 05thestraightline-090716074030-phpapp02
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)
 
11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates11X1 T12 03 parametric coordinates
11X1 T12 03 parametric coordinates
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
 
11 x1 t11 03 parametric coordinates (2012)
11 x1 t11 03 parametric coordinates (2012)11 x1 t11 03 parametric coordinates (2012)
11 x1 t11 03 parametric coordinates (2012)
 
11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
18 polar coordinates x
18 polar coordinates x18 polar coordinates x
18 polar coordinates x
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
 
10. polar coordinates x
10. polar coordinates x10. polar coordinates x
10. polar coordinates x
 

More from Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
Tarun Gehlot
 
Binary relations
Binary relationsBinary relations
Binary relations
Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
Tarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
Tarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
Tarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
Tarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Tarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
Tarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
Tarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
Tarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
Tarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
Tarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Tarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
Tarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
Tarun Gehlot
 

More from Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Polar coordinates

  • 1. Polar Coordinates Advanced Level Pure Mathematics TARUNGEHLOT Introduction 2 Relations between Cartesian and Polar Coordinates 3 Sketch of Graphs in Polar Coordinates 5 Intersection of Two Curves in Polar Coordinates 10 Slope of a Tangent 11 Areas 13 Arc Lengths 15 Page 1
  • 2. Polar Coordinates Advanced Level Pure Mathematics Surfaces of Revolution 16 Introduction Cartesian Coordinate plane Polar Coordinate plane y p (r,θ) Page 2
  • 3. Polar Coordinates Advanced Level Pure Mathematics p (x, y) y vectorial angle θ x x 0 origin polor axis (pole) (initial axis) Example y P( 2 , 45 ) p (1, 1) 2 1 x 0 45 1 N.B. (1) is positive if it is measured anti-clockwise. (2) is negative if it is measured clockwise. 0 P (4, ) - 6 6 4 Q (4, - ) 6 6 0 (3) r can be negative. A( 2 , ) A( 2 , ) 3 3 Page 3
  • 4. Polar Coordinates Advanced Level Pure Mathematics 2 2 3 2 3 0 B (- 2 , ) 3 (4) If r > 0 , P ( r, ) = P ( r, 2n + ) , n Z. e.g. P ( r, ) = P ( r, 3 ) = P ( r, - ) p (r, 3 ) p (r, ) r p (r, - ) 0 (5) If r = 0 , O ( 0, ) is called the pole or origin , R. (6) If r > 0 , Q ( -r, ) = Q ( r, + ) . 3 0 4 Q (4, + ) or Q (-4, ) 3 3 Page 4
  • 5. Polar Coordinates Advanced Level Pure Mathematics (7) Q is an imaginary point (which r<0) and P is a real point (which r>0) . Relations between Cartesian and Polar Coordinates 2 2 r x y x r co s y y y r sin tan 1 x P (x, y)  P (r, ) r y x (polar axis) 0 x Example Express the Cartesian coordinates in polar coordinates (a) ( 2 3 , 2) , (b) ( 2 , 2) 2 2 (a) r x y 12 4 4 1 2 1 1 tan tan 2 3 3 6 so the polar coordinates= ( 4 , ) 6 (b) Page 5
  • 6. Polar Coordinates Advanced Level Pure Mathematics Example Express the polar coordinates in Cartesian coordinates (a) (-2 , ) , (b) (2 3 , ) 6 Page 6
  • 7. Polar Coordinates Advanced Level Pure Mathematics Definition Polar Equations : r = f( ) Example r=2cos , r=2(1-sin ) , r=3 , etc. Example Investigate the loci represented by the following polar equations. (a) = , where is a constant. (b) r = a , where a is a constant. 1 y (a) = tan x y tan m (say) x y mx it is a straight line with inclination to the initial line and passing through the pole. (b) Page 7
  • 8. Polar Coordinates Advanced Level Pure Mathematics Example Express the following loci in polar coordinates : (a) The straight line with normal form x cos y sin p. 2 2 (b) The circle x y 2 ax 0. Page 8
  • 9. Polar Coordinates Advanced Level Pure Mathematics Sketch of Graphs in Polar Coordinates Example Plot the polar curve r 2 cos for 0 2 . Solution 3 3 0 …. …. 2 4 3 2 4 2 r 2 2 1 0 - 2 -2 …. 0 …. 2 y P( r, ) r 0 x (polar axis) 1 2 r=2cos 2 2 x N.B. (1) r 2 cos x y 2 2 2 x y 2 2 2 (x 1) (y 0) 1 (which is a circle) Page 9
  • 10. Polar Coordinates Advanced Level Pure Mathematics (2) If f ( ) f ( ) , the polar curve is symmetric with respect to the initial line. (r, ) 0 e.g. r=2cos , r=2(1-cos ) - (r ,- ) (3) If f ( ) f ( ) , or f ( ) f( ) , the curve is symmetric with respect to the vertical line . 2 (-r, - )=(r, - ) (r, ) e.g. r=2sin , r=a(1+sin ) - 0 (4) If f ( ) f( ) , or g (r ) g ( r ) , the curve is symmetric with respect to the pole. (r, ) 0 e.g. r2 = a2 sin2 Page 10
  • 11. Polar Coordinates Advanced Level Pure Mathematics (-r, ) =(r, + ) I. Cardioids Example Sketch the graph of the polar equation r 2 (1 cos ) for 0 2 . Solution Let f( ) = 2(1-cos ) f( ) = 2[1-cos(- )] = f( ) The graph is symmetric wiyh respect to the initial line. 0 2 3 5 6 4 3 2 3 4 6 r 0 2- 3 2- 2 1 2 3 2+ 2 2+ 3 4 The graph is R=2(1-cos ) (4, ) 0 Example Sketch the graph of the polar equation r 2 (1 cos ) for 0 2 . Page 11
  • 12. Polar Coordinates Advanced Level Pure Mathematics Since f(- )=2[1+cos(- )]=2(1+cos )=f( ) so the graph is symmetric w.r.t. the initial line. N.B. r=a(1+sin ) r=a(1-sin ) (2a, ) (0, ) 0 (a, 0) 2 (a, ) 0 (a, 0) 3 (2a , ) 2 Page 12
  • 13. Polar Coordinates Advanced Level Pure Mathematics II. Limacons Example Sketch the graph of the polar equation r 2 4 cos . N.B. r=a+bcos (0<a<b) r=a+bcos (0<b<a) 0 0 Page 13
  • 14. Polar Coordinates Advanced Level Pure Mathematics r=a+bsin (0<b<a) r=a+bsin (0<a<b) 0 0 III. n-Leafed Roses r=acos3 (a>0 , 0 2 ) r=asin3 (a>0 , 0 2 ) 2 = = 3 3 = 6 5 = 6 r=acos2 (a>0 , 0 2 ) r=asin2 (a>0 , 0 2 ) Page 14
  • 15. Polar Coordinates Advanced Level Pure Mathematics Example Sketch the graph of the polar equation r a sin 3 , where a>0. Example Sketch the graph of the polar equation r a cos 2 , where a>0. Page 15
  • 16. Polar Coordinates Advanced Level Pure Mathematics IV. Two-Leafed Lemniscates r2=a2cos2 (a>0 , 0 2 ) r2=a2sin2 (a>0 , 0 2 ) V. Spirals of Archimedes. a r=a (a>0 , 0) r e (a>0 , 0) Page 16
  • 17. Polar Coordinates Advanced Level Pure Mathematics a r e (a<0 , 0) Intersection of Two Curves in Polar Coordinates Example Find the points of intersection of the circle r 2 and the cardioid r 2 (1 cos ) . Page 17
  • 18. Polar Coordinates Advanced Level Pure Mathematics Example Find the points of intersection of the circle r 2 cos and the four-leafed rose r sin 2 . Page 18
  • 19. Polar Coordinates Advanced Level Pure Mathematics Slope of a Tangent dx dr cos r sin x r cos d d y r sin dy dr sin r cos d d dr sin r cos dy d dx dr cos r sin d dr tan r d dr r tan d The angle between the tangent at P to the polar Page 19
  • 20. Polar Coordinates Advanced Level Pure Mathematics curve r=f( ) and radius vector OP is given by y r=f( ) r tan tangent at point p dr d p(r, ) x 0 Page 20
  • 21. Polar Coordinates Advanced Level Pure Mathematics Example Given the polar curve r 2 2 cos , 0 2 . (a) Find (i) the slope of tangent at , 4 (ii) the points at which the tangent is horizontal, (iii) the points at which the tangent is vertical, (iv) the values of at which the angle between the radius vector and tangent is . 4 (b) Sketch the polar curve. Page 21
  • 22. Polar Coordinates Advanced Level Pure Mathematics Page 22
  • 23. Polar Coordinates Advanced Level Pure Mathematics Areas Theorem The area enclosed by the polar curve r f ( ) betweem the lines = and = is given by r=f( ) = 1 2 A r d = 2 where r f( ) 0 on [ , ]. 0 Example Find the area enclosed by the cardioid r a (1 cos ) , a>0. Page 23
  • 24. Polar Coordinates Advanced Level Pure Mathematics Example Find the area of the inner loop of the curve r 2 4 cos . 2 4 Solution Since the inner loop bounded by the curve corresponds to the interval , . 3 3 N.B. (1) r f ( ), r g( ) 1 2 2 1 2 2 Area enclosed = f( ) g( ) d = f( ) g( ) d 2 2 = Page 24
  • 25. Polar Coordinates Advanced Level Pure Mathematics = r = f( ) r = g( ) (2) If the pole O lies within a closed polar curve, then 2 1 2 the area enclosed= r d . 0 2 Example (a) Find the area inside the circle r 5 cos and outside the limacon r 2 cos . (b) Find the area inside the circle r 5 cos and the limacon r 2 cos . Page 25
  • 26. Polar Coordinates Advanced Level Pure Mathematics Arc Lengths The arc length S of the curve r f ( ) form = to = is S = ds dy ds 2 2 = dx dy dx Page 26
  • 27. Polar Coordinates Advanced Level Pure Mathematics 2 2 dx dy = d r=f( ) d d 2 2 dr dr = cos r sin sin r cos d d d 2 dr 2 = r d d provided that r is differentiable on ( , ) and the curve does not intersect itself on ( , ). Example Find the length of the circumference of the cardioid r a (1 cos ) , where a>0. Page 27
  • 28. Polar Coordinates Advanced Level Pure Mathematics Example Find the length of the curve of the circle r 5 cos that is outside the limacon r 2 cos . Page 28
  • 29. Polar Coordinates Advanced Level Pure Mathematics Surfaces of Revolution Theorem The area of surface revolution S of the curve from = to = about the inital line is S 2 yds 2 dr 2 2 r sin r d r=f( ) d ds y 0 Theorem The area of surface revolution S of the curve from = to = about the line (i.e. y-axis) is 2 S 2 xds 2 dr 2 2 r cos r d d Page 29
  • 30. Polar Coordinates Advanced Level Pure Mathematics x ds 0 Example Find the surface area generated by revolving the circle r 2a sin , a>0 about the line . 2 Page 30
  • 31. Polar Coordinates Advanced Level Pure Mathematics Example Find the surface area generated by revolving the cardioid r a (1 cos ) , where a>0 , about the initial line. Page 31
  • 32. Polar Coordinates Advanced Level Pure Mathematics Example The equation of a curve C in polar coordinates is r 1 sin , 0 2 . (a) Sketch curve C. (b) Find the area bounded by curve C. [HKAL94] (5 marks) Page 32
  • 33. Polar Coordinates Advanced Level Pure Mathematics Example y Page 33
  • 34. Polar Coordinates Advanced Level Pure Mathematics p Q 0 a 2a x Let C be the circle given by the polar equation r=2acos (where a>0) , P be a variable point on C and O be the origin. Let Q be a point lying on the line through O and P such that P and Q are on the same side of O and 2 OP OQ a . a Show that the Cartesian equation of the locus of Q is x . 2 Page 34