ANALYTICAL
GEOMETRY
SJ van Heerden
09/03/2014
HISTORY
Introduced in the 1630s
Aided the development of calculus
RENE DESCARTES (1596-1650) and
PIERRE DE FERMAT (1601-1665),
French mathematicians,
independently developed
the foundations for
analytical geometry
CARTESIAN PLANE
• x-axis (horizontal axis) where the x values are
plotted along.

• y-axis (vertical axis) where the y values are
plotted along.

• origin, symbolized by 0, marks the value of 0 of
both axes

• coordinates are given in the form (x,y) and is
used to represent different points on the plane.
Slope of a Line
Slope of a Line
Slope of a Line
Slope of a Line
Slope of a Line
Inclination of a Line
y

y
L

L

θ

O

M

x

θ

O

M

x
Angle between Two
Lines
Angle between Two
Lines
• If θ is angle, measured counter-clockwise,
between two lines, then

• where m2 is the slope of the terminal side and
m1 is the slope of the initial side
SLOPE OF PARALLEL LINES
SLOPE OF PERPENDICULAR LINES
Sample Problems
EQUATION OF A CIRCLE
EQUATION OF CIRCLE (origin is
not the center)

A (h, k)

B ( x, y)
Graph the following circle.
REFERENCES
- Demirdag, M. (2013). Analytic geometry [PowerPoint Presentation]. Available at:
http://www.slideshare.net/mstfdemirdag/analytic-geometry-8693115. Accessed on: 4 March
2014
- Felipe, N, M. (2013). Analytic geometry basic concepts [PowerPoint Presentation]. Available at:
http://www.slideshare.net/NancyFelipe1/analytic-geometry-basic-concepts.Accessed on: 4
March 2014
- Marasigan, D. (2013). Lecture #2 analytic geometry [PowerPoint Presentation]. Available at:
http://www.slideshare.net/denmarmarasigan/lecture-2-analytic-geometry.Accessed on: 4
March 2014
- Marasigan, D. (2013). Lecture #3 analytic geometry [PowerPoint Presentation]. Available at:
http://www.slideshare.net/denmarmarasigan/lecture-3-analytic-geometry.Accessed on: 4
March 2014
- Marasigan, D. (2013). Lecture #5 analytic geometry [PowerPoint Presentation]. Available at:
http://www.slideshare.net/denmarmarasigan/lecture-5-analytic-geometry. Accessed on: 4
March 2014

Analytical geometry

  • 1.
  • 2.
    HISTORY Introduced in the1630s Aided the development of calculus RENE DESCARTES (1596-1650) and PIERRE DE FERMAT (1601-1665), French mathematicians, independently developed the foundations for analytical geometry
  • 3.
  • 4.
    • x-axis (horizontalaxis) where the x values are plotted along. • y-axis (vertical axis) where the y values are plotted along. • origin, symbolized by 0, marks the value of 0 of both axes • coordinates are given in the form (x,y) and is used to represent different points on the plane.
  • 11.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
    Inclination of aLine y y L L θ O M x θ O M x
  • 20.
  • 21.
    Angle between Two Lines •If θ is angle, measured counter-clockwise, between two lines, then • where m2 is the slope of the terminal side and m1 is the slope of the initial side
  • 24.
  • 26.
  • 48.
  • 54.
  • 57.
    EQUATION OF CIRCLE(origin is not the center) A (h, k) B ( x, y)
  • 59.
  • 60.
    REFERENCES - Demirdag, M.(2013). Analytic geometry [PowerPoint Presentation]. Available at: http://www.slideshare.net/mstfdemirdag/analytic-geometry-8693115. Accessed on: 4 March 2014 - Felipe, N, M. (2013). Analytic geometry basic concepts [PowerPoint Presentation]. Available at: http://www.slideshare.net/NancyFelipe1/analytic-geometry-basic-concepts.Accessed on: 4 March 2014 - Marasigan, D. (2013). Lecture #2 analytic geometry [PowerPoint Presentation]. Available at: http://www.slideshare.net/denmarmarasigan/lecture-2-analytic-geometry.Accessed on: 4 March 2014 - Marasigan, D. (2013). Lecture #3 analytic geometry [PowerPoint Presentation]. Available at: http://www.slideshare.net/denmarmarasigan/lecture-3-analytic-geometry.Accessed on: 4 March 2014 - Marasigan, D. (2013). Lecture #5 analytic geometry [PowerPoint Presentation]. Available at: http://www.slideshare.net/denmarmarasigan/lecture-5-analytic-geometry. Accessed on: 4 March 2014