Objectives…Objectives…Objectives…Objectives…Objectives…Objectives…Objectives…Objectives…
SignificanceSignificance ofof OneOne SidedSided (Unilateral)(Unilateral) ZZ –– TransformTransform..
DefinitionDefinition..
PropertiesProperties..
9/12/2013 Mahesh J. vadhavaniya 1
PropertiesProperties..
SolutionSolution ofof DifferenceDifference EquationsEquations..
ShiftingShifting
•• DelayDelay
•• AdvanceAdvance
FinalFinal ValueValue TheoremTheorem
Significance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided Z--------TransformTransformTransformTransformTransformTransformTransformTransform
TheThe twotwo sidedsided zz--transformtransform –– signalssignals areare specifiedspecified forfor
thethe entireentire timetime rangerange ∞<<∞ n-
CanCan notnot bebe usedused toto evaluateevaluate thethe outputoutput ofof nonnon--relaxedrelaxed
systemssystems..
NonNon--relaxedrelaxed areare systemssystems describeddescribed byby differencedifferenceNonNon--relaxedrelaxed areare systemssystems describeddescribed byby differencedifference
equationsequations withwith nonzerononzero initialinitial conditionsconditions..
We’ll Develop the one sided z-transform to solve
difference equations with initial conditions.
9/12/2013 Mahesh J. vadhavaniya 2
SinceSince thethe inputinput isis appliedapplied atat aa finitefinite timetime (n(n00),), bothboth thethe
inputinput andand outputoutput signalssignals areare specifiedspecified forfor n≥n≥ nn00,, butbut byby oo
meansmeans areare zerozero forfor nn << nn00 ..
∑
∞
=
−+
=
0
)()(
n
n
znxzX
Definition…Definition…Definition…Definition…Definition…Definition…Definition…Definition…
TheThe OneOne sidedsided (Unilateral)(Unilateral) zz--transformtransform ofof aa causalcausal
DTDT signalsignal x[n]x[n] isis defineddefined asas ::
WeWe cancan alsoalso writewrite :: ZZ++{x(n)}{x(n)} andand )()( zXnx
z
+
+
↔WeWe cancan alsoalso writewrite :: ZZ++{x(n)}{x(n)} andand )()( zXnx +
↔
EquivalentEquivalent toto thethe bilateralbilateral zz--transformtransform ofof x[n]u[n]x[n]u[n]
SinceSince x[n]u[n]x[n]u[n] isis alwaysalways aa rightright sidedsided sequence,sequence,
ROCROC ofof X(z)X(z) isis alwaysalways thethe exteriorexterior ofof aa circlecircle..
UsefulUseful forfor solvingsolving differencedifference equationsequations withwith initialinitial
conditionsconditions..
9/12/2013 Mahesh J. vadhavaniya 3
Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
ItIt doesdoes notnot containcontain informationinformation aboutabout thethe signalsignal
x(n)x(n) forfor negativenegative valuesvalues ofof timetime (for(for nn << 00 ))
ItIt isis uniqueunique onlyonly forfor causalcausal signals,signals, becausebecause onlyonly
thesethese signalssignals areare zerozero forfor nn << 00..thesethese signalssignals areare zerozero forfor nn << 00..
SinceSince x[n]u[n]x[n]u[n] isis alwaysalways aa rightright sidedsided sequence,sequence,
ROCROC ofof X(z)X(z) isis alwaysalways thethe exteriorexterior ofof aa circlecircle.. SoSo whenwhen
wewe dealdeal withwith oneone sidedsided zz--transform,transform, itit isis notnot
necessarynecessary toto referrefer toto theirtheir ROCROC..
9/12/2013 Mahesh J. vadhavaniya 4
Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
(A) 1X1(n) = { 1, 2, 5, 7, 0, 1 }
(B) 2X2(n) = { 1, 2, 3, 0, 8, 1 }
-5-3-2-1
1
z7z5z2z1=(z)x ++++
+
-3-2
2
z8z3=(z)x ++
+
2
z8z3=(z)x ++
(C) 3X3(n) = { 0, 0, 1, 2, 5, 7, 0, 1 }
-7-5-4-3-2
3
zz7z5z2z=(z)x ++++
+
(D) 4X4(n) = { 2, 4, 5, 7, 0, 1 }
-3-1
4
z7z5=(z)x ++
+
9/12/2013 Mahesh J. vadhavaniya 5
Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
(E) X5(n) = δ (n)
(F) X6(n) = δ (n - k)
1=(z)x 5
+
0k,z=(z) -k
6x >
+
(G) X7(n) = δ (n + k)
0k0,=(z)x 7
>
+
9/12/2013 Mahesh J. vadhavaniya 6
Significance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided Z--------TransformTransformTransformTransformTransformTransformTransformTransform
ForFor aa nonnon--causalcausal signal,signal, thethe oneone sidedsided zz--transformtransform isis
notnot uniqueunique..
ForFor aa causalcausal signal,signal, thethe oneone sidedsided zz--transformtransform isis uniqueunique..
9/12/2013 Mahesh J. vadhavaniya 18
ForFor antianti--causalcausal signals,signals, thethe oneone sidedsided zz--transformtransform isis
alwaysalways zerozero..
Properties…Properties…Properties…Properties…Properties…Properties…Properties…Properties…
Shifting Property :-
Case 1 : Time Delay
0k,)()()(
)()(
1
z
>





−+→←−
→←
∑=
+−
+
+
+
k
n
nkz
znxzXzknxthen
zXnxIf
1  =n
)(zk)-then x(ncausal,isx(n)case -kz
zXIn +
→←
+
Proof :-






+=






+=−
+
−
−=
−−
∞
=
−
−
−=
−−+
∑
∑∑
)()(
)()()}({
1
0
1
zXzlxz
zlxzlxzknxZ
k
l
lk
l
l
kl
lk
ChangeChange thethe indexindex fromfrom ll toto nn == --ll
9/12/2013 Mahesh J. vadhavaniya 7
Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
Example 1: Determine the one-sided z-transform of
X1(n) = x(n-2) where x(n) = an
ApplyApply thethe shiftingshifting propertyproperty forfor kk == 22,, wewe havehaveProof :
12
2-2
)2()1()(
])2()1()([z=2)}-{x(nZ
−+−
++
−+−+=
−+−+
xzxzXz
ZxzxzX
211
1
2
1
1
21
12
1
)(
1
1
)(,)2(,x(-1)Since
)2()1()(
−−−
−
−
+
−
−−
−+−
++
−
=
−
==−=
−+−+=
aza
az
z
zX
obtainwe
az
zXaxa
xzxzXz
ToTo obtainobtain x(nx(n--k)k) (k>(k>00)) fromfrom x(n),x(n), wewe shouldshould shiftshift x(n)x(n) byby kk
samplessamples toto thethe rightright..
9/12/2013 Mahesh J. vadhavaniya 8
Properties…Properties…Properties…Properties…Properties…Properties…Properties…Properties…
Shifting Property :-
Case 2 : Time Advance
0k,)()()(
)()(
1
0
z
>





−→←+
→←
∑
−
=
−+
+
+
+
k
n
nkz
znxzXzknxthen
zXnxIf
0  =n
Proof :-
∑∑
∞
=
−
∞
=
−+
=+=+
kl
lk
n
n
zlxzzknxknxZ )()()}({
0
We have changed the index of summation from n to l = n+k
∑∑∑
∞
=
−
−
=
−
∞
=
−+
+==
kl
l
k
l
l
l
l
zlxzlxzlxzX )()()()(
1
00






−= ∑
−
=
−++
1
0
)()()(
k
n
nk
znxzXzzX
9/12/2013 Mahesh J. vadhavaniya 9
Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
Example 2: Determine the one-sided z-transform of
X2(n) = x(n + 2) where x(n) = an
ApplyApply thethe shiftingshifting propertyproperty forfor kk == 22,, wewe havehaveProof :
zxxzX −−+ ++ 2
])1()0()([z=2)}{x(nZ
azz
az
z
zX
obtainweazzXaxand
zxzxzXz
−−
−
=
−===
−−=
−
+
−+
+
2
1
2
2
1
1
22
1
)(
)1(1)(and,)1(,1x(0)Since
)1()0()(
ToTo obtainobtain x(x(n+kn+k)) (k>(k>00)) fromfrom x(n),x(n), wewe shouldshould shiftshift x(n)x(n) byby kk
samplessamples toto thethe leftleft..
9/12/2013 Mahesh J. vadhavaniya 10
Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
Final Value Theorem :
Proof :
)()1(lim)()(lim
)()(
1zn
z
zXzxnxthen
zXnxIf
+
→∞→
+
−=∞=
→←
+
∑
∞
−
∞=∞ )()]([ n
zxxZ
∑
∑
∑
∑
∞
=
−+
∞
=
−++
∞
=
−
=
−+=−−
−+=−−
−+=−+
∞=∞
0
0
0
0
)]()1([)0()()1(
)]()1([)()]0()([
)]()1([)]()1([
)()]([
n
n
n
n
n
n
n
znxnxxzXz
znxnxzXxzzX
znxnxnxnxZ
zxxZ
TakingTaking thethe limitlimit zz 11 onon bothboth sides,sides,
9/12/2013 Mahesh J. vadhavaniya 11
Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…)
Final Value Theorem :
exp
)]()1([)]0()()1[(lim
])]()1([[lim)]0()()1[(lim
0
1z
0
1
1z1z
l n termanding tilnow
nxnxxzXz
znxnxxzXz
n
n
∞
=
+
→
∞
=
−
→
+
→
−+=−−
−+=−−
∑
∑
ThisThis theoremtheorem enablesenables usus toto findfind thethe steadysteady statestate valuevalue ofof
x(n)x(n) withoutwithout solvingsolving forfor thethe entireentire sequencesequence..
)()1(lim)(therefore
)0()()]0()()1[(lim
)]}()1([...
)]1()2([)]0()1({[lim)]0()()1[(lim
exp
1
1z
n1z
zXzx
xxxzXz
nxnx
xxxxxzXz
l n termanding tilnow
z
+
→
+
→
∞→
+
→
−=∞
−∞=−−
−++
+−+−=−−
9/12/2013 Mahesh J. vadhavaniya 12
Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …
Use the one sided z-transformation to determine y(n),
n≥0, if
GivenGiven
Example 1 :
1)1();(
3
1
)();()1(
2
1
)( =−





=+−= ynunxnxnyny
n
Solution :
)()1(
2
1
)( nxnyny +−=
1
TakingTaking zz--transformtransform onon bothboth sidessides )()]1()([
2
1
)( 1
zXyzYzzY +−+= −
SubstituteSubstitute y(y(--11)=)=11 andand
3
1
)(
3
1
)(
−
=














=
z
z
nuZzX
n
3
1
5.0)(5.0)(
3
1
]1)([
2
1
)(
1
1
−
++=
−
++=
−
−
z
z
zYzzY
z
z
zYzzY
9/12/2013 Mahesh J. vadhavaniya 13
Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …
( )
5.0)(
5.01
3
15.01
5.0
)(
3
1
5.0)()5.01(
1
1
1
+=
−





−
+
−
=
−
+=−
−
−
−
zzY
zz
z
z
z
zY
z
z
zYz
( )
3
1
2
5.0
3
5.0
5.0
)(
3
1
2
5.0
3
5.0
5.0)(
5.0
3
15.0
5.0)(
−
−
−
+
−
=
−
−
−
+
−
=
−





−
+
−
=
z
z
z
z
z
z
zY
zzzz
zY
zz
z
zz
zY
9/12/2013 Mahesh J. vadhavaniya 14
Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …
( ) ( ) ( )
( ) ( ) )(]3125.05.3[)(
)(]3125.035.05.0[)(
nuny
nuny
nn
nnn
−=
−+=
TakingTaking inverseinverse zz--transform,transform, wewe getget
( ) ( ) )(]3125.05.3[)( nuny
nn
−=
9/12/2013 Mahesh J. vadhavaniya 15
The unilateral z transform is well suited to solving difference
equations with initial conditions. For example,
y n + 2[ ]−
3
2
y n +1[ ]+
1
2
y n[ ]= 1/ 4( )n
, for n ≥ 0
Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …
Example 2 :
2 2
y 0[ ]= 10 and y 1[ ]= 4
z transforming both sides,
z2
Y z( )− y 0[ ]− z−1
y 1[ ]  −
3
2
z Y z( )− y 0[ ]  +
1
2
Y z( ) =
z
z −1/ 4
the initial conditions are called for systematically.
9/12/2013 Mahesh J. vadhavaniya 16
Applying initial conditions and solving,
Y z( ) = z
16 / 3
z −1/ 4
+
4
z −1/ 2
+
2 / 3
z −1




and
Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …
and
y n[ ]=
16
3
1
4




n
+ 4
1
2




n
+
2
3





u n[ ]
This solution satisfies the difference equation and the initial
conditions.
9/12/2013 Mahesh J. vadhavaniya 17
9/12/2013 Mahesh J. Vadhavaniya 20

One sided z transform

  • 2.
    Objectives…Objectives…Objectives…Objectives…Objectives…Objectives…Objectives…Objectives… SignificanceSignificance ofof OneOneSidedSided (Unilateral)(Unilateral) ZZ –– TransformTransform.. DefinitionDefinition.. PropertiesProperties.. 9/12/2013 Mahesh J. vadhavaniya 1 PropertiesProperties.. SolutionSolution ofof DifferenceDifference EquationsEquations.. ShiftingShifting •• DelayDelay •• AdvanceAdvance FinalFinal ValueValue TheoremTheorem
  • 3.
    Significance of OneSided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided Z--------TransformTransformTransformTransformTransformTransformTransformTransform TheThe twotwo sidedsided zz--transformtransform –– signalssignals areare specifiedspecified forfor thethe entireentire timetime rangerange ∞<<∞ n- CanCan notnot bebe usedused toto evaluateevaluate thethe outputoutput ofof nonnon--relaxedrelaxed systemssystems.. NonNon--relaxedrelaxed areare systemssystems describeddescribed byby differencedifferenceNonNon--relaxedrelaxed areare systemssystems describeddescribed byby differencedifference equationsequations withwith nonzerononzero initialinitial conditionsconditions.. We’ll Develop the one sided z-transform to solve difference equations with initial conditions. 9/12/2013 Mahesh J. vadhavaniya 2 SinceSince thethe inputinput isis appliedapplied atat aa finitefinite timetime (n(n00),), bothboth thethe inputinput andand outputoutput signalssignals areare specifiedspecified forfor n≥n≥ nn00,, butbut byby oo meansmeans areare zerozero forfor nn << nn00 ..
  • 4.
    ∑ ∞ = −+ = 0 )()( n n znxzX Definition…Definition…Definition…Definition…Definition…Definition…Definition…Definition… TheThe OneOne sidedsided(Unilateral)(Unilateral) zz--transformtransform ofof aa causalcausal DTDT signalsignal x[n]x[n] isis defineddefined asas :: WeWe cancan alsoalso writewrite :: ZZ++{x(n)}{x(n)} andand )()( zXnx z + + ↔WeWe cancan alsoalso writewrite :: ZZ++{x(n)}{x(n)} andand )()( zXnx + ↔ EquivalentEquivalent toto thethe bilateralbilateral zz--transformtransform ofof x[n]u[n]x[n]u[n] SinceSince x[n]u[n]x[n]u[n] isis alwaysalways aa rightright sidedsided sequence,sequence, ROCROC ofof X(z)X(z) isis alwaysalways thethe exteriorexterior ofof aa circlecircle.. UsefulUseful forfor solvingsolving differencedifference equationsequations withwith initialinitial conditionsconditions.. 9/12/2013 Mahesh J. vadhavaniya 3
  • 5.
    Definition… (Definition… (Definition…(Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) ItIt doesdoes notnot containcontain informationinformation aboutabout thethe signalsignal x(n)x(n) forfor negativenegative valuesvalues ofof timetime (for(for nn << 00 )) ItIt isis uniqueunique onlyonly forfor causalcausal signals,signals, becausebecause onlyonly thesethese signalssignals areare zerozero forfor nn << 00..thesethese signalssignals areare zerozero forfor nn << 00.. SinceSince x[n]u[n]x[n]u[n] isis alwaysalways aa rightright sidedsided sequence,sequence, ROCROC ofof X(z)X(z) isis alwaysalways thethe exteriorexterior ofof aa circlecircle.. SoSo whenwhen wewe dealdeal withwith oneone sidedsided zz--transform,transform, itit isis notnot necessarynecessary toto referrefer toto theirtheir ROCROC.. 9/12/2013 Mahesh J. vadhavaniya 4
  • 6.
    Definition… (Definition… (Definition…(Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) (A) 1X1(n) = { 1, 2, 5, 7, 0, 1 } (B) 2X2(n) = { 1, 2, 3, 0, 8, 1 } -5-3-2-1 1 z7z5z2z1=(z)x ++++ + -3-2 2 z8z3=(z)x ++ + 2 z8z3=(z)x ++ (C) 3X3(n) = { 0, 0, 1, 2, 5, 7, 0, 1 } -7-5-4-3-2 3 zz7z5z2z=(z)x ++++ + (D) 4X4(n) = { 2, 4, 5, 7, 0, 1 } -3-1 4 z7z5=(z)x ++ + 9/12/2013 Mahesh J. vadhavaniya 5
  • 7.
    Definition… (Definition… (Definition…(Definition… (Definition… (Definition… (Definition… (Definition… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) (E) X5(n) = δ (n) (F) X6(n) = δ (n - k) 1=(z)x 5 + 0k,z=(z) -k 6x > + (G) X7(n) = δ (n + k) 0k0,=(z)x 7 > + 9/12/2013 Mahesh J. vadhavaniya 6
  • 8.
    Significance of OneSided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided ZSignificance of One Sided Z--------TransformTransformTransformTransformTransformTransformTransformTransform ForFor aa nonnon--causalcausal signal,signal, thethe oneone sidedsided zz--transformtransform isis notnot uniqueunique.. ForFor aa causalcausal signal,signal, thethe oneone sidedsided zz--transformtransform isis uniqueunique.. 9/12/2013 Mahesh J. vadhavaniya 18 ForFor antianti--causalcausal signals,signals, thethe oneone sidedsided zz--transformtransform isis alwaysalways zerozero..
  • 9.
    Properties…Properties…Properties…Properties…Properties…Properties…Properties…Properties… Shifting Property :- Case1 : Time Delay 0k,)()()( )()( 1 z >      −+→←− →← ∑= +− + + + k n nkz znxzXzknxthen zXnxIf 1  =n )(zk)-then x(ncausal,isx(n)case -kz zXIn + →← + Proof :-       +=       +=− + − −= −− ∞ = − − −= −−+ ∑ ∑∑ )()( )()()}({ 1 0 1 zXzlxz zlxzlxzknxZ k l lk l l kl lk ChangeChange thethe indexindex fromfrom ll toto nn == --ll 9/12/2013 Mahesh J. vadhavaniya 7
  • 10.
    Properties… (Properties… (Properties…(Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) Example 1: Determine the one-sided z-transform of X1(n) = x(n-2) where x(n) = an ApplyApply thethe shiftingshifting propertyproperty forfor kk == 22,, wewe havehaveProof : 12 2-2 )2()1()( ])2()1()([z=2)}-{x(nZ −+− ++ −+−+= −+−+ xzxzXz ZxzxzX 211 1 2 1 1 21 12 1 )( 1 1 )(,)2(,x(-1)Since )2()1()( −−− − − + − −− −+− ++ − = − ==−= −+−+= aza az z zX obtainwe az zXaxa xzxzXz ToTo obtainobtain x(nx(n--k)k) (k>(k>00)) fromfrom x(n),x(n), wewe shouldshould shiftshift x(n)x(n) byby kk samplessamples toto thethe rightright.. 9/12/2013 Mahesh J. vadhavaniya 8
  • 11.
    Properties…Properties…Properties…Properties…Properties…Properties…Properties…Properties… Shifting Property :- Case2 : Time Advance 0k,)()()( )()( 1 0 z >      −→←+ →← ∑ − = −+ + + + k n nkz znxzXzknxthen zXnxIf 0  =n Proof :- ∑∑ ∞ = − ∞ = −+ =+=+ kl lk n n zlxzzknxknxZ )()()}({ 0 We have changed the index of summation from n to l = n+k ∑∑∑ ∞ = − − = − ∞ = −+ +== kl l k l l l l zlxzlxzlxzX )()()()( 1 00       −= ∑ − = −++ 1 0 )()()( k n nk znxzXzzX 9/12/2013 Mahesh J. vadhavaniya 9
  • 12.
    Properties… (Properties… (Properties…(Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) Example 2: Determine the one-sided z-transform of X2(n) = x(n + 2) where x(n) = an ApplyApply thethe shiftingshifting propertyproperty forfor kk == 22,, wewe havehaveProof : zxxzX −−+ ++ 2 ])1()0()([z=2)}{x(nZ azz az z zX obtainweazzXaxand zxzxzXz −− − = −=== −−= − + −+ + 2 1 2 2 1 1 22 1 )( )1(1)(and,)1(,1x(0)Since )1()0()( ToTo obtainobtain x(x(n+kn+k)) (k>(k>00)) fromfrom x(n),x(n), wewe shouldshould shiftshift x(n)x(n) byby kk samplessamples toto thethe leftleft.. 9/12/2013 Mahesh J. vadhavaniya 10
  • 13.
    Properties… (Properties… (Properties…(Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) Final Value Theorem : Proof : )()1(lim)()(lim )()( 1zn z zXzxnxthen zXnxIf + →∞→ + −=∞= →← + ∑ ∞ − ∞=∞ )()]([ n zxxZ ∑ ∑ ∑ ∑ ∞ = −+ ∞ = −++ ∞ = − = −+=−− −+=−− −+=−+ ∞=∞ 0 0 0 0 )]()1([)0()()1( )]()1([)()]0()([ )]()1([)]()1([ )()]([ n n n n n n n znxnxxzXz znxnxzXxzzX znxnxnxnxZ zxxZ TakingTaking thethe limitlimit zz 11 onon bothboth sides,sides, 9/12/2013 Mahesh J. vadhavaniya 11
  • 14.
    Properties… (Properties… (Properties…(Properties… (Properties… (Properties… (Properties… (Properties… (cntdcntdcntdcntdcntdcntdcntdcntd…)…)…)…)…)…)…)…) Final Value Theorem : exp )]()1([)]0()()1[(lim ])]()1([[lim)]0()()1[(lim 0 1z 0 1 1z1z l n termanding tilnow nxnxxzXz znxnxxzXz n n ∞ = + → ∞ = − → + → −+=−− −+=−− ∑ ∑ ThisThis theoremtheorem enablesenables usus toto findfind thethe steadysteady statestate valuevalue ofof x(n)x(n) withoutwithout solvingsolving forfor thethe entireentire sequencesequence.. )()1(lim)(therefore )0()()]0()()1[(lim )]}()1([... )]1()2([)]0()1({[lim)]0()()1[(lim exp 1 1z n1z zXzx xxxzXz nxnx xxxxxzXz l n termanding tilnow z + → + → ∞→ + → −=∞ −∞=−− −++ +−+−=−− 9/12/2013 Mahesh J. vadhavaniya 12
  • 15.
    Solution of DifferenceEquations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations … Use the one sided z-transformation to determine y(n), n≥0, if GivenGiven Example 1 : 1)1();( 3 1 )();()1( 2 1 )( =−      =+−= ynunxnxnyny n Solution : )()1( 2 1 )( nxnyny +−= 1 TakingTaking zz--transformtransform onon bothboth sidessides )()]1()([ 2 1 )( 1 zXyzYzzY +−+= − SubstituteSubstitute y(y(--11)=)=11 andand 3 1 )( 3 1 )( − =               = z z nuZzX n 3 1 5.0)(5.0)( 3 1 ]1)([ 2 1 )( 1 1 − ++= − ++= − − z z zYzzY z z zYzzY 9/12/2013 Mahesh J. vadhavaniya 13
  • 16.
    Solution of DifferenceEquations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations … ( ) 5.0)( 5.01 3 15.01 5.0 )( 3 1 5.0)()5.01( 1 1 1 += −      − + − = − +=− − − − zzY zz z z z zY z z zYz ( ) 3 1 2 5.0 3 5.0 5.0 )( 3 1 2 5.0 3 5.0 5.0)( 5.0 3 15.0 5.0)( − − − + − = − − − + − = −      − + − = z z z z z z zY zzzz zY zz z zz zY 9/12/2013 Mahesh J. vadhavaniya 14
  • 17.
    Solution of DifferenceEquations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations … ( ) ( ) ( ) ( ) ( ) )(]3125.05.3[)( )(]3125.035.05.0[)( nuny nuny nn nnn −= −+= TakingTaking inverseinverse zz--transform,transform, wewe getget ( ) ( ) )(]3125.05.3[)( nuny nn −= 9/12/2013 Mahesh J. vadhavaniya 15
  • 18.
    The unilateral ztransform is well suited to solving difference equations with initial conditions. For example, y n + 2[ ]− 3 2 y n +1[ ]+ 1 2 y n[ ]= 1/ 4( )n , for n ≥ 0 Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations … Example 2 : 2 2 y 0[ ]= 10 and y 1[ ]= 4 z transforming both sides, z2 Y z( )− y 0[ ]− z−1 y 1[ ]  − 3 2 z Y z( )− y 0[ ]  + 1 2 Y z( ) = z z −1/ 4 the initial conditions are called for systematically. 9/12/2013 Mahesh J. vadhavaniya 16
  • 19.
    Applying initial conditionsand solving, Y z( ) = z 16 / 3 z −1/ 4 + 4 z −1/ 2 + 2 / 3 z −1     and Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations …Solution of Difference Equations … and y n[ ]= 16 3 1 4     n + 4 1 2     n + 2 3      u n[ ] This solution satisfies the difference equation and the initial conditions. 9/12/2013 Mahesh J. vadhavaniya 17
  • 20.
    9/12/2013 Mahesh J.Vadhavaniya 20