The Inverse z-Transform
In science one tries to tell people, in such a way
as to be understood by everyone, something
that no one ever knew before.
But in poetry, it's the exact opposite.
Paul Dirac
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall Inc.
351M Digital Signal Processing 2
The Inverse Z-Transform
• Formal inverse z-transform is based on a Cauchy integral
• Less formal ways sufficient most of the time
– Inspection method
– Partial fraction expansion
– Power series expansion
• Inspection Method
– Make use of known z-transform pairs such as
– Example: The inverse z-transform of
[ ] az
az1
1
nua 1
Zn
>
−
 →← −
( ) [ ] [ ]nu
2
1
nx
2
1
z
z
2
1
1
1
zX
n
1






=→>
−
=
−
351M Digital Signal Processing 3
Inverse Z-Transform by Partial Fraction Expansion
• Assume that a given z-transform can be expressed as
• Apply partial fractional expansion
• First term exist only if M>N
– Br is obtained by long division
• Second term represents all first order poles
• Third term represents an order s pole
– There will be a similar term for every high-order pole
• Each term can be inverse transformed by inspection
( )
∑
∑
=
−
=
−
= N
0k
k
k
M
0k
k
k
za
zb
zX
( )
( )∑∑∑ =
−
≠=
−
−
=
−
−
+
−
+=
s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
351M Digital Signal Processing 4
Partial Fractional Expression
• Coefficients are given as
• Easier to understand with examples
( )
( )∑∑∑ =
−
≠=
−
−
=
−
−
+
−
+=
s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
( ) ( ) kdz
1
kk zXzd1A =
−
−=
( ) ( )
( ) ( )[ ] 1
idw
1s
ims
ms
ms
i
m wXwd1
dw
d
d!ms
1
C
−
=
−
−
−
−






−
−−
=
351M Digital Signal Processing 5
Example: 2nd
Order Z-Transform
– Order of numerator is smaller than denominator (in terms of z-1
)
– No higher order pole
( )
2
1
z:ROC
z
2
1
1z
4
1
1
1
zX
11
>






−





−
=
−−
( )






−
+






−
=
−− 1
2
1
1
z
2
1
1
A
z
4
1
1
A
zX
( ) 1
4
1
2
1
1
1
zXz
4
1
1A 1
4
1
z
1
1 −=














−
=





−= −
=
−
( ) 2
2
1
4
1
1
1
zXz
2
1
1A 1
2
1
z
1
2 =














−
=





−= −
=
−
351M Digital Signal Processing 6
Example Continued
• ROC extends to infinity
– Indicates right sided sequence
( )
2
1
z
z
2
1
1
2
z
4
1
1
1
zX
11
>






−
+






−
−
=
−−
[ ] [ ] [ ]nu
4
1
-nu
2
1
2nx
nn












=
351M Digital Signal Processing 7
Example #2
• Long division to obtain Bo
( ) ( )
( )
1z
z1z
2
1
1
z1
z
2
1
z
2
3
1
zz21
zX
11
21
21
21
>
−





−
+
=
+−
++
=
−−
−
−−
−−
1z5
2z3z
2
1z2z1z
2
3
z
2
1
1
12
1212
−
+−
+++−
−
−−
−−−−
( )
( )11
1
z1z
2
1
1
z51
2zX
−−
−
−





−
+−
+=
( ) 1
2
1
1
z1
A
z
2
1
1
A
2zX −
− −
+
−
+=
( ) 9zXz
2
1
1A
2
1
z
1
1 −=





−=
=
−
( ) ( ) 8zXz1A
1z
1
2 =−=
=
−
351M Digital Signal Processing 8
Example #2 Continued
• ROC extends to infinity
– Indicates right-sides sequence
( ) 1z
z1
8
z
2
1
1
9
2zX 1
1
>
−
+
−
−= −
−
[ ] [ ] [ ] [ ]n8u-nu
2
1
9n2nx
n






−δ=
351M Digital Signal Processing 9
Inverse Z-Transform by Power Series Expansion
• The z-transform is power series
• In expanded form
• Z-transforms of this form can generally be inversed easily
• Especially useful for finite-length series
• Example
( ) [ ]∑
∞
−∞=
−
=
n
n
znxzX
( ) [ ] [ ] [ ] [ ] [ ]  ++++−+−+= −− 2112
z2xz1x0xz1xz2xzX
( ) ( )( )
12
1112
z
2
1
1z
2
1
z
z1z1z
2
1
1zzX
−
−−−
+−−=
−+





−=
[ ] [ ] [ ] [ ] [ ]1n
2
1
n1n
2
1
2nnx −δ+δ−+δ−+δ=
[ ]









=
=
=−
−=−
−=
=
2n0
1n
2
1
0n1
1n
2
1
2n1
nx
351M Digital Signal Processing 10
Z-Transform Properties: Linearity
• Notation
• Linearity
– Note that the ROC of combined sequence may be larger than
either ROC
– This would happen if some pole/zero cancellation occurs
– Example:
• Both sequences are right-sided
• Both sequences have a pole z=a
• Both have a ROC defined as |z|>|a|
• In the combined sequence the pole at z=a cancels with a zero at z=a
• The combined ROC is the entire z plane except z=0
• We did make use of this property already, where?
[ ] ( ) x
Z
RROCzXnx = →←
[ ] [ ] ( ) ( ) 21 xx21
Z
21 RRROCzbXzaXnbxnax ∩=+ →←+
[ ] [ ] [ ]N-nua-nuanx nn
=
351M Digital Signal Processing 11
Z-Transform Properties: Time Shifting
• Here no is an integer
– If positive the sequence is shifted right
– If negative the sequence is shifted left
• The ROC can change the new term may
– Add or remove poles at z=0 or z=∞
• Example
[ ] ( ) x
nZ
o RROCzXznnx o
= →←− −
( )
4
1
z
z
4
1
1
1
zzX
1
1
>












−
=
−
−
[ ] [ ]1-nu
4
1
nx
1-n






=
351M Digital Signal Processing 12
Z-Transform Properties: Multiplication by Exponential
• ROC is scaled by |zo|
• All pole/zero locations are scaled
• If zo is a positive real number: z-plane shrinks or expands
• If zo is a complex number with unit magnitude it rotates
• Example: We know the z-transform pair
• Let’s find the z-transform of
[ ] ( ) xoo
Zn
o RzROCz/zXnxz = →←
[ ] 1z:ROC
z-1
1
nu 1-
Z
> →←
[ ] ( ) [ ] ( ) [ ] ( ) [ ]nure
2
1
nure
2
1
nuncosrnx
njnj
o
n oo ω−ω
+=ω=
( ) rz
zre1
2/1
zre1
2/1
zX 1j1j oo
>
−
+
−
= −ω−−ω
351M Digital Signal Processing 13
Z-Transform Properties: Differentiation
• Example: We want the inverse z-transform of
• Let’s differentiate to obtain rational expression
• Making use of z-transform properties and ROC
[ ] ( )
x
Z
RROC
dz
zdX
znnx =− →←
( ) ( ) azaz1logzX 1
>+= −
( ) ( )
1
1
1
2
az1
1
az
dz
zdX
z
az1
az
dz
zdX
−
−
−
−
+
=−⇒
+
−
=
[ ] ( ) [ ]1nuaannx
1n
−−=
−
[ ] ( ) [ ]1nu
n
a
1nx
n
1n
−−=
−
351M Digital Signal Processing 14
Z-Transform Properties: Conjugation
• Example
[ ] ( ) x
**Z*
RROCzXnx = →←
( ) [ ]
( ) [ ] [ ]
( ) [ ] ( ) [ ] [ ]{ }nxZznxznxzX
znxznxzX
znxzX
n
n
n
n
n
n
n
n
n
n
∗
∞
−∞=
−∗
∞
−∞=
∗∗∗∗
∞
−∞=
∗
∗
∞
−∞=
−∗
∞
−∞=
−
===
=





=
=
∑∑
∑∑
∑
351M Digital Signal Processing 15
Z-Transform Properties: Time Reversal
• ROC is inverted
• Example:
• Time reversed version of
[ ] ( )
x
Z
R
1
ROCz/1Xnx = →←−
[ ] [ ]nuanx n
−= −
[ ]nuan
( ) 1
11-
1-1
az
za-1
za-
az1
1
zX −
−
−
<=
−
=
351M Digital Signal Processing 16
Z-Transform Properties: Convolution
• Convolution in time domain is multiplication in z-domain
• Example:Let’s calculate the convolution of
• Multiplications of z-transforms is
• ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
• Partial fractional expansion of Y(z)
[ ] [ ] ( ) ( ) 2x1x21
Z
21 RR:ROCzXzXnxnx ∩ →←∗
[ ] [ ] [ ] [ ]nunxandnuanx 2
n
1 ==
( ) az:ROC
az1
1
zX 11 >
−
= −
( ) 1z:ROC
z1
1
zX 12 >
−
= −
( ) ( ) ( )
( )( )1121
z1az1
1
zXzXzY −−
−−
==
( ) 1z:ROCasume
az1
1
z1
1
a1
1
zY 11
>





−
−
−−
= −−
[ ] [ ] [ ]( )nuanu
a1
1
ny 1n+
−
−
=

Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM

  • 1.
    The Inverse z-Transform Inscience one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it's the exact opposite. Paul Dirac Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall Inc.
  • 2.
    351M Digital SignalProcessing 2 The Inverse Z-Transform • Formal inverse z-transform is based on a Cauchy integral • Less formal ways sufficient most of the time – Inspection method – Partial fraction expansion – Power series expansion • Inspection Method – Make use of known z-transform pairs such as – Example: The inverse z-transform of [ ] az az1 1 nua 1 Zn > −  →← − ( ) [ ] [ ]nu 2 1 nx 2 1 z z 2 1 1 1 zX n 1       =→> − = −
  • 3.
    351M Digital SignalProcessing 3 Inverse Z-Transform by Partial Fraction Expansion • Assume that a given z-transform can be expressed as • Apply partial fractional expansion • First term exist only if M>N – Br is obtained by long division • Second term represents all first order poles • Third term represents an order s pole – There will be a similar term for every high-order pole • Each term can be inverse transformed by inspection ( ) ∑ ∑ = − = − = N 0k k k M 0k k k za zb zX ( ) ( )∑∑∑ = − ≠= − − = − − + − += s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX
  • 4.
    351M Digital SignalProcessing 4 Partial Fractional Expression • Coefficients are given as • Easier to understand with examples ( ) ( )∑∑∑ = − ≠= − − = − − + − += s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX ( ) ( ) kdz 1 kk zXzd1A = − −= ( ) ( ) ( ) ( )[ ] 1 idw 1s ims ms ms i m wXwd1 dw d d!ms 1 C − = − − − −       − −− =
  • 5.
    351M Digital SignalProcessing 5 Example: 2nd Order Z-Transform – Order of numerator is smaller than denominator (in terms of z-1 ) – No higher order pole ( ) 2 1 z:ROC z 2 1 1z 4 1 1 1 zX 11 >       −      − = −− ( )       − +       − = −− 1 2 1 1 z 2 1 1 A z 4 1 1 A zX ( ) 1 4 1 2 1 1 1 zXz 4 1 1A 1 4 1 z 1 1 −=               − =      −= − = − ( ) 2 2 1 4 1 1 1 zXz 2 1 1A 1 2 1 z 1 2 =               − =      −= − = −
  • 6.
    351M Digital SignalProcessing 6 Example Continued • ROC extends to infinity – Indicates right sided sequence ( ) 2 1 z z 2 1 1 2 z 4 1 1 1 zX 11 >       − +       − − = −− [ ] [ ] [ ]nu 4 1 -nu 2 1 2nx nn             =
  • 7.
    351M Digital SignalProcessing 7 Example #2 • Long division to obtain Bo ( ) ( ) ( ) 1z z1z 2 1 1 z1 z 2 1 z 2 3 1 zz21 zX 11 21 21 21 > −      − + = +− ++ = −− − −− −− 1z5 2z3z 2 1z2z1z 2 3 z 2 1 1 12 1212 − +− +++− − −− −−−− ( ) ( )11 1 z1z 2 1 1 z51 2zX −− − −      − +− += ( ) 1 2 1 1 z1 A z 2 1 1 A 2zX − − − + − += ( ) 9zXz 2 1 1A 2 1 z 1 1 −=      −= = − ( ) ( ) 8zXz1A 1z 1 2 =−= = −
  • 8.
    351M Digital SignalProcessing 8 Example #2 Continued • ROC extends to infinity – Indicates right-sides sequence ( ) 1z z1 8 z 2 1 1 9 2zX 1 1 > − + − −= − − [ ] [ ] [ ] [ ]n8u-nu 2 1 9n2nx n       −δ=
  • 9.
    351M Digital SignalProcessing 9 Inverse Z-Transform by Power Series Expansion • The z-transform is power series • In expanded form • Z-transforms of this form can generally be inversed easily • Especially useful for finite-length series • Example ( ) [ ]∑ ∞ −∞= − = n n znxzX ( ) [ ] [ ] [ ] [ ] [ ]  ++++−+−+= −− 2112 z2xz1x0xz1xz2xzX ( ) ( )( ) 12 1112 z 2 1 1z 2 1 z z1z1z 2 1 1zzX − −−− +−−= −+      −= [ ] [ ] [ ] [ ] [ ]1n 2 1 n1n 2 1 2nnx −δ+δ−+δ−+δ= [ ]          = = =− −=− −= = 2n0 1n 2 1 0n1 1n 2 1 2n1 nx
  • 10.
    351M Digital SignalProcessing 10 Z-Transform Properties: Linearity • Notation • Linearity – Note that the ROC of combined sequence may be larger than either ROC – This would happen if some pole/zero cancellation occurs – Example: • Both sequences are right-sided • Both sequences have a pole z=a • Both have a ROC defined as |z|>|a| • In the combined sequence the pole at z=a cancels with a zero at z=a • The combined ROC is the entire z plane except z=0 • We did make use of this property already, where? [ ] ( ) x Z RROCzXnx = →← [ ] [ ] ( ) ( ) 21 xx21 Z 21 RRROCzbXzaXnbxnax ∩=+ →←+ [ ] [ ] [ ]N-nua-nuanx nn =
  • 11.
    351M Digital SignalProcessing 11 Z-Transform Properties: Time Shifting • Here no is an integer – If positive the sequence is shifted right – If negative the sequence is shifted left • The ROC can change the new term may – Add or remove poles at z=0 or z=∞ • Example [ ] ( ) x nZ o RROCzXznnx o = →←− − ( ) 4 1 z z 4 1 1 1 zzX 1 1 >             − = − − [ ] [ ]1-nu 4 1 nx 1-n       =
  • 12.
    351M Digital SignalProcessing 12 Z-Transform Properties: Multiplication by Exponential • ROC is scaled by |zo| • All pole/zero locations are scaled • If zo is a positive real number: z-plane shrinks or expands • If zo is a complex number with unit magnitude it rotates • Example: We know the z-transform pair • Let’s find the z-transform of [ ] ( ) xoo Zn o RzROCz/zXnxz = →← [ ] 1z:ROC z-1 1 nu 1- Z > →← [ ] ( ) [ ] ( ) [ ] ( ) [ ]nure 2 1 nure 2 1 nuncosrnx njnj o n oo ω−ω +=ω= ( ) rz zre1 2/1 zre1 2/1 zX 1j1j oo > − + − = −ω−−ω
  • 13.
    351M Digital SignalProcessing 13 Z-Transform Properties: Differentiation • Example: We want the inverse z-transform of • Let’s differentiate to obtain rational expression • Making use of z-transform properties and ROC [ ] ( ) x Z RROC dz zdX znnx =− →← ( ) ( ) azaz1logzX 1 >+= − ( ) ( ) 1 1 1 2 az1 1 az dz zdX z az1 az dz zdX − − − − + =−⇒ + − = [ ] ( ) [ ]1nuaannx 1n −−= − [ ] ( ) [ ]1nu n a 1nx n 1n −−= −
  • 14.
    351M Digital SignalProcessing 14 Z-Transform Properties: Conjugation • Example [ ] ( ) x **Z* RROCzXnx = →← ( ) [ ] ( ) [ ] [ ] ( ) [ ] ( ) [ ] [ ]{ }nxZznxznxzX znxznxzX znxzX n n n n n n n n n n ∗ ∞ −∞= −∗ ∞ −∞= ∗∗∗∗ ∞ −∞= ∗ ∗ ∞ −∞= −∗ ∞ −∞= − === =      = = ∑∑ ∑∑ ∑
  • 15.
    351M Digital SignalProcessing 15 Z-Transform Properties: Time Reversal • ROC is inverted • Example: • Time reversed version of [ ] ( ) x Z R 1 ROCz/1Xnx = →←− [ ] [ ]nuanx n −= − [ ]nuan ( ) 1 11- 1-1 az za-1 za- az1 1 zX − − − <= − =
  • 16.
    351M Digital SignalProcessing 16 Z-Transform Properties: Convolution • Convolution in time domain is multiplication in z-domain • Example:Let’s calculate the convolution of • Multiplications of z-transforms is • ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a| • Partial fractional expansion of Y(z) [ ] [ ] ( ) ( ) 2x1x21 Z 21 RR:ROCzXzXnxnx ∩ →←∗ [ ] [ ] [ ] [ ]nunxandnuanx 2 n 1 == ( ) az:ROC az1 1 zX 11 > − = − ( ) 1z:ROC z1 1 zX 12 > − = − ( ) ( ) ( ) ( )( )1121 z1az1 1 zXzXzY −− −− == ( ) 1z:ROCasume az1 1 z1 1 a1 1 zY 11 >      − − −− = −− [ ] [ ] [ ]( )nuanu a1 1 ny 1n+ − − =