SlideShare a Scribd company logo
1 of 58
Chapter 6
The z-Transform
Outline
o Introduction
o Z-Transform
o Zeros and Poles
o Region of Convergence
o Inverse z-Transform
o Geometric Evaluation of FT from P-Z plot
o Z-Transform Theorems and Properties
o System Function
The z-Transform
Introduction
Why z-Transform?
 A generalization of Fourier transform
 Why generalize it?
– FT does not converge on all sequence
– Bring the complex variable theory deal with the discrete-time
signals and systems
The z-Transform
z-Transform
Definition

 The z-transform of sequence x(n) is defined by
X (z)  x(n)zn
n
 Let z = ej.

X (e j
)   x(n)e jn
n
Fourier
Transform
z-Plane
Re
Im
z = ej

n

X (z)  x(n)zn

X (e j
)   x(n)e jn
n
Fourier Transform is evaluating z-transform
on a unit circle.
z-Plane
Re
Im
X(z)
Im
z = ej

Re
Periodic Property of FT
Re
Im
X(z)

 
X(ej)
The z-Transform
Zeros and Poles
Definition
 Give a sequence, the set of values of z for which the
z-transform converges, i.e., |X(z)|<, is called the
region of convergence.

 | x(n) || z |n
 
n

| X (z) | x(n)zn
n
ROC is centered on origin and
consists of a set of rings.
Example: Region of Convergence
Re

 | x(n) || z |n
 
n

n
Im
| X (z) | x(n)zn
ROC is an annual ring centered
on the origin.
Rx | z | Rx
r
ROC {z  rej
| R  r  R }
x x
Stable Systems
Re
Im
1
 A stable system requires that its Fourier transform is
uniformly convergent.
 Fact: Fourier transform is to
evaluate z-transform on a unit
circle.
 A stable system requires the
ROC of z-transform to include
the unit circle.
Example: A right sided Sequence
x(n)  an
u(n)
-8 -7 -6 -5 -4 -3 -2 -1
n
x(n)
. . .
1 2 3 4 5 6 7 8 9 10
Example: A right sided Sequence
x(n)  an
u(n)

X (z)  an
u(n)zn
n

 an
zn
n0

 (az1
)n
n0
For convergence of X(z), we
require that

| az1
|  
n0
| az1
|1
| z || a |

1

z
1 az1
z  a

n0
1 n
X (z)  (az )
| z || a |
a
a
Example: A right sided Sequence
ROC for x(n)=anu(n)
, | z || a |
z
z  a
X (z) 
Re
Im
1
a
a
Re
Im
1
Which one is stable?
Example: A left sided Sequence
x(n)  an
u(n 1)
1 2 3 4 5 6 7 8 9 10
-8 -7 -6 -5 -4 -3 -2 -1
n
x(n)
Example: A left sided Sequence
x(n)  an
u(n 1)

X (z)   an
u(n 1)zn
n
For convergence of X(z), we
require that

| a1
z |  
n0
| a1
z |1
| z || a |
z


1
1 a1
z z  a
X (z) 1 (a1
z)n
1
n0
| z || a |
  an
zn
n
1

 an
zn
n1

1 an
zn
n0
a
a
Example: A left sided Sequence
ROC for x(n)=anu( n1)
, | z || a |
z
z  a
X (z) 
Re
Im
1
a
a
Re
Im
1
Which one is stable?
The z-Transform
Region of
Convergence
Represent z-transform as a
Rational Function
Q(z)
X (z) 
P(z) where P(z) and Q(z) are
polynomials in z.
Zeros: The values of z’s such that X(z) = 0
Poles: The values of z’s such that X(z) = 
Example: A right sided Sequence
x(n)  an
u(n) , | z || a |
X (z) 
z  a
z
Re
Im
a
ROC is bounded by the
pole and is the exterior
of a circle.
Example: A left sided Sequence
x(n)  an
u(n 1) , | z || a |
X (z) 
z  a
z
Re
Im
a
ROC is bounded by the
pole and is the interior
of a circle.
Example: Sum of Two Right Sided Sequences
x(n)  (1
)n
u(n)  ( 1
)n
u(n)
2 3
3
z  1
2
z  1

z z
Re
X (z) 
Im
1/2
2 3
 12
(z  1 )(z  1 )
2z(z  1 )
1/3
1/12
ROC is bounded by poles
and is the exterior of a circle.
ROC does not include any pole.
Example: A Two Sided Sequence
x(n)  ( 1
)n
u(n) (1
)n
u(n 1)
3 2
2
z  1
3
z  1

Re
X (z) 
Im
1/2
2
3
 12
(z  1 )(z  1 )
z z 2z(z  1 )
1/3
1/12
ROC is bounded by poles
and is a ring.
ROC does not include any pole.
Example: A Finite Sequence
n n 1 n
N 1 N 1
n0 n0
x(n)  an
, 0  n  N 1
X (z)  a z  (az )
Re
Im
ROC: 0 < z < 
ROC does not include any pole.
1 (az1
)N

1 az z z  a
 aN
zN

1 N 1
1
N-1 poles
N-1 zeros
Always Stable
Properties of ROC
 A ring or disk in the z-plane centered at the origin.
 The Fourier Transform of x(n) is converge absolutely iff the ROC
includes the unit circle.
 The ROC cannot include any poles
 Finite Duration Sequences: The ROC is the entire z-plane except
possibly z=0 or z=.
 Right sided sequences: The ROC extends outward from the outermost
finite pole in X(z) to z=.
 Left sided sequences: The ROC extends inward from the innermost
nonzero pole in X(z) to z=0.
More on Rational z-Transform
Re
a b c
Consider the rational z-transform
with the pole pattern:
Im
Find the possible
ROC’s
More on Rational z-Transform
Consider the rational z-transform
with the pole pattern:
Im
Case 1:Aright sided Sequence.
a b c
Re
More on Rational z-Transform
Consider the rational z-transform
with the pole pattern:
Im
Case 2:Aleft sided Sequence.
a b c
Re
More on Rational z-Transform
Consider the rational z-transform
with the pole pattern:
Im
Case 3:Atwo sided Sequence.
a b c
Re
More on Rational z-Transform
Consider the rational z-transform
with the pole pattern:
Im
Case 4:Another two sided Sequence.
a b c
Re
The z-Transform
Important
z-Transform Pairs
Z-Transform Pairs
Sequence
(n)
(n  m)
ROC
All z
All z except 0 (if m>0)
or  (if m<0)
| z |1
u(n)
z-Transform
1
zm
1
1 z1
 u(n 1)
1
1 z1 | z |1
an
u(n)
1
| z || a |
 an
u(n 1)
1 az1
1
1 az1 | z || a |
Z-Transform Pairs
Sequence z-Transform ROC
| z |1
0
[cos n]u(n)
0
0
1[2cos ]z1
 z2
1[cos ]z1
0
[sin  n]u(n)
0
0
1[2cos ]z1
 z2
[sin  ]z1
| z |1
0
[rn
cos n]u(n)
0
0
1[2r cos ]z1
 r2
z2
1[r cos ]z1
| z | r
0
[rn
sin  n]u(n)
0
0
1[2r cos ]z1
 r2
z2
[r sin ]z1
| z | r

0  n  N 1
0 otherwise
an
1 aN
zN
1 az1
| z | 0
The z-Transform
Inverse z-Transform
Geometric Evaluation of FT from pole-
zero plot
z  z1
(z  p1)(z  p2 )
H(z) 
Example:
2
1
0
H(e
 p )
 p )(e
 z
0
)  1
j
(e j0
e j0
j
e j0
Re
 A LTI system is completely characterized by its
pole-zero pattern.
Im
z1
p1
p2
Determination of Frequency Response
from pole-zero pattern
z  z1
(z  p1)(z  p2 )
H(z) 
Example:
2
1
0
H(e
 p )
 p )(e
 z
0
)  1
j
(e j0
e j0
j
e j0
Re
 A LTI system is completely characterized by its
pole-zero pattern.
Im
z1
p1
p2
Determination of Frequency Response
from pole-zero pattern
e j0
Re
 A LTI system is completely characterized by its
pole-zero pattern.
Im
Example:
z1
p1
p2
|H(ej)| =
| |
| | | | 1
2
3
H(ej) = 1(2+ 3 )
The z-Transform
z-Transform Theorems
and Properties
Linearity
z  Rx
z  Ry
Z[x(n)]  X (z),
Z[y(n)] Y(z),
Z[ax(n) by(n)] aX(z) bY(z), z Rx  Ry
Overlay of
the above two
ROC’s
Time Shift
z  Rx
Z[x(n)]  X (z),
x
n
X (z) z  R
0
0
Z[x(n  n )] z
Multiplication by an Exponential
Sequence
Z[x(n)]  X (z), Rx- | z | Rx
x
Z[an
x(n)] X (a1
z) z | a |R
Differentiation of X(z)
Z[x(n)]  X (z), z  Rx
x
dz
Z[nx(n)] z
dX(z)
z  R
Conjugation
z  Rx
Z[x(n)]  X (z),
z  Rx
Z[x*(n)]  X *(z*)
Reversal
z  Rx
Z[x(n)]  X (z),
x
z 1/ R
Z[x(n)] X (z1
)
Real and Imaginary Parts
Z[x(n)]  X (z), z  Rx
z  Rx
zRx
[X (z)  X *(z*)]
Re[x(n)] 
Im[x(n)]
1
2
1
2 j
[X (z)  X *(z*)]
Initial Value Theorem
x(n)  0, for n  0
z
x(0)  lim X (z)
Convolution of Sequences
z  Rx
z  Ry
Z[x(n)]  X (z),
Z[y(n)]  Y(z),
z Rx  Ry
Z[x(n)* y(n)] X (z)Y(z)
Convolution of Sequences

x(n)* y(n)  x(k)y(n  k)
k
 

  n
n k
Z[x(n)* y(n)]    x(k)y(n  k)z
 
  x(k)  y(n  k)zn
k n
 X (z)Y (z)
 
  x(k)zk
 y(n)zn
k n
The z-Transform
System Function
Shift-Invariant System
x(n) y(n)=x(n)*h(n)
X(z) Y(z)=X(z)H(z)
h(n)
H(z)
Shift-Invariant System
H(z)
X(z) Y(z)
X (z)
H(z) 
Y(z)
Nth-Order Difference Equation
N M
ak y(n  k)  br x(n  r)
k0 r0
r
N M
k
b z
 r
r0
 k
k0
a z  X (z)
Y(z)

N
k
k
M
r
r a z
b z 
k0
r0
H(z) 
Representation in Factored Form

N
r
M
r
A

k1
1
1
(1 d z )
(1 c z )
H (z)  r1
Contributes poles at 0 and zeros at cr
Contributes zeros at 0 and poles at dr
Stable and Causal Systems

N
r
M
r
A

k1
1
1
(1 d z )
(1 c z )
H (z)  r1
Re
Causal Systems : ROC extends outward from the outermost pole.
Im
Stable and Causal Systems

N
r
M
r
A

k1
1
1
(1 d z )
(1 c z )
H (z)  r1
Re
Stable Systems : ROC includes the unit circle.
Im
1
Example
Consider the causal system characterized by
y(n)  ay(n 1)  x(n)
1
1 az1
H(z) 
Re
Im
1
a
h(n)  an
u(n)

More Related Content

Similar to Chapter 6 frequency domain transformation.pptx

Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z TransformAnujKumar734472
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Waqas Afzal
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transformKaransinh Parmar
 
09-Z_Transform_to_review.pptxsignal spectra signal processing
09-Z_Transform_to_review.pptxsignal spectra signal processing09-Z_Transform_to_review.pptxsignal spectra signal processing
09-Z_Transform_to_review.pptxsignal spectra signal processingJordanJohmMallillin
 
ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptAhmadZafar60
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Ha Phuong
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 

Similar to Chapter 6 frequency domain transformation.pptx (20)

Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
 
Signal3
Signal3Signal3
Signal3
 
1
11
1
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Ch3_Z-transform.pdf
Ch3_Z-transform.pdfCh3_Z-transform.pdf
Ch3_Z-transform.pdf
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z Transform
 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.ppt
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
ch3-4
ch3-4ch3-4
ch3-4
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transform
 
09-Z_Transform_to_review.pptxsignal spectra signal processing
09-Z_Transform_to_review.pptxsignal spectra signal processing09-Z_Transform_to_review.pptxsignal spectra signal processing
09-Z_Transform_to_review.pptxsignal spectra signal processing
 
ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.ppt
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
 
It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 

Chapter 6 frequency domain transformation.pptx

  • 2. Outline o Introduction o Z-Transform o Zeros and Poles o Region of Convergence o Inverse z-Transform o Geometric Evaluation of FT from P-Z plot o Z-Transform Theorems and Properties o System Function
  • 4. Why z-Transform?  A generalization of Fourier transform  Why generalize it? – FT does not converge on all sequence – Bring the complex variable theory deal with the discrete-time signals and systems
  • 6. Definition   The z-transform of sequence x(n) is defined by X (z)  x(n)zn n  Let z = ej.  X (e j )   x(n)e jn n Fourier Transform
  • 7. z-Plane Re Im z = ej  n  X (z)  x(n)zn  X (e j )   x(n)e jn n Fourier Transform is evaluating z-transform on a unit circle.
  • 9. Periodic Property of FT Re Im X(z)    X(ej)
  • 11. Definition  Give a sequence, the set of values of z for which the z-transform converges, i.e., |X(z)|<, is called the region of convergence.   | x(n) || z |n   n  | X (z) | x(n)zn n ROC is centered on origin and consists of a set of rings.
  • 12. Example: Region of Convergence Re   | x(n) || z |n   n  n Im | X (z) | x(n)zn ROC is an annual ring centered on the origin. Rx | z | Rx r ROC {z  rej | R  r  R } x x
  • 13. Stable Systems Re Im 1  A stable system requires that its Fourier transform is uniformly convergent.  Fact: Fourier transform is to evaluate z-transform on a unit circle.  A stable system requires the ROC of z-transform to include the unit circle.
  • 14. Example: A right sided Sequence x(n)  an u(n) -8 -7 -6 -5 -4 -3 -2 -1 n x(n) . . . 1 2 3 4 5 6 7 8 9 10
  • 15. Example: A right sided Sequence x(n)  an u(n)  X (z)  an u(n)zn n   an zn n0   (az1 )n n0 For convergence of X(z), we require that  | az1 |   n0 | az1 |1 | z || a |  1  z 1 az1 z  a  n0 1 n X (z)  (az ) | z || a |
  • 16. a a Example: A right sided Sequence ROC for x(n)=anu(n) , | z || a | z z  a X (z)  Re Im 1 a a Re Im 1 Which one is stable?
  • 17. Example: A left sided Sequence x(n)  an u(n 1) 1 2 3 4 5 6 7 8 9 10 -8 -7 -6 -5 -4 -3 -2 -1 n x(n)
  • 18. Example: A left sided Sequence x(n)  an u(n 1)  X (z)   an u(n 1)zn n For convergence of X(z), we require that  | a1 z |   n0 | a1 z |1 | z || a | z   1 1 a1 z z  a X (z) 1 (a1 z)n 1 n0 | z || a |   an zn n 1   an zn n1  1 an zn n0
  • 19. a a Example: A left sided Sequence ROC for x(n)=anu( n1) , | z || a | z z  a X (z)  Re Im 1 a a Re Im 1 Which one is stable?
  • 21. Represent z-transform as a Rational Function Q(z) X (z)  P(z) where P(z) and Q(z) are polynomials in z. Zeros: The values of z’s such that X(z) = 0 Poles: The values of z’s such that X(z) = 
  • 22. Example: A right sided Sequence x(n)  an u(n) , | z || a | X (z)  z  a z Re Im a ROC is bounded by the pole and is the exterior of a circle.
  • 23. Example: A left sided Sequence x(n)  an u(n 1) , | z || a | X (z)  z  a z Re Im a ROC is bounded by the pole and is the interior of a circle.
  • 24. Example: Sum of Two Right Sided Sequences x(n)  (1 )n u(n)  ( 1 )n u(n) 2 3 3 z  1 2 z  1  z z Re X (z)  Im 1/2 2 3  12 (z  1 )(z  1 ) 2z(z  1 ) 1/3 1/12 ROC is bounded by poles and is the exterior of a circle. ROC does not include any pole.
  • 25. Example: A Two Sided Sequence x(n)  ( 1 )n u(n) (1 )n u(n 1) 3 2 2 z  1 3 z  1  Re X (z)  Im 1/2 2 3  12 (z  1 )(z  1 ) z z 2z(z  1 ) 1/3 1/12 ROC is bounded by poles and is a ring. ROC does not include any pole.
  • 26. Example: A Finite Sequence n n 1 n N 1 N 1 n0 n0 x(n)  an , 0  n  N 1 X (z)  a z  (az ) Re Im ROC: 0 < z <  ROC does not include any pole. 1 (az1 )N  1 az z z  a  aN zN  1 N 1 1 N-1 poles N-1 zeros Always Stable
  • 27. Properties of ROC  A ring or disk in the z-plane centered at the origin.  The Fourier Transform of x(n) is converge absolutely iff the ROC includes the unit circle.  The ROC cannot include any poles  Finite Duration Sequences: The ROC is the entire z-plane except possibly z=0 or z=.  Right sided sequences: The ROC extends outward from the outermost finite pole in X(z) to z=.  Left sided sequences: The ROC extends inward from the innermost nonzero pole in X(z) to z=0.
  • 28. More on Rational z-Transform Re a b c Consider the rational z-transform with the pole pattern: Im Find the possible ROC’s
  • 29. More on Rational z-Transform Consider the rational z-transform with the pole pattern: Im Case 1:Aright sided Sequence. a b c Re
  • 30. More on Rational z-Transform Consider the rational z-transform with the pole pattern: Im Case 2:Aleft sided Sequence. a b c Re
  • 31. More on Rational z-Transform Consider the rational z-transform with the pole pattern: Im Case 3:Atwo sided Sequence. a b c Re
  • 32. More on Rational z-Transform Consider the rational z-transform with the pole pattern: Im Case 4:Another two sided Sequence. a b c Re
  • 34. Z-Transform Pairs Sequence (n) (n  m) ROC All z All z except 0 (if m>0) or  (if m<0) | z |1 u(n) z-Transform 1 zm 1 1 z1  u(n 1) 1 1 z1 | z |1 an u(n) 1 | z || a |  an u(n 1) 1 az1 1 1 az1 | z || a |
  • 35. Z-Transform Pairs Sequence z-Transform ROC | z |1 0 [cos n]u(n) 0 0 1[2cos ]z1  z2 1[cos ]z1 0 [sin  n]u(n) 0 0 1[2cos ]z1  z2 [sin  ]z1 | z |1 0 [rn cos n]u(n) 0 0 1[2r cos ]z1  r2 z2 1[r cos ]z1 | z | r 0 [rn sin  n]u(n) 0 0 1[2r cos ]z1  r2 z2 [r sin ]z1 | z | r  0  n  N 1 0 otherwise an 1 aN zN 1 az1 | z | 0
  • 37. Geometric Evaluation of FT from pole- zero plot z  z1 (z  p1)(z  p2 ) H(z)  Example: 2 1 0 H(e  p )  p )(e  z 0 )  1 j (e j0 e j0 j e j0 Re  A LTI system is completely characterized by its pole-zero pattern. Im z1 p1 p2
  • 38. Determination of Frequency Response from pole-zero pattern z  z1 (z  p1)(z  p2 ) H(z)  Example: 2 1 0 H(e  p )  p )(e  z 0 )  1 j (e j0 e j0 j e j0 Re  A LTI system is completely characterized by its pole-zero pattern. Im z1 p1 p2
  • 39. Determination of Frequency Response from pole-zero pattern e j0 Re  A LTI system is completely characterized by its pole-zero pattern. Im Example: z1 p1 p2 |H(ej)| = | | | | | | 1 2 3 H(ej) = 1(2+ 3 )
  • 41. Linearity z  Rx z  Ry Z[x(n)]  X (z), Z[y(n)] Y(z), Z[ax(n) by(n)] aX(z) bY(z), z Rx  Ry Overlay of the above two ROC’s
  • 42. Time Shift z  Rx Z[x(n)]  X (z), x n X (z) z  R 0 0 Z[x(n  n )] z
  • 43. Multiplication by an Exponential Sequence Z[x(n)]  X (z), Rx- | z | Rx x Z[an x(n)] X (a1 z) z | a |R
  • 44. Differentiation of X(z) Z[x(n)]  X (z), z  Rx x dz Z[nx(n)] z dX(z) z  R
  • 45. Conjugation z  Rx Z[x(n)]  X (z), z  Rx Z[x*(n)]  X *(z*)
  • 46. Reversal z  Rx Z[x(n)]  X (z), x z 1/ R Z[x(n)] X (z1 )
  • 47. Real and Imaginary Parts Z[x(n)]  X (z), z  Rx z  Rx zRx [X (z)  X *(z*)] Re[x(n)]  Im[x(n)] 1 2 1 2 j [X (z)  X *(z*)]
  • 48. Initial Value Theorem x(n)  0, for n  0 z x(0)  lim X (z)
  • 49. Convolution of Sequences z  Rx z  Ry Z[x(n)]  X (z), Z[y(n)]  Y(z), z Rx  Ry Z[x(n)* y(n)] X (z)Y(z)
  • 50. Convolution of Sequences  x(n)* y(n)  x(k)y(n  k) k      n n k Z[x(n)* y(n)]    x(k)y(n  k)z     x(k)  y(n  k)zn k n  X (z)Y (z)     x(k)zk  y(n)zn k n
  • 54. Nth-Order Difference Equation N M ak y(n  k)  br x(n  r) k0 r0 r N M k b z  r r0  k k0 a z  X (z) Y(z)  N k k M r r a z b z  k0 r0 H(z) 
  • 55. Representation in Factored Form  N r M r A  k1 1 1 (1 d z ) (1 c z ) H (z)  r1 Contributes poles at 0 and zeros at cr Contributes zeros at 0 and poles at dr
  • 56. Stable and Causal Systems  N r M r A  k1 1 1 (1 d z ) (1 c z ) H (z)  r1 Re Causal Systems : ROC extends outward from the outermost pole. Im
  • 57. Stable and Causal Systems  N r M r A  k1 1 1 (1 d z ) (1 c z ) H (z)  r1 Re Stable Systems : ROC includes the unit circle. Im 1
  • 58. Example Consider the causal system characterized by y(n)  ay(n 1)  x(n) 1 1 az1 H(z)  Re Im 1 a h(n)  an u(n)