Structural Analysis - III
Di t Stiff M th dDirect Stiffness Method
Dr. Rajesh K. N.
Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKNDept. of CE, GCE Kannur Dr.RajeshKN
1
Module IIIModule III
Direct stiffness method
• Introduction – element stiffness matrix – rotation transformation
Direct stiffness method
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of
nodal displacement and element forces – analysis of plane truss
beam and plane frame (with numerical examples) – analysis of
grid space frame (without numerical examples)grid – space frame (without numerical examples)
Dept. of CE, GCE Kannur Dr.RajeshKN
2
Introduction
• The formalised stiffness method involves evaluating the
displacement transformation matrix CMJ correctlyp y
• Generation of matrix CMJ is not suitable for computer
programming
H th l ti f di t tiff th d• Hence the evolution of direct stiffness method
Dept. of CE, GCE Kannur Dr.RajeshKN
3
Direct stiffness method
• We need to simplify the assembling process of SJ , theJ
assembled structure stiffness matrix
• The key to this is to use member stiffness matrices for actionsThe key to this is to use member stiffness matrices for actions
and displacements at BOTH ends of each member
If b di l d i h f• If member displacements are expressed with reference to
global co-ordinates, the process of assembling SJ can be made
simplesimple
Dept. of CE, GCE Kannur Dr.RajeshKN
4
Member oriented axes (local coordinates)
d t t i t d ( l b l di t )and structure oriented axes (global coordinates)
Lδ
x
y
L
Local axes
LδL
Lδ
sinLδ θ
Lδ θ
x
YYYY
cosLδ θ
θ
Global axes yGlobal axesGlobal axes
θ
XXXX
Dept. of CE, GCE Kannur Dr.RajeshKN
Global axes
1. Plane truss member
Stiffness coefficients in local coordinates
1
3
2 4
y
0 0
Degrees of freedom
1
⎛ ⎞
⎜ ⎟
Unit displacement
xEA
L
EA
L
⎜ ⎟
⎝ ⎠corr. to DOF 1
0 0
EA EA⎡ ⎤
−⎢ ⎥
[ ]
0 0
0 0 0 0
0 0
M
L L
S
EA EA
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥
=
Member stiffness matrix in local
coordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
0 0 0 0
L L
⎢ ⎥
⎢
⎢⎣ ⎦
⎥
⎥
Transformation of displacement vector
θ
Displacements in global
22 2 cosU D θ=
p g
coordinates: U1 and U2
Displacements in local
di D d D2D
DY iU D θ
12 2 sinU D θ= − θ
1 11 12 1 2cos sinU U U D Dθ θ= + = −
coordinates: D1 and D2
1DY
11 1 cosU D θ=
21 1 sinU D θ=
2 21 22 1 2sin cosU U U D Dθ θ= + = +
1 1cos sinU Dθ θ−⎧ ⎫ ⎧ ⎫⎡ ⎤
⎧ ⎫ ⎧ ⎫⎡ ⎤
1 1
2 2
cos sin
sin cos
U D
U D
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
X 1 1
2 2
cos sin
sin cos
D U
D U
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
∴ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } [ ]{ }D R U=
C id i b th d
⎧ ⎫ ⎧ ⎫
Considering both ends,
1 1
2 2
cos sin 0 0
sin cos 0 0
0 0 i
D U
D U
D U
θ θ
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥3 3
4 4
0 0 cos sin
0 0 sin cos
D U
D U
θ θ
θ θ
⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALD R D=
[ ] [ ]R O⎡ ⎤
[ ]
[ ] [ ]
[ ] [ ]T
R O
R
O R
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Rotation matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of load vector Actions in global
θ
coordinates:
F1 and F2
22 2 cosF A θ= 1 11 12 1 2cos sinF F F A Aθ θ= + = −
22 2
12 2 sinF A θ= − θ 2A 2 21 22 1 2sin cosF F F A Aθ θ= + = +
Y
11 1 cosF A θ=
21 1 sinF A θ=1A 1 1
2 2
cos sin
sin cos
F A
F A
θ θ
θ θ
−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
11 1
1 1cos sinA Fθ θ⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
X
2 2sin cosA Fθ θ
⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }A R F=
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } [ ]{ }A R F=
C id i b th dConsidering both ends,
1 1
2 2
cos sin 0 0
sin cos 0 0
A F
A F
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
3 3
4 4
0 0 cos sin
0 0 sin cos
A F
A F
θ θ
θ θ
⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALi.e., A R A=
Dept. of CE, GCE Kannur Dr.RajeshKN
10
Transformation of stiffness matrix
{ } [ ]{ }LOCAL M LOCALA S D=
[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBALR A S R D=
{ } [ ] [ ][ ]{ }
1
GLOBAL T M T GLOBALA R S R D
−
=
[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBAL
[ ] [ ]1 T
R R
−{ } [ ] [ ][ ]{ }GLOBAL T M T GLOBAL
{ } [ ]{ }A S D
[ ] [ ]T TR R=
{ } [ ]{ }GLOBAL MS GLOBALA S D=
[ ] [ ] [ ][ ]
T
MS T M TS R S R=where,
Member stiffness matrix in
global coordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ] [ ] [ ][ ]
T
S R S R=
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
[ ] [ ] [ ][ ]MS T M TS R S R=
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
T
c s c s
s c s cEA
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
c s c sL
s c s c
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
2 2
c cs c cs⎡ ⎤− −
⎢ ⎥ M b tiff t i2 2
2 2
cs s cs sEA
L c cs c cs
⎢ ⎥
− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
Member stiffness matrix
in global coordinates
for a plane truss member
2 2
cs s cs s
⎢ ⎥
− −⎣ ⎦
p
Dept. of CE, GCE Kannur Dr.RajeshKN
12
2. Plane frame member
Stiffness coefficients in local coordinates
2 52
4
5
Degrees of freedom0 0 0 0
EA EA⎡ ⎤
1
3
4
6
Degrees of freedom
3 2 3 2
0 0 0 0
12 6 12 6
0 0
L L
EI EI EI EI
L L L L
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
[ ]
2 2
6 4 6 2
0 0
0 0 0 0
Mi
EI EI EI EI
L L L L
S
EA EA
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
Member stiffness matrix
in local coordinates
3 2 3 2
0 0 0 0
12 6 12 6
0 0
L L
EI EI EI EI
L L L L
−⎢ ⎥
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2
6 2 6 4
0 0
EI EI EI EI
L L L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦
Transformation of displacement vector
1 1
2 2
cos sin 0 0 0 0
sin cos 0 0 0 0
D U
D U
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥
3 3
4 4
0 0 1 0 0 0
0 0 0 cos sin 0
D U
D Uθ θ
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥5 5
6 6
0 0 0 sin cos 0
0 0 0 0 0 1
D U
D U
θ θ⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALD R D=
[ ] [ ]R O⎡ ⎤
{ } [ ]{ }LOCAL T GLOBAL
[ ]
[ ] [ ]
[ ] [ ]T
R O
R
O R
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Rotation matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of load vector
{ } [ ]{ }LOCAL T GLOBALA R A={ } [ ]{ }
cos sin 0 0 0 0θ θ⎡ ⎤
⎢ ⎥
[ ]
sin cos 0 0 0 0
0 0 1 0 0 0
R
θ θ⎢ ⎥−
⎢ ⎥
⎢ ⎥
= ⎢ ⎥[ ]
0 0 0 cos sin 0
0 0 0 sin cos 0
TR
θ θ
θ θ
= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
0 0 0 0 0 1
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of stiffness matrix
{ } [ ]{ }GLOBAL MS GLOBALA S D=
[ ] [ ] [ ][ ]T
MS T M TS R S R= Member stiffness matrix in
global coordinatesglobal coordinates
EA EA⎡ ⎤
0 0 0 0
0 0 0 0
c s
s c
⎡ ⎤
⎢ ⎥−
⎢ ⎥
3 2 3 2
0 0 0 0
12 6 12 6
0 0
EA EA
L L
EI EI EI EI
L L L L
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
[ ]
0 0 1 0 0 0
0 0 0 0
0 0 0 0
T
c s
s c
R
⎢ ⎥
⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
[ ]
2 2
6 4 6 2
0 0
0 0 0 0
M
EI EI EI EI
L L L LS
EA EA
L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
Where,
,
0 0 0 0 0 1
⎢ ⎥
⎣ ⎦
3 2 3 2
12 6 12 6
0 0
6 2 6 4
0 0
L L
EI EI EI EI
L L L L
EI EI EI EI
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2
0 0
L L L L
⎢ ⎥−
⎢ ⎥⎣ ⎦
Assembling global stiffness matrixg g
Plane truss
2
Force
21
3
31
3
2 4
1
3
Action/displacement components in
local coordinates of members
Dept. of CE, GCE Kannur Dr.RajeshKN
4 4
3
4
3
4
2
6
1 56
2
51
4
3
Action/displacement components in
2
5
6
Action/displacement components in
global coordinates of the structure
Dept. of CE, GCE Kannur Dr.RajeshKN
1 5
1 2 3 4
Global DOF
11 12 13 14
1 1 1 1
21 22 23 24
2 2
2 2
1
2
M M M M
s s s s
s s s s
c cs c cs
cs s cs sEA
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
1 2 3 4
[ ] 1 1 1 1
31 32 33 34
1 1 1 1
41 42 43 44
1 2 2
2 2
2
3
4
M M M M
M M M M
M
s s s s
s s s s
cs s cs sEA
S
c cs c csL
− −
⎢ ⎥ ⎢ ⎥= =
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦
41 42 43 44
1 1 1 1
2 2
4M M M M
s s s scs s cs s
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦
1 2 3 4 5 6
1
2
× × × ×⎡ ⎤
⎢ ⎥× × × ×
⎢ ⎥ C t ib ti f
[ ]
2
3
4
JS
× × × ×
⎢ ⎥
× × × ×⎢ ⎥
= ⎢ ⎥
Contribution of
Member 1 to global
stiffness matrix[ ]
4
5
J ⎢ ⎥
× × × ×⎢ ⎥
⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
⎣ ⎦
3 4 5 6
Global DOF
11 12 13 14
2 2 2 2
21 22 23 24
3
4
M M M M
s s s s
s s s s
⎡ ⎤
⎢ ⎥
⎢ ⎥
3 4 5 6
[ ] 2 2
2
2 2
31 32 33 34
2 2 2 2
41 42 43 44
4
5
6
M M M M
M M M
M
M
s s s s
s s s s
s s s s
S = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦2 2 2 2
6M M M M
s s s s⎣ ⎦
1 2 3 4 5 6
1
2
⎡ ⎤
⎢ ⎥
⎢ ⎥ C t ib ti f
[ ]
2
3
4
JS
⎢ ⎥
× × × ×⎢ ⎥
= ⎢ ⎥
× × × ×⎢ ⎥
Contribution of
Member 2 to global
stiffness matrix
4
5
6
× × × ×⎢ ⎥
⎢ ⎥× × × ×
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
× × × ×⎣ ⎦
11 12 13 14
1⎡ ⎤
1 2 5 6
Global DOF
[ ]
11 12 13 14
3 3 3 3
21 22 23 24
3 3 3 3
1
2
M M M M
M M M M
s s s s
s s s s
S
⎡ ⎤
⎢ ⎥
⎢ ⎥[ ] 3 3
3
3 3
31 32 33 34
3 3 3 3
41 42 43 44
5
6
M M M M
M M M
M
M
s s s s
S = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
41 42 43 44
3 3 3 3
6M M M M
s s s s
⎢ ⎥
⎣ ⎦
1 2 3 4 5 6
1
2
× × × ×⎡ ⎤
⎢ ⎥
1 2 3 4 5 6
[ ]
2
3
JS
⎢ ⎥× × × ×
⎢ ⎥
⎢ ⎥
= ⎢ ⎥
Contribution of
Member 3 to global
stiffness matrix[ ]
4
5
JS ⎢ ⎥
⎢ ⎥
⎢ ⎥× × × ×
⎢ ⎥
stiffness matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
× × × ×⎣ ⎦
Assembled global stiffness matrix
11 12 13 1411 12 13 14
s s s ss s s s+ + 1⎡ ⎤
1 2 3 4 5 6
1 1 1 1
21 22 23 24
1 1 1 1
3 3 3 3
21 22 23 24
3 3 3 3
M M M M
M M M M
M M M M
M M M M
s s s s
s s s s
s s s s
s s s s
+ +
+ +
1
2
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
31 32 3 11 12 13 14
2 2 2 2
21 22 23 24
3 34
1 1 1 1
41 42 43 44
M M M MM M M M
J
s s s s
s s s s
s s s s
s
S
ss s
+ +
=
+ +
3
4
⎢ ⎥
⎢ ⎥
⎢ ⎥
31 3
2 2 2 2
31 32 33
1 1
2
2
1 1
23 3 32
M M M M
M MM M
M M M M
MM
s s
s s s s
s s
s s
s
s s
s
+ +
+
34
2
33 34
3
4
5MM
ss +
⎢ ⎥
⎢ ⎥
⎢ ⎥41 42 43 44
2
41 42 43 44
3 2 23 32 3
6M M M MM M M M
s s s ss s s s+ +
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Imposing boundary conditions 2
p g y
Plane truss example
21
1
2
0U U U U= = = =Boundary conditions are:
3
3
11 2 5 6
0U U U UBoundary conditions are:
{ }GLOBALD
11 12 13 1411 12 13 14
s s s ssF s s s+ +⎧ ⎫ U⎧ ⎫⎡ ⎤
{ }GLOBALD
3 3 3 31 1 1 1
2 21 221 22 23 24
1 1 1 1
23 24
1
2 3 3 3 3
M MM M M M
M M M M
M M
M M M M
s s s s
s s s s
sF
F
s s s
s s s s
+ +
+ +
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
1
2
U
U
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥11 12 13 14
2 2 2 2
21 22 23 24
2
31 32 33 34
1 1 1 1
41 42 43 44
1
3
1 1 1 24 2 2
M M M M M M M
M M M
M
M M M M M
s s s s
s s s
s s s s
s s s s
F
F s
+ +
=
+ +
⎪ ⎪
⎨ ⎬
⎪ ⎪ 4
3
U
U
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥21 1 1 1 24
5
2 2M M MM M M M M
F
F
s
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭
31 32 33 34
2 2 2 2
41 42 43 44
31 32 33 34
3 3 3 3
41 42 43 44
4
5M M M MM M M M
s ss s s s s U
U
+ +
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎣ ⎦⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
6
F⎩ ⎭
41 42 43 44
2 2 2 2
41 42 43 44
3 3 3 3 6M MM M M MM M
ss s s s ss s U+ +⎣ ⎦⎩ ⎭
Reduced equation systemq y
(after imposing boundary conditions)
33 34
1 1
43 44
11 12
2 2
21 22
3 3MM M M
F U
F U
s ss s+ +⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭1 2 1 24 4M MM M
F Us sss⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭
•This reduced equation system can be solved to get the unknown
displacement components 3 4
,U U
{ } [ ]{ }LOCAL T GLOBALD R D=•From
{ }LOCALD can be found out.
{ } { }D D=F h b
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } { }LOCAL MiD D=•For each member,
{ } { } [ ]{ }A A S D{ } { } [ ]{ }Mi MLi Mi MiA A S D= +Member end actions
Where,
Fixed end actions on the member,{ }MLiA
Member stiffness matrix,[ ]MiS
[ ]
in local
coordinates
Displacement components of the member,[ ]MiD
{ } { } [ ]{ }LOCAL T GLOBALMi D R DD ==As we know,
{ } { } [ ][ ]{ }i i iM ML M i iT GLOBALA A S R D∴ = +
Dept. of CE, GCE Kannur Dr.RajeshKN
25
Direct Stiffness Method: Procedure
STEP 1: Get member stiffness matrices for all members [ ]MiS
STEP 2: Get rotation matrices for all members
[ ]TiR
STEP 3: Transform member stiffness matrices from local coordinates
into global coordinates to get [ ]MSiS[ ]MSi
STEP 4: Assemble global stiffness matrix [ ]JS
STEP 5: Impose boundary conditions to get the reduced stiffness
matrix [ ]S[ ]FFS
Dept. of CE, GCE Kannur Dr.RajeshKN
26
STEP 6: Find equivalent joint loads from applied loads on eachq j pp
member (loads other than those applied at joints directly)
STEP 7 T f b ti f l l di t i t l b lSTEP 7: Transform member actions from local coordinates into global
coordinates to get the transformed load vector
STEP 8: Find combined load vector by adding the above
transformed load vector and the loads applied directly at joints
[ ]CA
STEP 9: Find the reduced load vector by removing members in
h l d di b d di i
[ ]FCA
the load vector corresponding to boundary conditions
STEP 10: Get displacement components of the structure in global
coordinates { } [ ] { }
1
F FF FCD S A
−
=
Dept. of CE, GCE Kannur Dr.RajeshKN
27
{ } [ ]{ }LOCAL T GLOBALD R D=
STEP 11: Get displacement components of each member in local
coordinates
STEP 12: Get member end actions from
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
{ } { } [ ][ ]R RC RF FA A S D= − +STEP 13: Get reactions from
{ }RCA represents combined joint loads (actual and
equivalent) applied directly to the supports.q ) pp y pp
Dept. of CE, GCE Kannur Dr.RajeshKN
28
• Problem 1:
1 Member stiffness matrices in local co ordinates
1EA ⎡ ⎤⎡ ⎤
1. Member stiffness matrices in local co-ordinates
(without considering restraint DOF)
[ ]1
1
00
1.155
0 0 0 0
M
EA
S L
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦0 0 0 0⎣ ⎦ ⎣ ⎦
[ ]
1 0⎡ ⎤
[ ]
1 2 0⎡ ⎤
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]2
1 0
0 0
MS
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
[ ]3
1 2 0
0 0MS
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
2. Rotation (transformation) matrices
[ ]1
cos sin 0.5 0.866
i 0 866 0 5
TR
θ θ
θ θ
−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
[ ]1
60 sin cos 0.866 0.5
T
θ θ θ=−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
[ ]2
90
0 1
1 0
TR
θ
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦90 1 0θ =− ⎣ ⎦
[ ]3
150
0.866 0.5
0.5 0.866
TR
θ =−
− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
30
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
0.5 0.866 1 0 0.5 0.8661
0 866 0 5 0 0 0 866 0 51 155
T
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦0.866 0.5 0 0 0.866 0.51.155⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 216 0 375−⎡ ⎤0.216 0.375
0.375 0.649
−⎡ ⎤
= ⎢ ⎥−⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]2
0 1 1 0 0 1
1 0 0 0 1 0
T
MSS
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 0⎡ ⎤
= ⎢ ⎥0 1
= ⎢ ⎥
⎣ ⎦
[ ]3
0.866 0.5 1 0 0.866 0.51
0 5 0 866 0 0 0 5 0 8662
T
MSS
− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
[ ]3
0.5 0.866 0 0 0.5 0.8662
MS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0.375 0.217⎡ ⎤
⎢ ⎥0.217 0.125
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
32
4. Global stiffness matrix
0 216 0 0 375 0 375 0 0 217⎡ ⎤
(by assembling transformed member stiffness matrices)
[ ]
0.216 0 0.375 0.375 0 0.217
0.375 0 0.217 0.649 1 0.125
FFS
+ + − + +⎡ ⎤
= ⎢ ⎥− + + + +⎣ ⎦
0.591 0.158
0 158 1 774
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦0.158 1.774⎢ ⎥−⎣ ⎦
This is the reduced global stiffness matrix, since restraint DOF
were not considered. Hence, boundary conditions are
automatically incorporatedautomatically incorporated.
Dept. of CE, GCE Kannur Dr.RajeshKN
5. Loads
{ }
0
5
FCA
⎧ ⎫
= ⎨ ⎬
−⎩ ⎭
6. Joint displacements6. Joint displacements
0 772⎧ ⎫
{ } [ ] { }
1
F FF FCD S A
−
=
0.772
2.89
−⎧ ⎫
= ⎨ ⎬
−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
34
7. Member forces
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
Member 1
{ } { } [ ][ ]{ }
{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + [ ][ ]{ }1 1 1T GLOBALM R DS=
1
0.5 0.8660
1 155
0.772⎡ ⎤ −⎡ ⎤⎢ ⎥= ⎢ ⎥⎢
−⎧
⎥
⎫
⎨ ⎬
1.833
=
⎧ ⎫
⎨ ⎬1.155
0.866 0.5
0 0
2.89⎢ ⎥⎢ ⎥ ⎣ ⎦
⎣ ⎦
⎨ ⎬
−⎩ ⎭ 0
⎨ ⎬
⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
35
{ } [ ][ ]{ }R DA SM b 2 { } [ ][ ]{ }2 2 2 2T GLOBALM M R DA S=Member 2
0.772
2
1 0 0 1
0 0 1 0 .89
−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦
−⎧ ⎫
⎨
⎦ −⎩⎣
⎬
⎭
2.89
0
⎧
=
⎫
⎨ ⎬
⎩ ⎭
Member 3
{ } [ ][ ]{ }3 3 3 3T GLOBALM M R DA S=
1 2 0 0.866 0.5
0 0 0.5 0.866
0.772
2.89
− −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦
−⎧ ⎫
⎨
⎣ ⎦
⎬
−⎩ ⎭
1.057
0
=
⎧ ⎫
⎨ ⎬
⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
36
• Problem 2 :
10kN m
5
4
8
4m
0kN m
C
B
20kN 2
4
6
7
94m
1
9
4m 1
2
A EI is constant.
1
2
3
Displacements in
global co-ordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
37
global co ordinates
2 5
6
9 2
1
4
3 6
4
6
2
6
9 2
5
1 1
Ki ti 1Kinematic
indeterminacy
DOF in local co-
ordinates
1
2
33
Dept. of CE, GCE Kannur Dr.RajeshKN
38
0 0 0 0
12 6 12 6
EA EA
L L
EI EI EI EI
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥
3 2 3 2
2 2
12 6 12 6
0 0
6 4 6 2
0 0
EI EI EI EI
L L L L
EI EI EI EI
L L L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
Member stiffness matrix
[ ]
0 0 0 0
12 6 12 6
Mi
L L L LS
EA EA
L L
EI EI EI EI
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
of a 2D frame member in
local coordinates
3 2 3 2
2 2
12 6 12 6
0 0
6 2 6 4
0 0
EI EI EI EI
L L L L
EI EI EI EI
L L L L
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦L L L L⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
39
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)
6Local DOFMember 1
(without considering restraint DOF)
[ ] 4EI
S ⎡ ⎤=
⎢ ⎥ [ ]1EI EI= =
6Global DOF
[ ]1MS
L
=
⎢ ⎥⎣ ⎦
[ ]1EI EI
Member 2
6 9Global DOF
3 6Local DOF
Member 2
[ ]
4 2EI EI
L LS
⎡ ⎤
⎢ ⎥
⎢ ⎥
6 9Global DOF
0.5EI EI⎡ ⎤
[ ]2
2 4
M
L LS
EI EI
L L
= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
0.5EI EI
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
40
2. Rotation (transformation) matrices
In this case, transformation matrices are:
[ ] [ ]1 1TR = corresponding to local DOF 6
[ ]2
1 0
0 1
TR
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
corresponding to local DOFs 3 & 6
⎣ ⎦
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ]1MSS EI= [ ]2
0.5
0.5
MS
EI EI
S
EI EI
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
⎣ ⎦
4 A bl d ( d d d) l b l tiff t i
6 9Gl b l DOF
4. Assembled (and reduced) global stiffness matrix
[ ]
0.5EI EI
S
IE⎡ + ⎤
= ⎢ ⎥
6 9Global DOF
2 0.5
EI
⎡ ⎤
= ⎢ ⎥[ ]
0.5FFS
EI EI
= ⎢ ⎥
⎣ ⎦ 0.5 1
EI= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
5. Loads
20
13.33 13.33
B
C
20
13.33 20
13.33B
C20
B
20 20
C C20
Fi d d ti A
Combined (Eqlt.+
actual) joint loads
A
Fixed end actions A (Loads in global
co-ordinates)
{ }
13.33
13 33FCA
−⎧ ⎫
= ⎨ ⎬
⎩ ⎭
Loads corresponding to global DOF 6, 9:
Dept. of CE, GCE Kannur Dr.RajeshKN
43
{ }
13.33FC ⎨ ⎬
⎩ ⎭
Loads corresponding to global DOF 6, 9:
6 Joint displacements
11 431 ⎧ ⎫
6. Joint displacements
{ } [ ] { }
1
F FF FCD S A
−
=
11.43
19.04
1
EI
−⎧
=
⎫
⎨ ⎬
⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
44
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
: fixed end actions for member i{ }MLiA
Member 1
{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= +
{ } [ ]{ }DA S { } { }
4 1
0 11 43
EI⎡ ⎤
{ } [ ]{ }1 1 1ML M GLOBALDA S= + { } { }0 11.43
11.43
L EI
⎡ ⎤
= + −⎢ ⎥⎣ ⎦
= −
This is the member end action corresponding to local DOF 6
f M b 1 i b d h d f
Dept. of CE, GCE Kannur Dr.RajeshKN
45
of Member 1. i.e., member end moment at the top edge of
Member 1.
Member 2
{ } { } [ ]{ }2 2 2 2M ML M GLOBALA A DS= +
Member 2
13.33 11.43
13.33 1
0.5
9.04
1
0.5
EI EI
EI EI EI
−⎧ ⎫ ⎧ ⎫
+
⎡ ⎤
= ⎢ ⎥
⎣
⎨ ⎬ ⎨
−⎩ ⎭ ⎩⎦
⎬
⎭
13.33 1.91−⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨= ⎬
11.42
=
⎧ ⎫
⎨ ⎬
Th th b ti di t l l DOF 3
13.33 13.325
+⎨ ⎬ ⎨
⎩ ⎭
⎬
− ⎩ ⎭ 0
⎨ ⎬
⎩ ⎭
These are the member actions corresponding to local DOFs 3
and 6 of Member 2. i.e., member end moments of Member 2.
Dept. of CE, GCE Kannur Dr.RajeshKN
46
11.43
0B 0B
C
11.43
Member end moments
A
Dept. of CE, GCE Kannur Dr.RajeshKN
47
• Problem 3 :
10 kips0.24 kips/in.
20 kips
1000 kips-in
75 in
100 in 50 in 50 in100 in 50 in 50 in
Dept. of CE, GCE Kannur Dr.RajeshKN
48
2 5
1
3
4
6
8
7
9
8
Global DOF
7
Dept. of CE, GCE Kannur Dr.RajeshKN
49
21
3
5
6Local DOF
4
6Local DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
50
4
Free DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
51
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)(without considering restraint DOF)
0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
1000 0 0⎡ ⎤
⎢ ⎥[ ]1 3 2
12 6
0
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−
5
0 120 6000
0 6000 4 10
⎢ ⎥= −
⎢ ⎥
− ×⎢ ⎥⎣ ⎦
2
0
L L
⎢ ⎥−
⎣ ⎦
0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
800 0 0⎡ ⎤
⎢ ⎥
[ ]2 3 2
12 6
0
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
5
0 61.44 3840
0 3840 3.2 10
⎢ ⎥=
⎢ ⎥
×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
52
2
0
L L
⎢ ⎥
⎣ ⎦
2. Rotation (transformation) matrices
[ ]
cos sin 0
i 0R
⎡ ⎤
⎢ ⎥
θ θ
θ θ[ ] sin cos 0
0 0 1
TR ⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦
θ θ
Member 1
Member 2
[ ]2
0.8 0.6 0
0.6 0.8 0R
−⎡ ⎤
⎢ ⎥=
⎢ ⎥[ ]1
1 0 0
0 1 0R
⎡ ⎤
⎢ ⎥=
⎢ ⎥
[ ]
0 0 1
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]1
0 0 1
⎢ ⎥
⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
53
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
1 0 0 1000 0 0 1 0 0
0 1 0 0 120 6000 0 1 0
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
5
0 1 0 0 120 6000 0 1 0
0 0 1 0 6000 4 10 0 0 1
= −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
5
1000 0 0
0 120 6000
⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎢ ⎥5
0 6000 4 10− ×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
54
[ ]
0.8 0.6 0 800 0 0 0.8 0.6 0
0 6 0 8 0 0 61 44 3840 0 6 0 8 0
T
S
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
[ ]2
5
0.6 0.8 0 0 61.44 3840 0.6 0.8 0
0 0 1 0 3840 3.2 10 0 0 1
MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0.8 0.6 0 640 480 0
0 6 0 8 0 36 86 49 15 3840
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
5
0.6 0.8 0 36.86 49.15 3840
0 0 1 2304 3072 3.2 10
= −
⎢ ⎥ ⎢ ⎥
×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
534.12 354.51 2304
354 51 327 32 3072
−⎡ ⎤
⎢ ⎥= −
⎢ ⎥
5
354.51 327.32 3072
2304 3072 3.2 10
⎢ ⎥
×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
4. Assembled (reduced) global stiffness matrix
1000 534.12 0 354.51 0 2304+ − +⎡ ⎤
. sse b ed ( educed) g oba st ess at x
[ ]
5 5
0 354.51 120 327.32 6000 3072
0 2304 6000 3072 4 10 3.2 10
FFS
⎡ ⎤
⎢ ⎥= − + − +
⎢ ⎥
+ − + × + ×⎢ ⎥⎣ ⎦0 2304 6000 3072 4 10 3.2 10+ + × + ×⎢ ⎥⎣ ⎦
1534 12 354 51 2304⎡ ⎤
5
1534.12 354.51 2304
354.51 447.32 2928
−⎡ ⎤
⎢ ⎥− −
⎢
⎢
=
⎥
⎥5
2304 2928 7.2 10− ×⎢⎣ ⎦⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
56
5. Loads
⎧ ⎫
{ }
0
10JA
⎧ ⎫
⎪ ⎪
= −⎨ ⎬
⎪ ⎪
Actual joint loads
1000⎪ ⎪−⎩ ⎭
{ }
0
22A
⎧ ⎫
⎪ ⎪
⎨ ⎬Equivalent joint loads { } 22
50
EA = −⎨ ⎬
⎪ ⎪−⎩ ⎭
Equivalent joint loads
0⎧ ⎫
⎪ ⎪
{ } { } { } 32
1050
FC J EA A A
⎪ ⎪
= + = −⎨ ⎬
⎪ ⎪−⎩ ⎭
Hence, combined joint loads
Dept. of CE, GCE Kannur Dr.RajeshKN
⎩ ⎭
6. Joint displacements
{ } [ ] { }
1
F FF FCD S A
−
={ } [ ] { }F FF FCD S A
1
{ }
1
1534.12 354.51 2304 0
354.51 447.32 2928 32FD
−
− ⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥∴ = − − −⎨ ⎬⎢ ⎥
⎪ ⎪5
2304 2928 7.2 10 1050
⎢ ⎥
⎪ ⎪− × −⎢ ⎥ ⎩ ⎭⎣ ⎦
0.0206
0.09936
−⎧ ⎫
⎪ ⎪
= −⎨ ⎬0.09936
0.001797
⎨ ⎬
⎪ ⎪−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
1000 0 0 1 0 0 0.0206⎡ ⎤ ⎡ ⎤ −⎧ ⎫
⎪ ⎪
{ }
5
0 120 6000 0 1 0 0.0993
0 6000 4 10 0
6
0 1 0.001797
MLiA
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + −
⎢ ⎥ ⎢ ⎥
− ×⎢ ⎥ ⎢ ⎥
⎧ ⎫
⎪ ⎪
−⎨
⎣ ⎦ ⎣
⎪
⎩⎦
⎬
⎪− ⎭0 6000 4 10 0 0 1 0.001797⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎩⎦ ⎭
8. Reactions
{ } { } [ ][ ]R RC RF FA A S D= − +
Dept. of CE, GCE Kannur Dr.RajeshKN
• Problem 4:
20kN/
6m2m2m
40kN
20kN/m
16kNm
2m
80kN
2m
I1=I3=
I2=I2
A1=A3=
Dept. of CE, GCE Kannur Dr.RajeshKN
60
A2=
1 2 31 2 3
4
C ti itConnectivity:
Member Node 1 Node 2
1 1 2
2 2 3
3 2 4
Dept. of CE, GCE Kannur Dr.RajeshKN
61
3 2 4
46
5
46
Free DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
62
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)(without considering restraint DOF)
5
0 0
3.5 10 0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]1 3 2
12 6
0 0 6562.5 13125
0 13125 35000
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= − = −⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎣ ⎦
⎢ ⎥− 2
0
L L
⎢ ⎥
⎣ ⎦
⎡ ⎤
[ ]
5
0 0
3.5 10 0 0
12 6
X
Z Z
EA
L
EI EI
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]2 3 2
2
12 6
0 0 3888.89 11666.67
0 11666.67 46666.67
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
63
2
L L
⎢ ⎥
⎣ ⎦
⎡ ⎤
[ ]
5
0 0
3.5 10 0 0
12 6
0 0 6 62 1312
X
Z Z
EA
L
EI EI
S
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]3 3 2
2
12 6
0 0 6562.5 13125
0 13125 35000
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦
2
L L
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
64
2. Rotation (transformation) matrices
0 1 0−⎡ ⎤1 0 0⎡ ⎤
1 0 0⎡ ⎤
[ ]3
90
0 1 0
1 0 0
0 0 1
R
θ =−
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]1
0
1 0 0
0 1 0
0 0 1
R
θ =
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]2
0
0 1 0
0 0 1
R
θ =
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
Member 1
0 0 1⎢ ⎥⎣ ⎦
Member 2
0 0 1⎢ ⎥⎣ ⎦
Member 3
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
65
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
5
3.5 10 0 0
0 6562.5 13125
⎡ ⎤×
⎢ ⎥
= −⎢ ⎥
0 13125 35000
⎢ ⎥
⎢ ⎥−⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
66
5T
⎡ ⎤⎡ ⎤ ⎡ ⎤
[ ]
5
2
1 0 0 3.5 10 0 0 1 0 0
0 1 0 0 3888.89 11666.67 0 1 0
T
MSS
⎡ ⎤×⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 1 0 11666.67 46666.67 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
5
3.5 10 0 0
0 3888.89 11666.67
⎡ ⎤×
⎢ ⎥
= ⎢ ⎥
0 11666.67 46666.67
⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
67
[ ]
5
3
0 1 0 3.5 10 0 0 0 1 0
1 0 0 0 6562.5 13125 1 0 0
T
MSS
⎡ ⎤− × −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
0 0 1 0 13125 35000 0 0 1
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
5
0 1 0 0 3.5 10 0
1 0 0 6562 5 0 13125
⎡ ⎤− ×⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥1 0 0 6562.5 0 13125
0 0 1 13125 0 35000
⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
6562.5 0 13125⎡ ⎤
⎢ ⎥5
0 3.5 10 0
13125 0 35000
⎢ ⎥= ×
⎢ ⎥
⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
68
⎣ ⎦
4. Assembled (and reduced) global stiffness matrix. sse b ed (a d educed) g oba st ess at x
5 5
3.5 10 3.5 10 6562.5 0 0 0 0 0 13125⎡ ⎤× + × + + + + +
⎢ ⎥
[ ] 5
0 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0
0 0 13125 13125 11666.67 0 35000 46666.67 35000
FFS
⎢ ⎥
= + + + + × − + +⎢ ⎥
⎢ ⎥+ + − + + + +⎣ ⎦
706562 5 0 13125⎡ ⎤706562.5 0 13125
0 360451.39 1458.33
⎡ ⎤
⎢ ⎥= −
⎢ ⎥
13125 1458.33 116666.67
⎢ ⎥
−⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
60
5. Loads
20
20 kNm 60 60
2020
60
60
40
4040
40
Fixed end actions
Dept. of CE, GCE Kannur Dr.RajeshKN
7040
Fixed end actions
80kN
0+16=16 kNm0 16 16 kNm
40kN
Combined (equivalent + actual) joint loads
Dept. of CE, GCE Kannur Dr.RajeshKN
71
( q ) j
0⎧ ⎫ 0⎧ ⎫ 0⎧ ⎫
0⎧ ⎫
⎪ ⎪0
0
0
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
0
20
20
⎧ ⎫
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
0
20
20
⎧ ⎫
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
20
20
0
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
⎪ ⎪
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
{ }
0
60
60
RCA
⎪ ⎪
⎪ ⎪⎪ ⎪
= −⎨ ⎬
⎪ ⎪
⎪ ⎪
{ }
16
;
0
0
JA
⎪ ⎪
−⎪ ⎪
= ⎨ ⎬
⎪ ⎪
⎪ ⎪
{ }
0
;
0
60
EA
⎪ ⎪
⎪ ⎪
= ⎨ ⎬
⎪ ⎪
⎪ ⎪−
{ } { } { }
16
;
0
60
C J EA A A
⎪ ⎪
−⎪ ⎪
= + = ⎨ ⎬
⎪ ⎪
⎪ ⎪−
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪
0
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
60
60
40
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40⎧ ⎫
⎪ ⎪
60
60
40
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40⎪ ⎪−⎩ ⎭
80
0
⎪ ⎪
−⎪ ⎪
⎪ ⎪
⎩ ⎭
0
40
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎩ ⎭
{ } 80
16
FCA
⎪ ⎪
= −⎨ ⎬
⎪ ⎪−⎩ ⎭
80
40
⎪ ⎪
−⎪ ⎪
⎪ ⎪−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
72
[ ] [ ] { }
1
D S A
−
=6. Joint displacements
1
706562.5 0 13125 40
−
⎡ ⎤ ⎧ ⎫
⎪ ⎪
[ ] [ ] { }F FF FCD S A=6. Jo t d sp ace e ts
0 360451.39 1458.33 80
13125 1458.33 116666.67 16
⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥
⎪ ⎪− −⎢ ⎥⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦ ⎩ ⎭
5 9 6
0.142 10 0.646 10 0.160 10 40
− − −
⎡ ⎤× − × − × ⎧ ⎫
⎢ ⎥9 5 7
6 7 5
40
0.646 10 0.277 10 0.348 10 80
160 160 10 0 348 10 0 859 10
− − −
− − −
⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪
= − × × × −⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥ −× × × ⎩ ⎭⎣ ⎦
160.160 10 0.348 10 0.859 10⎢ ⎥− × × × ⎩ ⎭⎣ ⎦
4
0.594 10−
⎧ ⎫×
⎪ ⎪3
3
0.222 10
0.147 10
−
−
⎪ ⎪
= − ×⎨ ⎬
⎪ ⎪− ×⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
73
⎩ ⎭
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
Dept. of CE, GCE Kannur Dr.RajeshKN
Summary
Direct stiffness method
Summary
• Introduction – element stiffness matrix – rotation transformation
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of
nodal displacement and element forces – analysis of plane truss
beam and plane frame (with numerical examples) – analysis of
grid space frame (without numerical examples)grid – space frame (without numerical examples)
Dept. of CE, GCE Kannur Dr.RajeshKN
75
• Problem X:
2
6
1 3
5
6
4
5
Dept. of CE, GCE Kannur Dr.RajeshKN
76
0 0
EA EA⎡ ⎤
[ ]1
0 0
1 0 1 0
0 0 0 0 0 0 0 01
M
L L
S
⎡ ⎤
−⎢ ⎥ −⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
[ ]1
1 0 1 02
0 0
0 0 0 0
0 0 0 0
M
EA EA
L L
⎢ ⎥ −⎢ ⎥
−⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦0 0 0 0⎢ ⎥⎣ ⎦
[ ] [ ] [ ]2 3 4S S S= = =[ ] [ ] [ ]2 3 4M M MS S S
1 0 1 0
0 0 0 01
−⎡ ⎤
⎢ ⎥
⎢ ⎥
1 0 1 0
0 0 0 01
−⎡ ⎤
⎢ ⎥
⎢ ⎥[ ]5
0 0 0 01
1 0 1 02.83
0 0 0 0
MS ⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦
[ ]6
0 0 0 01
1 0 1 02.83
0 0 0 0
MS ⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
77
⎣ ⎦ ⎣ ⎦
Rotation matrices
cos sin 0 0 0 1 0 0
sin cos 0 0 1 0 0 0
θ θ
θ θ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
[ ]1
90
sin cos 0 0 1 0 0 0
0 0 cos sin 0 0 0 1
TR
θ
θ θ
θ θ=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
0 0 sin cos 0 0 1 0θ θ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦
0 1 0 0−⎡ ⎤
⎢ ⎥
1 0 0 0
0 1 0 0
⎡ ⎤
⎢ ⎥
[ ]3
90
1 0 0 0
0 0 0 1
TR
θ =−
⎢ ⎥
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
[ ]2
0
0 1 0 0
0 0 1 0
0 0 0 1
TR
θ =
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦ 0 0 1 0
⎢ ⎥
⎣ ⎦0 0 0 1
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]
1 1 0 0
1 1 0 0
0 707R
⎡ ⎤
⎢ ⎥−
⎢ ⎥=[ ]
1 0 0 0
0 1 0 0
R
−⎡ ⎤
⎢ ⎥−
⎢ ⎥ [ ]5
45
0.707
0 0 1 1
0 0 1 1
TR
θ =
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦
[ ]4
180 0 0 1 0
0 0 0 1
TR
θ =
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
−⎣ ⎦⎣ ⎦
[ ]
1 1 0 0
1 1 0 0
−⎡ ⎤
⎢ ⎥
⎢ ⎥[ ]6
45
1 1 0 0
0.707
0 0 1 1
0 0 1 1
TR
θ =−
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦0 0 1 1⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
79
[ ] [ ] [ ][ ]T
S R S R[ ] [ ] [ ][ ]1 1 1 1MS T M TS R S R=
0 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 01
T
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
0 0 0 1 1 0 1 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 1 0
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 0 0 0⎡ ⎤0 1 0 0 0 1 0 1− −⎡ ⎤ ⎡ ⎤
0 1 0 11
0 0 0 02
⎡ ⎤
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
1 0 0 0 0 0 0 01
0 0 0 1 0 1 0 12
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
0 1 0 1
⎢ ⎥
−⎣ ⎦0 0 1 0 0 0 0 0
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
1 0 1 0−⎡ ⎤
[ ]2
1 0 1 0
0 0 0 01
1 0 1 02
MSS
−⎡ ⎤
⎢ ⎥
⎢ ⎥=
−⎢ ⎥1 0 1 02
0 0 0 0
⎢ ⎥
⎢ ⎥
⎣ ⎦
[ ]
0 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 01
T
S
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]3
0 0 0 1 1 0 1 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 1 0
MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 1 0 0 0 1 0 1
1 0 0 0 0 0 0 01
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
0 0 0 0
0 1 0 11
⎡ ⎤
⎢ ⎥1 0 0 0 0 0 0 01
0 0 0 1 0 1 0 12
0 0 1 0 0 0 0 0
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
0 1 0 11
0 0 0 02
0 1 0 1
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
81
0 0 1 0 0 0 0 0−⎣ ⎦ ⎣ ⎦ 0 1 0 1−⎣ ⎦
1 0 1 0−⎡ ⎤
⎢ ⎥
[ ]4
0 0 0 01
1 0 1 02
0 0 0 0
MSS
⎢ ⎥
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦0 0 0 0⎣ ⎦
1 1 0 0 1 0 1 0 1 1 0 0
T
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
[ ]5
1 1 0 0 0 0 0 0 1 1 0 01
0.707 0.707
0 0 1 1 1 0 1 0 0 0 1 12.83
MSS
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
0 0 1 1 0 0 0 0 0 0 1 1
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
0.1766
0 0 1 1 1 1 1 1
− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
1 1 1 1
1 1 1 1
0.1766
1 1 1 1
− −⎡ ⎤
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥0 0 1 1 1 1 1 1
0 0 1 1 0 0 0 0
− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
1 1 1 1
1 1 1 1
− −⎢ ⎥
⎢ ⎥
− −⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
1 1 0 0 1 0 1 0 1 1 0 0
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
[ ]6
1 1 0 0 1 0 1 0 1 1 0 0
1 1 0 0 0 0 0 0 1 1 0 01
0.707 0.707
0 0 1 1 1 0 1 0 0 0 1 12.83
MSS
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 1 0 1 0 0 0 1 12.83
0 0 1 1 0 0 0 0 0 0 1 1
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 1 1
1 1 1 1
− −⎡ ⎤
⎢ ⎥
1 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ 1 1 1 1
0.177
1 1 1 1
1 1 1 1
⎢ ⎥− −
⎢ ⎥=
− −⎢ ⎥
⎢ ⎥
− −⎣ ⎦
1 1 0 0 0 0 0 0
0.177
0 0 1 1 1 1 1 1
0 0 1 1 0 0 0 0
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥=
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
−⎣ ⎦ ⎣ ⎦ 1 1 1 1⎣ ⎦0 0 1 1 0 0 0 0⎣ ⎦ ⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Assembled global stiffness matrix
1 1
0 0.1766 0 0 0.1766 0 0 0.1766 0.1766 0
2 2
1 1
+ + + + − − −
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
g
1 1
0 0 0.1766 0 0.1766 0 0.1766 0.1766 0 0
2 2
1 1
0 0 0 0.1766 0 0 0.1766 0 0.1766 0.1766
2 2
1 1
+ + + + − − −
+ + + − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
1 1
0 0 0 0.1766 0 0.1766 0 0 0.1766 0.1766
2 2
1 1
0.1766 0.1766 0 0 0.1766 0 0 0.
2 2
JS
− + − + + −
=
− − − + + + + 1766 0 0
1 1
0 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥1 1
0.1766 0.1766 0 0 0 0 0.1766 0 0.1766 0
2 2
1 1
0 0.1766 0.1766 0 0 0 0.1766 0 0 0.1766
2 2
1 1
0 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766
⎢ ⎥− − + + + + −
⎢ ⎥
⎢ ⎥
⎢ − − + + + − ⎥
⎢ ⎥
⎢ ⎥
+ + +⎢ ⎥0 0 0.1766 0.1766 0 0 0 0.1766 0 0.1766
2 2
− − + − + +⎢ ⎥
⎣ ⎦
1 2 8
0D D D= = =Boundary conditions are:
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2 8
0D D DBoundary conditions are:
0.677 -0.177 -0.500 0.000 -0.177⎡ ⎤
⎢ ⎥
Reduced stiffness matrix
[ ]
-0.177 0.677 0.000 0.000 0.177
-0.500 0.000 0.677 0.177 0.000FFS =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
0.000 0.000 0.177 0.677 0.000
-0.177 0.177 0.000 0.000 0.677
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
85
5⎧ ⎫
⎪ ⎪
{ }
0
0FCA
⎪ ⎪
⎪ ⎪⎪ ⎪
= ⎨ ⎬
⎪ ⎪
In this problem, the reduced load vector
(in global coords) can be directly written as
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
{ } [ ] { }
1
F FF FCD S A
−
=
24.144⎧ ⎫
⎪ ⎪
4.829 1.000 3.829 -1.000 1.000 5⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ 5.000
19.144
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪
=
⎪
1.000 1.793 0.793 -0.207 -0.207
3.829 0.793 4.622 -1.207 0.793=
0
0
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎪ ⎪
⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ -5.000
5.000
⎪
⎪
⎪
⎪
⎪
⎪⎩ ⎭
-1.000 -0.207 -1.207 1.793 -0.207 0
1.000 -0.207 0.793 -0.207 1.793 0
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
⎣ ⎦ ⎩ ⎭
Assignment
Dept. of CE, GCE Kannur Dr.RajeshKN

Module3 direct stiffness- rajesh sir

  • 1.
    Structural Analysis -III Di t Stiff M th dDirect Stiffness Method Dr. Rajesh K. N. Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKNDept. of CE, GCE Kannur Dr.RajeshKN 1
  • 2.
    Module IIIModule III Directstiffness method • Introduction – element stiffness matrix – rotation transformation Direct stiffness method matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors – assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples)grid – space frame (without numerical examples) Dept. of CE, GCE Kannur Dr.RajeshKN 2
  • 3.
    Introduction • The formalisedstiffness method involves evaluating the displacement transformation matrix CMJ correctlyp y • Generation of matrix CMJ is not suitable for computer programming H th l ti f di t tiff th d• Hence the evolution of direct stiffness method Dept. of CE, GCE Kannur Dr.RajeshKN 3
  • 4.
    Direct stiffness method •We need to simplify the assembling process of SJ , theJ assembled structure stiffness matrix • The key to this is to use member stiffness matrices for actionsThe key to this is to use member stiffness matrices for actions and displacements at BOTH ends of each member If b di l d i h f• If member displacements are expressed with reference to global co-ordinates, the process of assembling SJ can be made simplesimple Dept. of CE, GCE Kannur Dr.RajeshKN 4
  • 5.
    Member oriented axes(local coordinates) d t t i t d ( l b l di t )and structure oriented axes (global coordinates) Lδ x y L Local axes LδL Lδ sinLδ θ Lδ θ x YYYY cosLδ θ θ Global axes yGlobal axesGlobal axes θ XXXX Dept. of CE, GCE Kannur Dr.RajeshKN Global axes
  • 6.
    1. Plane trussmember Stiffness coefficients in local coordinates 1 3 2 4 y 0 0 Degrees of freedom 1 ⎛ ⎞ ⎜ ⎟ Unit displacement xEA L EA L ⎜ ⎟ ⎝ ⎠corr. to DOF 1 0 0 EA EA⎡ ⎤ −⎢ ⎥ [ ] 0 0 0 0 0 0 0 0 M L L S EA EA ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ −⎢ ⎥ = Member stiffness matrix in local coordinates Dept. of CE, GCE Kannur Dr.RajeshKN 0 0 0 0 L L ⎢ ⎥ ⎢ ⎢⎣ ⎦ ⎥ ⎥
  • 7.
    Transformation of displacementvector θ Displacements in global 22 2 cosU D θ= p g coordinates: U1 and U2 Displacements in local di D d D2D DY iU D θ 12 2 sinU D θ= − θ 1 11 12 1 2cos sinU U U D Dθ θ= + = − coordinates: D1 and D2 1DY 11 1 cosU D θ= 21 1 sinU D θ= 2 21 22 1 2sin cosU U U D Dθ θ= + = + 1 1cos sinU Dθ θ−⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎡ ⎤ 1 1 2 2 cos sin sin cos U D U D θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ X 1 1 2 2 cos sin sin cos D U D U θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ∴ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN { } [ ]{ }D R U=
  • 8.
    C id ib th d ⎧ ⎫ ⎧ ⎫ Considering both ends, 1 1 2 2 cos sin 0 0 sin cos 0 0 0 0 i D U D U D U θ θ θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬ ⎢ ⎥3 3 4 4 0 0 cos sin 0 0 sin cos D U D U θ θ θ θ ⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALD R D= [ ] [ ]R O⎡ ⎤ [ ] [ ] [ ] [ ] [ ]T R O R O R ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Rotation matrix Dept. of CE, GCE Kannur Dr.RajeshKN
  • 9.
    Transformation of loadvector Actions in global θ coordinates: F1 and F2 22 2 cosF A θ= 1 11 12 1 2cos sinF F F A Aθ θ= + = − 22 2 12 2 sinF A θ= − θ 2A 2 21 22 1 2sin cosF F F A Aθ θ= + = + Y 11 1 cosF A θ= 21 1 sinF A θ=1A 1 1 2 2 cos sin sin cos F A F A θ θ θ θ −⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ 11 1 1 1cos sinA Fθ θ⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ X 2 2sin cosA Fθ θ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }A R F= Dept. of CE, GCE Kannur Dr.RajeshKN { } [ ]{ }A R F=
  • 10.
    C id ib th dConsidering both ends, 1 1 2 2 cos sin 0 0 sin cos 0 0 A F A F θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬ 3 3 4 4 0 0 cos sin 0 0 sin cos A F A F θ θ θ θ ⎢ ⎥=⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALi.e., A R A= Dept. of CE, GCE Kannur Dr.RajeshKN 10
  • 11.
    Transformation of stiffnessmatrix { } [ ]{ }LOCAL M LOCALA S D= [ ]{ } [ ][ ]{ }T GLOBAL M T GLOBALR A S R D= { } [ ] [ ][ ]{ } 1 GLOBAL T M T GLOBALA R S R D − = [ ]{ } [ ][ ]{ }T GLOBAL M T GLOBAL [ ] [ ]1 T R R −{ } [ ] [ ][ ]{ }GLOBAL T M T GLOBAL { } [ ]{ }A S D [ ] [ ]T TR R= { } [ ]{ }GLOBAL MS GLOBALA S D= [ ] [ ] [ ][ ] T MS T M TS R S R=where, Member stiffness matrix in global coordinates Dept. of CE, GCE Kannur Dr.RajeshKN
  • 12.
    [ ] [] [ ][ ] T S R S R= T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ [ ] [ ] [ ][ ]MS T M TS R S R= 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 T c s c s s c s cEA −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 c s c sL s c s c −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2 2 c cs c cs⎡ ⎤− − ⎢ ⎥ M b tiff t i2 2 2 2 cs s cs sEA L c cs c cs ⎢ ⎥ − −⎢ ⎥= ⎢ ⎥− − ⎢ ⎥ Member stiffness matrix in global coordinates for a plane truss member 2 2 cs s cs s ⎢ ⎥ − −⎣ ⎦ p Dept. of CE, GCE Kannur Dr.RajeshKN 12
  • 13.
    2. Plane framemember Stiffness coefficients in local coordinates 2 52 4 5 Degrees of freedom0 0 0 0 EA EA⎡ ⎤ 1 3 4 6 Degrees of freedom 3 2 3 2 0 0 0 0 12 6 12 6 0 0 L L EI EI EI EI L L L L ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ [ ] 2 2 6 4 6 2 0 0 0 0 0 0 Mi EI EI EI EI L L L L S EA EA ⎢ ⎥ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ Member stiffness matrix in local coordinates 3 2 3 2 0 0 0 0 12 6 12 6 0 0 L L EI EI EI EI L L L L −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − − −⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 6 2 6 4 0 0 EI EI EI EI L L L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦
  • 14.
    Transformation of displacementvector 1 1 2 2 cos sin 0 0 0 0 sin cos 0 0 0 0 D U D U θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎢ ⎥ 3 3 4 4 0 0 1 0 0 0 0 0 0 cos sin 0 D U D Uθ θ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥5 5 6 6 0 0 0 sin cos 0 0 0 0 0 0 1 D U D U θ θ⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALD R D= [ ] [ ]R O⎡ ⎤ { } [ ]{ }LOCAL T GLOBAL [ ] [ ] [ ] [ ] [ ]T R O R O R ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Rotation matrix Dept. of CE, GCE Kannur Dr.RajeshKN
  • 15.
    Transformation of loadvector { } [ ]{ }LOCAL T GLOBALA R A={ } [ ]{ } cos sin 0 0 0 0θ θ⎡ ⎤ ⎢ ⎥ [ ] sin cos 0 0 0 0 0 0 1 0 0 0 R θ θ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥[ ] 0 0 0 cos sin 0 0 0 0 sin cos 0 TR θ θ θ θ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ 0 0 0 0 0 1 ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 16.
    Transformation of stiffnessmatrix { } [ ]{ }GLOBAL MS GLOBALA S D= [ ] [ ] [ ][ ]T MS T M TS R S R= Member stiffness matrix in global coordinatesglobal coordinates EA EA⎡ ⎤ 0 0 0 0 0 0 0 0 c s s c ⎡ ⎤ ⎢ ⎥− ⎢ ⎥ 3 2 3 2 0 0 0 0 12 6 12 6 0 0 EA EA L L EI EI EI EI L L L L ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ [ ] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 T c s s c R ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ [ ] 2 2 6 4 6 2 0 0 0 0 0 0 M EI EI EI EI L L L LS EA EA L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ Where, , 0 0 0 0 0 1 ⎢ ⎥ ⎣ ⎦ 3 2 3 2 12 6 12 6 0 0 6 2 6 4 0 0 L L EI EI EI EI L L L L EI EI EI EI ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 0 0 L L L L ⎢ ⎥− ⎢ ⎥⎣ ⎦
  • 17.
    Assembling global stiffnessmatrixg g Plane truss 2 Force 21 3 31 3 2 4 1 3 Action/displacement components in local coordinates of members Dept. of CE, GCE Kannur Dr.RajeshKN
  • 18.
    4 4 3 4 3 4 2 6 1 56 2 51 4 3 Action/displacementcomponents in 2 5 6 Action/displacement components in global coordinates of the structure Dept. of CE, GCE Kannur Dr.RajeshKN 1 5
  • 19.
    1 2 34 Global DOF 11 12 13 14 1 1 1 1 21 22 23 24 2 2 2 2 1 2 M M M M s s s s s s s s c cs c cs cs s cs sEA − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ 1 2 3 4 [ ] 1 1 1 1 31 32 33 34 1 1 1 1 41 42 43 44 1 2 2 2 2 2 3 4 M M M M M M M M M s s s s s s s s cs s cs sEA S c cs c csL − − ⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ 41 42 43 44 1 1 1 1 2 2 4M M M M s s s scs s cs s ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦ 1 2 3 4 5 6 1 2 × × × ×⎡ ⎤ ⎢ ⎥× × × × ⎢ ⎥ C t ib ti f [ ] 2 3 4 JS × × × × ⎢ ⎥ × × × ×⎢ ⎥ = ⎢ ⎥ Contribution of Member 1 to global stiffness matrix[ ] 4 5 J ⎢ ⎥ × × × ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ ⎣ ⎦
  • 20.
    3 4 56 Global DOF 11 12 13 14 2 2 2 2 21 22 23 24 3 4 M M M M s s s s s s s s ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 3 4 5 6 [ ] 2 2 2 2 2 31 32 33 34 2 2 2 2 41 42 43 44 4 5 6 M M M M M M M M M s s s s s s s s s s s s S = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦2 2 2 2 6M M M M s s s s⎣ ⎦ 1 2 3 4 5 6 1 2 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ C t ib ti f [ ] 2 3 4 JS ⎢ ⎥ × × × ×⎢ ⎥ = ⎢ ⎥ × × × ×⎢ ⎥ Contribution of Member 2 to global stiffness matrix 4 5 6 × × × ×⎢ ⎥ ⎢ ⎥× × × × ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ × × × ×⎣ ⎦
  • 21.
    11 12 1314 1⎡ ⎤ 1 2 5 6 Global DOF [ ] 11 12 13 14 3 3 3 3 21 22 23 24 3 3 3 3 1 2 M M M M M M M M s s s s s s s s S ⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ] 3 3 3 3 3 31 32 33 34 3 3 3 3 41 42 43 44 5 6 M M M M M M M M M s s s s S = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 41 42 43 44 3 3 3 3 6M M M M s s s s ⎢ ⎥ ⎣ ⎦ 1 2 3 4 5 6 1 2 × × × ×⎡ ⎤ ⎢ ⎥ 1 2 3 4 5 6 [ ] 2 3 JS ⎢ ⎥× × × × ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ Contribution of Member 3 to global stiffness matrix[ ] 4 5 JS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥× × × × ⎢ ⎥ stiffness matrix Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ × × × ×⎣ ⎦
  • 22.
    Assembled global stiffnessmatrix 11 12 13 1411 12 13 14 s s s ss s s s+ + 1⎡ ⎤ 1 2 3 4 5 6 1 1 1 1 21 22 23 24 1 1 1 1 3 3 3 3 21 22 23 24 3 3 3 3 M M M M M M M M M M M M M M M M s s s s s s s s s s s s s s s s + + + + 1 2 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 31 32 3 11 12 13 14 2 2 2 2 21 22 23 24 3 34 1 1 1 1 41 42 43 44 M M M MM M M M J s s s s s s s s s s s s s S ss s + + = + + 3 4 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 31 3 2 2 2 2 31 32 33 1 1 2 2 1 1 23 3 32 M M M M M MM M M M M M MM s s s s s s s s s s s s s s + + + 34 2 33 34 3 4 5MM ss + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥41 42 43 44 2 41 42 43 44 3 2 23 32 3 6M M M MM M M M s s s ss s s s+ + ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 23.
    Imposing boundary conditions2 p g y Plane truss example 21 1 2 0U U U U= = = =Boundary conditions are: 3 3 11 2 5 6 0U U U UBoundary conditions are: { }GLOBALD 11 12 13 1411 12 13 14 s s s ssF s s s+ +⎧ ⎫ U⎧ ⎫⎡ ⎤ { }GLOBALD 3 3 3 31 1 1 1 2 21 221 22 23 24 1 1 1 1 23 24 1 2 3 3 3 3 M MM M M M M M M M M M M M M M s s s s s s s s sF F s s s s s s s + + + + ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 1 2 U U ⎧ ⎫⎡ ⎤ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥11 12 13 14 2 2 2 2 21 22 23 24 2 31 32 33 34 1 1 1 1 41 42 43 44 1 3 1 1 1 24 2 2 M M M M M M M M M M M M M M M M s s s s s s s s s s s s s s s F F s + + = + + ⎪ ⎪ ⎨ ⎬ ⎪ ⎪ 4 3 U U ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥21 1 1 1 24 5 2 2M M MM M M M M F F s ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 31 32 33 34 2 2 2 2 41 42 43 44 31 32 33 34 3 3 3 3 41 42 43 44 4 5M M M MM M M M s ss s s s s U U + + ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎣ ⎦⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 6 F⎩ ⎭ 41 42 43 44 2 2 2 2 41 42 43 44 3 3 3 3 6M MM M M MM M ss s s s ss s U+ +⎣ ⎦⎩ ⎭
  • 24.
    Reduced equation systemqy (after imposing boundary conditions) 33 34 1 1 43 44 11 12 2 2 21 22 3 3MM M M F U F U s ss s+ +⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭1 2 1 24 4M MM M F Us sss⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭ •This reduced equation system can be solved to get the unknown displacement components 3 4 ,U U { } [ ]{ }LOCAL T GLOBALD R D=•From { }LOCALD can be found out. { } { }D D=F h b Dept. of CE, GCE Kannur Dr.RajeshKN { } { }LOCAL MiD D=•For each member,
  • 25.
    { } {} [ ]{ }A A S D{ } { } [ ]{ }Mi MLi Mi MiA A S D= +Member end actions Where, Fixed end actions on the member,{ }MLiA Member stiffness matrix,[ ]MiS [ ] in local coordinates Displacement components of the member,[ ]MiD { } { } [ ]{ }LOCAL T GLOBALMi D R DD ==As we know, { } { } [ ][ ]{ }i i iM ML M i iT GLOBALA A S R D∴ = + Dept. of CE, GCE Kannur Dr.RajeshKN 25
  • 26.
    Direct Stiffness Method:Procedure STEP 1: Get member stiffness matrices for all members [ ]MiS STEP 2: Get rotation matrices for all members [ ]TiR STEP 3: Transform member stiffness matrices from local coordinates into global coordinates to get [ ]MSiS[ ]MSi STEP 4: Assemble global stiffness matrix [ ]JS STEP 5: Impose boundary conditions to get the reduced stiffness matrix [ ]S[ ]FFS Dept. of CE, GCE Kannur Dr.RajeshKN 26
  • 27.
    STEP 6: Findequivalent joint loads from applied loads on eachq j pp member (loads other than those applied at joints directly) STEP 7 T f b ti f l l di t i t l b lSTEP 7: Transform member actions from local coordinates into global coordinates to get the transformed load vector STEP 8: Find combined load vector by adding the above transformed load vector and the loads applied directly at joints [ ]CA STEP 9: Find the reduced load vector by removing members in h l d di b d di i [ ]FCA the load vector corresponding to boundary conditions STEP 10: Get displacement components of the structure in global coordinates { } [ ] { } 1 F FF FCD S A − = Dept. of CE, GCE Kannur Dr.RajeshKN 27
  • 28.
    { } []{ }LOCAL T GLOBALD R D= STEP 11: Get displacement components of each member in local coordinates STEP 12: Get member end actions from { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + { } { } [ ][ ]R RC RF FA A S D= − +STEP 13: Get reactions from { }RCA represents combined joint loads (actual and equivalent) applied directly to the supports.q ) pp y pp Dept. of CE, GCE Kannur Dr.RajeshKN 28
  • 29.
    • Problem 1: 1Member stiffness matrices in local co ordinates 1EA ⎡ ⎤⎡ ⎤ 1. Member stiffness matrices in local co-ordinates (without considering restraint DOF) [ ]1 1 00 1.155 0 0 0 0 M EA S L ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦0 0 0 0⎣ ⎦ ⎣ ⎦ [ ] 1 0⎡ ⎤ [ ] 1 2 0⎡ ⎤ Dept. of CE, GCE Kannur Dr.RajeshKN [ ]2 1 0 0 0 MS ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ [ ]3 1 2 0 0 0MS ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦
  • 30.
    2. Rotation (transformation)matrices [ ]1 cos sin 0.5 0.866 i 0 866 0 5 TR θ θ θ θ −⎡ ⎤ ⎡ ⎤ = =⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ [ ]1 60 sin cos 0.866 0.5 T θ θ θ=− ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ [ ]2 90 0 1 1 0 TR θ −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦90 1 0θ =− ⎣ ⎦ [ ]3 150 0.866 0.5 0.5 0.866 TR θ =− − −⎡ ⎤ = ⎢ ⎥−⎣ ⎦⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 30
  • 31.
    3. Member stiffnessmatrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 0.5 0.866 1 0 0.5 0.8661 0 866 0 5 0 0 0 866 0 51 155 T − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦0.866 0.5 0 0 0.866 0.51.155⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 216 0 375−⎡ ⎤0.216 0.375 0.375 0.649 −⎡ ⎤ = ⎢ ⎥−⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 32.
    [ ]2 0 11 0 0 1 1 0 0 0 1 0 T MSS − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 0⎡ ⎤ = ⎢ ⎥0 1 = ⎢ ⎥ ⎣ ⎦ [ ]3 0.866 0.5 1 0 0.866 0.51 0 5 0 866 0 0 0 5 0 8662 T MSS − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ [ ]3 0.5 0.866 0 0 0.5 0.8662 MS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0.375 0.217⎡ ⎤ ⎢ ⎥0.217 0.125 = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 32
  • 33.
    4. Global stiffnessmatrix 0 216 0 0 375 0 375 0 0 217⎡ ⎤ (by assembling transformed member stiffness matrices) [ ] 0.216 0 0.375 0.375 0 0.217 0.375 0 0.217 0.649 1 0.125 FFS + + − + +⎡ ⎤ = ⎢ ⎥− + + + +⎣ ⎦ 0.591 0.158 0 158 1 774 −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦0.158 1.774⎢ ⎥−⎣ ⎦ This is the reduced global stiffness matrix, since restraint DOF were not considered. Hence, boundary conditions are automatically incorporatedautomatically incorporated. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 34.
    5. Loads { } 0 5 FCA ⎧⎫ = ⎨ ⎬ −⎩ ⎭ 6. Joint displacements6. Joint displacements 0 772⎧ ⎫ { } [ ] { } 1 F FF FCD S A − = 0.772 2.89 −⎧ ⎫ = ⎨ ⎬ −⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 34
  • 35.
    7. Member forces {} { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + Member 1 { } { } [ ][ ]{ } { } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + [ ][ ]{ }1 1 1T GLOBALM R DS= 1 0.5 0.8660 1 155 0.772⎡ ⎤ −⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ −⎧ ⎥ ⎫ ⎨ ⎬ 1.833 = ⎧ ⎫ ⎨ ⎬1.155 0.866 0.5 0 0 2.89⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎨ ⎬ −⎩ ⎭ 0 ⎨ ⎬ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 35
  • 36.
    { } [][ ]{ }R DA SM b 2 { } [ ][ ]{ }2 2 2 2T GLOBALM M R DA S=Member 2 0.772 2 1 0 0 1 0 0 1 0 .89 −⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ −⎧ ⎫ ⎨ ⎦ −⎩⎣ ⎬ ⎭ 2.89 0 ⎧ = ⎫ ⎨ ⎬ ⎩ ⎭ Member 3 { } [ ][ ]{ }3 3 3 3T GLOBALM M R DA S= 1 2 0 0.866 0.5 0 0 0.5 0.866 0.772 2.89 − −⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥−⎣ ⎦ −⎧ ⎫ ⎨ ⎣ ⎦ ⎬ −⎩ ⎭ 1.057 0 = ⎧ ⎫ ⎨ ⎬ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 36
  • 37.
    • Problem 2: 10kN m 5 4 8 4m 0kN m C B 20kN 2 4 6 7 94m 1 9 4m 1 2 A EI is constant. 1 2 3 Displacements in global co-ordinates Dept. of CE, GCE Kannur Dr.RajeshKN 37 global co ordinates
  • 38.
    2 5 6 9 2 1 4 36 4 6 2 6 9 2 5 1 1 Ki ti 1Kinematic indeterminacy DOF in local co- ordinates 1 2 33 Dept. of CE, GCE Kannur Dr.RajeshKN 38
  • 39.
    0 0 00 12 6 12 6 EA EA L L EI EI EI EI ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 3 2 3 2 2 2 12 6 12 6 0 0 6 4 6 2 0 0 EI EI EI EI L L L L EI EI EI EI L L L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ Member stiffness matrix [ ] 0 0 0 0 12 6 12 6 Mi L L L LS EA EA L L EI EI EI EI ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ of a 2D frame member in local coordinates 3 2 3 2 2 2 12 6 12 6 0 0 6 2 6 4 0 0 EI EI EI EI L L L L EI EI EI EI L L L L ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦L L L L⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 39
  • 40.
    1. Member stiffnessmatrices in local co-ordinates ( ith t id i t i t DOF) 6Local DOFMember 1 (without considering restraint DOF) [ ] 4EI S ⎡ ⎤= ⎢ ⎥ [ ]1EI EI= = 6Global DOF [ ]1MS L = ⎢ ⎥⎣ ⎦ [ ]1EI EI Member 2 6 9Global DOF 3 6Local DOF Member 2 [ ] 4 2EI EI L LS ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 6 9Global DOF 0.5EI EI⎡ ⎤ [ ]2 2 4 M L LS EI EI L L = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ 0.5EI EI ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 40
  • 41.
    2. Rotation (transformation)matrices In this case, transformation matrices are: [ ] [ ]1 1TR = corresponding to local DOF 6 [ ]2 1 0 0 1 TR ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ corresponding to local DOFs 3 & 6 ⎣ ⎦ 3. Member stiffness matrices in global co-ordinates (Transformed member stiffness matrices) [ ]1MSS EI= [ ]2 0.5 0.5 MS EI EI S EI EI ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN ⎣ ⎦
  • 42.
    4 A bld ( d d d) l b l tiff t i 6 9Gl b l DOF 4. Assembled (and reduced) global stiffness matrix [ ] 0.5EI EI S IE⎡ + ⎤ = ⎢ ⎥ 6 9Global DOF 2 0.5 EI ⎡ ⎤ = ⎢ ⎥[ ] 0.5FFS EI EI = ⎢ ⎥ ⎣ ⎦ 0.5 1 EI= ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 43.
    5. Loads 20 13.33 13.33 B C 20 13.3320 13.33B C20 B 20 20 C C20 Fi d d ti A Combined (Eqlt.+ actual) joint loads A Fixed end actions A (Loads in global co-ordinates) { } 13.33 13 33FCA −⎧ ⎫ = ⎨ ⎬ ⎩ ⎭ Loads corresponding to global DOF 6, 9: Dept. of CE, GCE Kannur Dr.RajeshKN 43 { } 13.33FC ⎨ ⎬ ⎩ ⎭ Loads corresponding to global DOF 6, 9:
  • 44.
    6 Joint displacements 11431 ⎧ ⎫ 6. Joint displacements { } [ ] { } 1 F FF FCD S A − = 11.43 19.04 1 EI −⎧ = ⎫ ⎨ ⎬ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 44
  • 45.
    7. Member endactions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + : fixed end actions for member i{ }MLiA Member 1 { } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + { } [ ]{ }DA S { } { } 4 1 0 11 43 EI⎡ ⎤ { } [ ]{ }1 1 1ML M GLOBALDA S= + { } { }0 11.43 11.43 L EI ⎡ ⎤ = + −⎢ ⎥⎣ ⎦ = − This is the member end action corresponding to local DOF 6 f M b 1 i b d h d f Dept. of CE, GCE Kannur Dr.RajeshKN 45 of Member 1. i.e., member end moment at the top edge of Member 1.
  • 46.
    Member 2 { }{ } [ ]{ }2 2 2 2M ML M GLOBALA A DS= + Member 2 13.33 11.43 13.33 1 0.5 9.04 1 0.5 EI EI EI EI EI −⎧ ⎫ ⎧ ⎫ + ⎡ ⎤ = ⎢ ⎥ ⎣ ⎨ ⎬ ⎨ −⎩ ⎭ ⎩⎦ ⎬ ⎭ 13.33 1.91−⎧ ⎫ ⎧ ⎫ +⎨ ⎬ ⎨= ⎬ 11.42 = ⎧ ⎫ ⎨ ⎬ Th th b ti di t l l DOF 3 13.33 13.325 +⎨ ⎬ ⎨ ⎩ ⎭ ⎬ − ⎩ ⎭ 0 ⎨ ⎬ ⎩ ⎭ These are the member actions corresponding to local DOFs 3 and 6 of Member 2. i.e., member end moments of Member 2. Dept. of CE, GCE Kannur Dr.RajeshKN 46
  • 47.
    11.43 0B 0B C 11.43 Member endmoments A Dept. of CE, GCE Kannur Dr.RajeshKN 47
  • 48.
    • Problem 3: 10 kips0.24 kips/in. 20 kips 1000 kips-in 75 in 100 in 50 in 50 in100 in 50 in 50 in Dept. of CE, GCE Kannur Dr.RajeshKN 48
  • 49.
    2 5 1 3 4 6 8 7 9 8 Global DOF 7 Dept.of CE, GCE Kannur Dr.RajeshKN 49
  • 50.
    21 3 5 6Local DOF 4 6Local DOF Dept.of CE, GCE Kannur Dr.RajeshKN 50 4
  • 51.
    Free DOF Dept. ofCE, GCE Kannur Dr.RajeshKN 51
  • 52.
    1. Member stiffnessmatrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF) 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1000 0 0⎡ ⎤ ⎢ ⎥[ ]1 3 2 12 6 0 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− 5 0 120 6000 0 6000 4 10 ⎢ ⎥= − ⎢ ⎥ − ×⎢ ⎥⎣ ⎦ 2 0 L L ⎢ ⎥− ⎣ ⎦ 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 800 0 0⎡ ⎤ ⎢ ⎥ [ ]2 3 2 12 6 0 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 5 0 61.44 3840 0 3840 3.2 10 ⎢ ⎥= ⎢ ⎥ ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 52 2 0 L L ⎢ ⎥ ⎣ ⎦
  • 53.
    2. Rotation (transformation)matrices [ ] cos sin 0 i 0R ⎡ ⎤ ⎢ ⎥ θ θ θ θ[ ] sin cos 0 0 0 1 TR ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥⎣ ⎦ θ θ Member 1 Member 2 [ ]2 0.8 0.6 0 0.6 0.8 0R −⎡ ⎤ ⎢ ⎥= ⎢ ⎥[ ]1 1 0 0 0 1 0R ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ [ ] 0 0 1 ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]1 0 0 1 ⎢ ⎥ ⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 53
  • 54.
    3. Member stiffnessmatrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 1 0 0 1000 0 0 1 0 0 0 1 0 0 120 6000 0 1 0 T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 5 0 1 0 0 120 6000 0 1 0 0 0 1 0 6000 4 10 0 0 1 = − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 5 1000 0 0 0 120 6000 ⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥5 0 6000 4 10− ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 54
  • 55.
    [ ] 0.8 0.60 800 0 0 0.8 0.6 0 0 6 0 8 0 0 61 44 3840 0 6 0 8 0 T S − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ]2 5 0.6 0.8 0 0 61.44 3840 0.6 0.8 0 0 0 1 0 3840 3.2 10 0 0 1 MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0.8 0.6 0 640 480 0 0 6 0 8 0 36 86 49 15 3840 −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ 5 0.6 0.8 0 36.86 49.15 3840 0 0 1 2304 3072 3.2 10 = − ⎢ ⎥ ⎢ ⎥ ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ 534.12 354.51 2304 354 51 327 32 3072 −⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ 5 354.51 327.32 3072 2304 3072 3.2 10 ⎢ ⎥ ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 56.
    4. Assembled (reduced)global stiffness matrix 1000 534.12 0 354.51 0 2304+ − +⎡ ⎤ . sse b ed ( educed) g oba st ess at x [ ] 5 5 0 354.51 120 327.32 6000 3072 0 2304 6000 3072 4 10 3.2 10 FFS ⎡ ⎤ ⎢ ⎥= − + − + ⎢ ⎥ + − + × + ×⎢ ⎥⎣ ⎦0 2304 6000 3072 4 10 3.2 10+ + × + ×⎢ ⎥⎣ ⎦ 1534 12 354 51 2304⎡ ⎤ 5 1534.12 354.51 2304 354.51 447.32 2928 −⎡ ⎤ ⎢ ⎥− − ⎢ ⎢ = ⎥ ⎥5 2304 2928 7.2 10− ×⎢⎣ ⎦⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 56
  • 57.
    5. Loads ⎧ ⎫ {} 0 10JA ⎧ ⎫ ⎪ ⎪ = −⎨ ⎬ ⎪ ⎪ Actual joint loads 1000⎪ ⎪−⎩ ⎭ { } 0 22A ⎧ ⎫ ⎪ ⎪ ⎨ ⎬Equivalent joint loads { } 22 50 EA = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ Equivalent joint loads 0⎧ ⎫ ⎪ ⎪ { } { } { } 32 1050 FC J EA A A ⎪ ⎪ = + = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ Hence, combined joint loads Dept. of CE, GCE Kannur Dr.RajeshKN ⎩ ⎭
  • 58.
    6. Joint displacements {} [ ] { } 1 F FF FCD S A − ={ } [ ] { }F FF FCD S A 1 { } 1 1534.12 354.51 2304 0 354.51 447.32 2928 32FD − − ⎧ ⎫⎡ ⎤ ⎪ ⎪⎢ ⎥∴ = − − −⎨ ⎬⎢ ⎥ ⎪ ⎪5 2304 2928 7.2 10 1050 ⎢ ⎥ ⎪ ⎪− × −⎢ ⎥ ⎩ ⎭⎣ ⎦ 0.0206 0.09936 −⎧ ⎫ ⎪ ⎪ = −⎨ ⎬0.09936 0.001797 ⎨ ⎬ ⎪ ⎪−⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 59.
    7. Member endactions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + 1000 0 0 1 0 0 0.0206⎡ ⎤ ⎡ ⎤ −⎧ ⎫ ⎪ ⎪ { } 5 0 120 6000 0 1 0 0.0993 0 6000 4 10 0 6 0 1 0.001797 MLiA ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= + − ⎢ ⎥ ⎢ ⎥ − ×⎢ ⎥ ⎢ ⎥ ⎧ ⎫ ⎪ ⎪ −⎨ ⎣ ⎦ ⎣ ⎪ ⎩⎦ ⎬ ⎪− ⎭0 6000 4 10 0 0 1 0.001797⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎩⎦ ⎭ 8. Reactions { } { } [ ][ ]R RC RF FA A S D= − + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 60.
  • 61.
    1 2 312 3 4 C ti itConnectivity: Member Node 1 Node 2 1 1 2 2 2 3 3 2 4 Dept. of CE, GCE Kannur Dr.RajeshKN 61 3 2 4
  • 62.
    46 5 46 Free DOF Dept. ofCE, GCE Kannur Dr.RajeshKN 62
  • 63.
    1. Member stiffnessmatrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF) 5 0 0 3.5 10 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]1 3 2 12 6 0 0 6562.5 13125 0 13125 35000 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= − = −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎢ ⎥− 2 0 L L ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ [ ] 5 0 0 3.5 10 0 0 12 6 X Z Z EA L EI EI ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]2 3 2 2 12 6 0 0 3888.89 11666.67 0 11666.67 46666.67 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 63 2 L L ⎢ ⎥ ⎣ ⎦
  • 64.
    ⎡ ⎤ [ ] 5 00 3.5 10 0 0 12 6 0 0 6 62 1312 X Z Z EA L EI EI S ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]3 3 2 2 12 6 0 0 6562.5 13125 0 13125 35000 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ 2 L L ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 64
  • 65.
    2. Rotation (transformation)matrices 0 1 0−⎡ ⎤1 0 0⎡ ⎤ 1 0 0⎡ ⎤ [ ]3 90 0 1 0 1 0 0 0 0 1 R θ =− ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]1 0 1 0 0 0 1 0 0 0 1 R θ = ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]2 0 0 1 0 0 0 1 R θ = ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Member 1 0 0 1⎢ ⎥⎣ ⎦ Member 2 0 0 1⎢ ⎥⎣ ⎦ Member 3 ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 65
  • 66.
    3. Member stiffnessmatrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 5 3.5 10 0 0 0 6562.5 13125 ⎡ ⎤× ⎢ ⎥ = −⎢ ⎥ 0 13125 35000 ⎢ ⎥ ⎢ ⎥−⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 66
  • 67.
    5T ⎡ ⎤⎡ ⎤⎡ ⎤ [ ] 5 2 1 0 0 3.5 10 0 0 1 0 0 0 1 0 0 3888.89 11666.67 0 1 0 T MSS ⎡ ⎤×⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 1 0 11666.67 46666.67 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 5 3.5 10 0 0 0 3888.89 11666.67 ⎡ ⎤× ⎢ ⎥ = ⎢ ⎥ 0 11666.67 46666.67 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 67
  • 68.
    [ ] 5 3 0 10 3.5 10 0 0 0 1 0 1 0 0 0 6562.5 13125 1 0 0 T MSS ⎡ ⎤− × −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ 0 0 1 0 13125 35000 0 0 1 ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 5 0 1 0 0 3.5 10 0 1 0 0 6562 5 0 13125 ⎡ ⎤− ×⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥1 0 0 6562.5 0 13125 0 0 1 13125 0 35000 ⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ 6562.5 0 13125⎡ ⎤ ⎢ ⎥5 0 3.5 10 0 13125 0 35000 ⎢ ⎥= × ⎢ ⎥ ⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 68 ⎣ ⎦
  • 69.
    4. Assembled (andreduced) global stiffness matrix. sse b ed (a d educed) g oba st ess at x 5 5 3.5 10 3.5 10 6562.5 0 0 0 0 0 13125⎡ ⎤× + × + + + + + ⎢ ⎥ [ ] 5 0 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0 0 0 13125 13125 11666.67 0 35000 46666.67 35000 FFS ⎢ ⎥ = + + + + × − + +⎢ ⎥ ⎢ ⎥+ + − + + + +⎣ ⎦ 706562 5 0 13125⎡ ⎤706562.5 0 13125 0 360451.39 1458.33 ⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ 13125 1458.33 116666.67 ⎢ ⎥ −⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 70.
    60 5. Loads 20 20 kNm60 60 2020 60 60 40 4040 40 Fixed end actions Dept. of CE, GCE Kannur Dr.RajeshKN 7040 Fixed end actions
  • 71.
    80kN 0+16=16 kNm0 1616 kNm 40kN Combined (equivalent + actual) joint loads Dept. of CE, GCE Kannur Dr.RajeshKN 71 ( q ) j
  • 72.
    0⎧ ⎫ 0⎧⎫ 0⎧ ⎫ 0⎧ ⎫ ⎪ ⎪0 0 0 ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0 20 20 ⎧ ⎫ ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ 0 20 20 ⎧ ⎫ ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ 20 20 0 ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ ⎪ ⎪ 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ { } 0 60 60 RCA ⎪ ⎪ ⎪ ⎪⎪ ⎪ = −⎨ ⎬ ⎪ ⎪ ⎪ ⎪ { } 16 ; 0 0 JA ⎪ ⎪ −⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪ { } 0 ; 0 60 EA ⎪ ⎪ ⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪− { } { } { } 16 ; 0 60 C J EA A A ⎪ ⎪ −⎪ ⎪ = + = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪− 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪ 0 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 60 60 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40⎧ ⎫ ⎪ ⎪ 60 60 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40⎪ ⎪−⎩ ⎭ 80 0 ⎪ ⎪ −⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 0 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎩ ⎭ { } 80 16 FCA ⎪ ⎪ = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ 80 40 ⎪ ⎪ −⎪ ⎪ ⎪ ⎪−⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 72
  • 73.
    [ ] [] { } 1 D S A − =6. Joint displacements 1 706562.5 0 13125 40 − ⎡ ⎤ ⎧ ⎫ ⎪ ⎪ [ ] [ ] { }F FF FCD S A=6. Jo t d sp ace e ts 0 360451.39 1458.33 80 13125 1458.33 116666.67 16 ⎡ ⎤ ⎧ ⎫ ⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥ ⎪ ⎪− −⎢ ⎥⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦ ⎩ ⎭ 5 9 6 0.142 10 0.646 10 0.160 10 40 − − − ⎡ ⎤× − × − × ⎧ ⎫ ⎢ ⎥9 5 7 6 7 5 40 0.646 10 0.277 10 0.348 10 80 160 160 10 0 348 10 0 859 10 − − − − − − ⎡ ⎤ ⎧ ⎫ ⎢ ⎥ ⎪ ⎪ = − × × × −⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ −× × × ⎩ ⎭⎣ ⎦ 160.160 10 0.348 10 0.859 10⎢ ⎥− × × × ⎩ ⎭⎣ ⎦ 4 0.594 10− ⎧ ⎫× ⎪ ⎪3 3 0.222 10 0.147 10 − − ⎪ ⎪ = − ×⎨ ⎬ ⎪ ⎪− ×⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 73 ⎩ ⎭
  • 74.
    7. Member endactions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 75.
    Summary Direct stiffness method Summary •Introduction – element stiffness matrix – rotation transformation matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors – assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples)grid – space frame (without numerical examples) Dept. of CE, GCE Kannur Dr.RajeshKN 75
  • 76.
    • Problem X: 2 6 13 5 6 4 5 Dept. of CE, GCE Kannur Dr.RajeshKN 76
  • 77.
    0 0 EA EA⎡⎤ [ ]1 0 0 1 0 1 0 0 0 0 0 0 0 0 01 M L L S ⎡ ⎤ −⎢ ⎥ −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥ [ ]1 1 0 1 02 0 0 0 0 0 0 0 0 0 0 M EA EA L L ⎢ ⎥ −⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦0 0 0 0⎢ ⎥⎣ ⎦ [ ] [ ] [ ]2 3 4S S S= = =[ ] [ ] [ ]2 3 4M M MS S S 1 0 1 0 0 0 0 01 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 1 0 1 0 0 0 0 01 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ]5 0 0 0 01 1 0 1 02.83 0 0 0 0 MS ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦ [ ]6 0 0 0 01 1 0 1 02.83 0 0 0 0 MS ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 77 ⎣ ⎦ ⎣ ⎦
  • 78.
    Rotation matrices cos sin0 0 0 1 0 0 sin cos 0 0 1 0 0 0 θ θ θ θ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ [ ]1 90 sin cos 0 0 1 0 0 0 0 0 cos sin 0 0 0 1 TR θ θ θ θ θ= ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 sin cos 0 0 1 0θ θ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ 0 1 0 0−⎡ ⎤ ⎢ ⎥ 1 0 0 0 0 1 0 0 ⎡ ⎤ ⎢ ⎥ [ ]3 90 1 0 0 0 0 0 0 1 TR θ =− ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ [ ]2 0 0 1 0 0 0 0 1 0 0 0 0 1 TR θ = ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 0 0 1 0 ⎢ ⎥ ⎣ ⎦0 0 0 1 ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 79.
    [ ] 1 10 0 1 1 0 0 0 707R ⎡ ⎤ ⎢ ⎥− ⎢ ⎥=[ ] 1 0 0 0 0 1 0 0 R −⎡ ⎤ ⎢ ⎥− ⎢ ⎥ [ ]5 45 0.707 0 0 1 1 0 0 1 1 TR θ = ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ −⎣ ⎦ [ ]4 180 0 0 1 0 0 0 0 1 TR θ = ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ −⎣ ⎦⎣ ⎦ [ ] 1 1 0 0 1 1 0 0 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ]6 45 1 1 0 0 0.707 0 0 1 1 0 0 1 1 TR θ =− ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦0 0 1 1⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 79
  • 80.
    [ ] [] [ ][ ]T S R S R[ ] [ ] [ ][ ]1 1 1 1MS T M TS R S R= 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 01 T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= 0 0 0 1 1 0 1 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 1 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 0 0 0⎡ ⎤0 1 0 0 0 1 0 1− −⎡ ⎤ ⎡ ⎤ 0 1 0 11 0 0 0 02 ⎡ ⎤ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ 1 0 0 0 0 0 0 01 0 0 0 1 0 1 0 12 ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 1 0 1 ⎢ ⎥ −⎣ ⎦0 0 1 0 0 0 0 0 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 81.
    1 0 10−⎡ ⎤ [ ]2 1 0 1 0 0 0 0 01 1 0 1 02 MSS −⎡ ⎤ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥1 0 1 02 0 0 0 0 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ [ ] 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 01 T S − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]3 0 0 0 1 1 0 1 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 1 0 MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 01 −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 0 0 0 0 0 1 0 11 ⎡ ⎤ ⎢ ⎥1 0 0 0 0 0 0 01 0 0 0 1 0 1 0 12 0 0 1 0 0 0 0 0 ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 0 1 0 11 0 0 0 02 0 1 0 1 ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 81 0 0 1 0 0 0 0 0−⎣ ⎦ ⎣ ⎦ 0 1 0 1−⎣ ⎦
  • 82.
    1 0 10−⎡ ⎤ ⎢ ⎥ [ ]4 0 0 0 01 1 0 1 02 0 0 0 0 MSS ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦0 0 0 0⎣ ⎦ 1 1 0 0 1 0 1 0 1 1 0 0 T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ]5 1 1 0 0 0 0 0 0 1 1 0 01 0.707 0.707 0 0 1 1 1 0 1 0 0 0 1 12.83 MSS ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 1 1 0 0 0 0 0 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0.1766 0 0 1 1 1 1 1 1 − − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ 1 1 1 1 1 1 1 1 0.1766 1 1 1 1 − −⎡ ⎤ ⎢ ⎥− − ⎢ ⎥= ⎢ ⎥0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 1 1 1 1 1 1 1 1 − −⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 83.
    1 1 00 1 0 1 0 1 1 0 0 T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ [ ]6 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 01 0.707 0.707 0 0 1 1 1 0 1 0 0 0 1 12.83 MSS − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 1 0 1 0 0 0 1 12.83 0 0 1 1 0 0 0 0 0 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1 1 1 1 1 1 1 1 − −⎡ ⎤ ⎢ ⎥ 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 1 1 1 1 0.177 1 1 1 1 1 1 1 1 ⎢ ⎥− − ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ 1 1 0 0 0 0 0 0 0.177 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ 1 1 1 1⎣ ⎦0 0 1 1 0 0 0 0⎣ ⎦ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 84.
    Assembled global stiffnessmatrix 1 1 0 0.1766 0 0 0.1766 0 0 0.1766 0.1766 0 2 2 1 1 + + + + − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ g 1 1 0 0 0.1766 0 0.1766 0 0.1766 0.1766 0 0 2 2 1 1 0 0 0 0.1766 0 0 0.1766 0 0.1766 0.1766 2 2 1 1 + + + + − − − + + + − − − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 1 1 0 0 0 0.1766 0 0.1766 0 0 0.1766 0.1766 2 2 1 1 0.1766 0.1766 0 0 0.1766 0 0 0. 2 2 JS − + − + + − = − − − + + + + 1766 0 0 1 1 0 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥1 1 0.1766 0.1766 0 0 0 0 0.1766 0 0.1766 0 2 2 1 1 0 0.1766 0.1766 0 0 0 0.1766 0 0 0.1766 2 2 1 1 0 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766 ⎢ ⎥− − + + + + − ⎢ ⎥ ⎢ ⎥ ⎢ − − + + + − ⎥ ⎢ ⎥ ⎢ ⎥ + + +⎢ ⎥0 0 0.1766 0.1766 0 0 0 0.1766 0 0.1766 2 2 − − + − + +⎢ ⎥ ⎣ ⎦ 1 2 8 0D D D= = =Boundary conditions are: Dept. of CE, GCE Kannur Dr.RajeshKN 1 2 8 0D D DBoundary conditions are:
  • 85.
    0.677 -0.177 -0.5000.000 -0.177⎡ ⎤ ⎢ ⎥ Reduced stiffness matrix [ ] -0.177 0.677 0.000 0.000 0.177 -0.500 0.000 0.677 0.177 0.000FFS = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 0.000 0.000 0.177 0.677 0.000 -0.177 0.177 0.000 0.000 0.677 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 85
  • 86.
    5⎧ ⎫ ⎪ ⎪ {} 0 0FCA ⎪ ⎪ ⎪ ⎪⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ In this problem, the reduced load vector (in global coords) can be directly written as 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ { } [ ] { } 1 F FF FCD S A − = 24.144⎧ ⎫ ⎪ ⎪ 4.829 1.000 3.829 -1.000 1.000 5⎡ ⎤ ⎧ ⎫ ⎢ ⎥ ⎪ ⎪ 5.000 19.144 ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎨ ⎬ ⎪ = ⎪ 1.000 1.793 0.793 -0.207 -0.207 3.829 0.793 4.622 -1.207 0.793= 0 0 ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎨ ⎬ ⎢ ⎥ ⎪ ⎪ -5.000 5.000 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ -1.000 -0.207 -1.207 1.793 -0.207 0 1.000 -0.207 0.793 -0.207 1.793 0 ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN ⎣ ⎦ ⎩ ⎭
  • 87.
    Assignment Dept. of CE,GCE Kannur Dr.RajeshKN