ASA Assignment 
Analysis of indeterminate truss 
using flexibility method 
Prepared by: 
Upendra Pandey 
BT11CIV042
Objective 
Analyze given truss using flexibility 
method
Given: 
S.No. Member Length(m) θ (angle with 
horizontal) 
1. OA 5 53.13 
2. OB 4.123 75.96 
3. OC 4.272 69.44 
4. OD 5.65 45
Steps For Analysis 
 Calculation Of Static Degree Of Indeterminacy 
Of The Structure. 
 For The Given Problem, Static Degree Of 
Indeterminacy is 02. 
 External Indeterminacy=5 
 Internal Indeterminacy=-3 
 Selection Of Redundant Forces To Make The 
Structure Determinate. 
For Simplicity, Redundant Forces members 
Selected are:- OA and OD
1 Therefore, 
  
   
   
 
   
 
 
  
R 
OA 
R 
OD 
R 
R 
R 
2 
Standard Assumption :- 
Tensile Force = Positive 
Compressive Force= Negative
 Determinate truss analysis using given 
loading:
Member Force, P (KN) Nature 
OA 0 - 
OB 51.53 Tensile 
OC -21.53 Compressive 
OD 0 -
 Taking OA as redundant and applying OA 
as 1 KN.
Member Force(KN) Nature 
OA 1 Tensile 
OB -1.484 Compressive 
OC .683 Tensile 
OD 0 -
 Taking OD as redundant and applying OA 
as 1 KN.
Member Force(KN) Nature 
OA 0 - 
OB .729 Tensile 
OC -1.5 Compressive 
OD 1 Tensile
Tabulated Result for the truss analysis: 
Mem-ber 
L(m) P 
(KN) 
P1 
(KN) 
P2 
(KN 
) 
PP1L PP2L P1P1L P2P2L P1P2L 
OA 5 0 1 0 0 0 5 0 0 
OB 4.123 51.53 -1.48 .73 -315 154.9 9.08 2.19 -4.46 
OC 4.272 -21.35 .683 -1.5 -62.3 136.8 1.99 9.61 -4.38 
OD 5.66 0 0 1 0 0 0 5.65 0 
SUM: -377 291.7 16 17.44 -8.79
........(1) 
PP L 
1 375.88 
1 01 
AE AE 
R ROA 
 
     
.............(2) 
PP L 
2 290.63 
R 2  ROD   02 
  
AE AE
 
  
P P L 
AE AE 
f f 
P L 
AE AE 
f 
8.787 
16 
1 2 
12 21 
2 
1 
11 
 
 
   
P L 
AE AE 
f 
17.442 2 
2 
22  
Compatibility equation: 
f R f R 
     
1 
2 
11 1 12 2 01 
f R f R 
     
21 1 22 2 02 
Here, 1  2  0 
The Final Equation in Flexibility Matrix 
Form is :- 
   
1 377.58 
   
 
1 
 
R AE 
   
   
 
 
1 16 8.787 
  
 
 
291.7 
8.787 17.442 
2 
R 
AE
 On Solving We Get, 
 R1=ROA=19.827KN 
 R2=ROD= -6.67KN 
 The Final Force In Each Member Is given As 
 Final Force= P+P1R1+P2R2
Forces in members: 
Mem-ber 
P 
(KN) 
P1 
(KN) 
P2 
(KN) 
Final Force=P+P1R1+P2R2 
(KN) 
OA 0 1 0 19.827 (T) 
OB 51.53 -1.48 .73 17.24 (T) 
OC -21.4 .683 -1.5 2.19 (T) 
OD 0 0 1 -6.67 (C) 
Where T : Tensile 
C: Compressive
 Thank you!!!!

flexibility method

  • 1.
    ASA Assignment Analysisof indeterminate truss using flexibility method Prepared by: Upendra Pandey BT11CIV042
  • 2.
    Objective Analyze giventruss using flexibility method
  • 3.
    Given: S.No. MemberLength(m) θ (angle with horizontal) 1. OA 5 53.13 2. OB 4.123 75.96 3. OC 4.272 69.44 4. OD 5.65 45
  • 4.
    Steps For Analysis  Calculation Of Static Degree Of Indeterminacy Of The Structure.  For The Given Problem, Static Degree Of Indeterminacy is 02.  External Indeterminacy=5  Internal Indeterminacy=-3  Selection Of Redundant Forces To Make The Structure Determinate. For Simplicity, Redundant Forces members Selected are:- OA and OD
  • 5.
    1 Therefore,                R OA R OD R R R 2 Standard Assumption :- Tensile Force = Positive Compressive Force= Negative
  • 6.
     Determinate trussanalysis using given loading:
  • 7.
    Member Force, P(KN) Nature OA 0 - OB 51.53 Tensile OC -21.53 Compressive OD 0 -
  • 8.
     Taking OAas redundant and applying OA as 1 KN.
  • 9.
    Member Force(KN) Nature OA 1 Tensile OB -1.484 Compressive OC .683 Tensile OD 0 -
  • 10.
     Taking ODas redundant and applying OA as 1 KN.
  • 11.
    Member Force(KN) Nature OA 0 - OB .729 Tensile OC -1.5 Compressive OD 1 Tensile
  • 12.
    Tabulated Result forthe truss analysis: Mem-ber L(m) P (KN) P1 (KN) P2 (KN ) PP1L PP2L P1P1L P2P2L P1P2L OA 5 0 1 0 0 0 5 0 0 OB 4.123 51.53 -1.48 .73 -315 154.9 9.08 2.19 -4.46 OC 4.272 -21.35 .683 -1.5 -62.3 136.8 1.99 9.61 -4.38 OD 5.66 0 0 1 0 0 0 5.65 0 SUM: -377 291.7 16 17.44 -8.79
  • 13.
    ........(1) PP L 1 375.88 1 01 AE AE R ROA       .............(2) PP L 2 290.63 R 2  ROD   02   AE AE
  • 14.
       P P L AE AE f f P L AE AE f 8.787 16 1 2 12 21 2 1 11      P L AE AE f 17.442 2 2 22  
  • 15.
    Compatibility equation: fR f R      1 2 11 1 12 2 01 f R f R      21 1 22 2 02 Here, 1  2  0 The Final Equation in Flexibility Matrix Form is :-    1 377.58     1  R AE         1 16 8.787     291.7 8.787 17.442 2 R AE
  • 16.
     On SolvingWe Get,  R1=ROA=19.827KN  R2=ROD= -6.67KN  The Final Force In Each Member Is given As  Final Force= P+P1R1+P2R2
  • 17.
    Forces in members: Mem-ber P (KN) P1 (KN) P2 (KN) Final Force=P+P1R1+P2R2 (KN) OA 0 1 0 19.827 (T) OB 51.53 -1.48 .73 17.24 (T) OC -21.4 .683 -1.5 2.19 (T) OD 0 0 1 -6.67 (C) Where T : Tensile C: Compressive
  • 18.