SlideShare a Scribd company logo
EE 369
POWER SYSTEM ANALYSIS
Lecture 12
Power Flow
Tom Overbye and Ross Baldick
1
Announcements
• Homework 9 is 3.20, 3.23, 3.25, 3.27, 3.28,
3.29, 3.35, 3.38, 3.39, 3.41, 3.44, 3.47; due
11/5.
• Midterm 2, Thursday, November 12, covering
up to and including material in HW9
• Homework 10 is: 3.49, 3.55, 3.57, 6.2, 6.9,
6.13, 6.14, 6.18, 6.19, 6.20; due 11/19. (Use
infinity norm and epsilon = 0.01 for any
problems where norm or stopping criterion
not specified.) 2
Transmission System Planning
Source: Federal Energy Regulatory Commission 3
ERCOT
•4Source: US Energy Information Administration
ERCOT
• Has considerable wind and expecting
considerable more!
• “Competitive Renewable Energy Zones” study
identified most promising wind sites,
• ERCOT ISO planned approximately $5 billion
(original estimate, now closer to $7 billion) of
new transmission to support an additional 11
GW of wind:
– Used tools such as power flow to identify whether
plan could accommodate wind generation.
• Built by transmission companies.
• Mostly completed by 2014. 5
CREZ Transmission Lines
6
NR Application to Power Flow
*
* * *
1 1
We first need to rewrite complex power equations
as equations with real coefficients (we've seen this earlier):
These can be derived by defining
n n
i i i i ik k i ik k
k k
ik ik ik
i
S V I V Y V V Y V
Y G jB
V
= =
 
= = = ÷
 
+
∑ ∑
@
Recall e cos sin
ij
i i i
ik i k
j
V e V
j
θ
θ
θ
θ θ θ
θ θ
= ∠
−
= +
@
@
7
Real Power Balance Equations
* *
1 1
1
1
1
( )
(cos sin )( )
Resolving into the real and imaginary parts:
( cos sin )
( sin
ik
n n
j
i i i i ik k i k ik ik
k k
n
i k ik ik ik ik
k
n
i Gi Di i k ik ik ik ik
k
n
i Gi Di i k ik ik
k
S P jQ V Y V V V e G jB
V V j G jB
P P P V V G B
Q Q Q V V G
θ
θ θ
θ θ
θ
= =
=
=
=
= + = = −
= + −
= − = +
= − =
∑ ∑
∑
∑
∑ cos )ik ikB θ−
8
Newton-Raphson Power Flow
In the Newton-Raphson power flow we use Newton's
method to determine the voltage magnitude and angle at
each bus in the power system that satisfies power balance.
We need to solve the power balance equ
1
1
ations:
( cos sin ) 0
( sin cos ) 0
n
i k ik ik ik ik Gi Di
k
n
i k ik ik ik ik Gi Di
k
V V G B P P
V V G B Q Q
θ θ
θ θ
=
=
+ − + =
− − + =
∑
∑
9
Power Balance Equations
•10
1
1
For convenience, write:
( ) ( cos sin )
( ) ( sin cos )
The power balance equations are then:
( ) 0
( ) 0
n
i i k ik ik ik ik
k
n
i i k ik ik ik ik
k
i Gi Di
i Gi Di
P V V G B
Q V V G B
P P P
Q Q Q
θ θ
θ θ
=
=
= +
= −
− + =
− + =
∑
∑
x
x
x
x
Power Balance Equations
• Note that Pi( ) and Qi( ) mean the functions
that expresses flow from bus i into the system
in terms of voltage magnitudes and angles,
• While PGi, PDi, QGi, QDi mean the generations and
demand at the bus.
• For a system with a slack bus and the rest PQ
buses, the power flow problem is to use the
power balance equations to solve for the
unknown voltage magnitudes and angles in
terms of the given bus generations and
demands, and solve for the real and reactive
injection at the slack bus. •11
Power Flow Variables
2
n
2
Assume the slack bus is the first bus (with a fixed
voltage angle/magnitude). We then need to determine
the voltage angle/magnitude at the other buses.
We must solve ( ) , where:
n
V
V
θ
θ
=




=

f x 0
x
M
M
2 2 2
2 2 2
( )
( )
( )
( )
( )
G D
n Gn Dn
G D
n Gn Dn
P P P
P P P
Q Q Q
Q Q Q
− +  
  
  
− +  
=   − +
   
   
   − + 
x
x
f x
x
x
M
M
12
N-R Power Flow Solution
(0)
( )
( 1) ( ) ( ) 1 ( )
The power flow is solved using the same procedure
discussed previously for general equations:
For 0; make an initial guess of ,
While ( ) Do
[ ( )] ( )
1
End
v
v v v v
v
v v
ε
+ −
=
>
= −
= +
x x
f x
x x J x f x
13
Power Flow Jacobian Matrix
1 1 1
1 2 2 2
2 2 2
1 2 2 2
2 2 2 2 2 2
1 2
The most difficult part of the algorithm is determining
and factorizing the Jacobian matrix, ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )
n
n
n n n
f f f
x x x
f f f
x x x
f f f
x x x
−
−
− − −
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂=
∂ ∂ ∂
∂ ∂ ∂
J x
x x x
x x x
J x
x x
L
L
M O O M
L
2 2
( )
n−
 
 
 
 
 
 
 
 
 
 
x
14
Power Flow Jacobian Matrix,
cont’d
1
Jacobian elements are calculated by differentiating
each function, ( ), with respect to each variable.
For example, if ( ) is the bus real power equation
( ) ( cos sin )
i
i
n
i i k ik ik ik ik Gi
k
f x
f x i
f x V V G B P Pθ θ
=
= + − +∑
1
( ) ( sin cos )
( ) ( sin cos ) ( )
Di
n
i
i k ik ik ik ik
i k
k i
i
i j ij ij ij ij
j
f
x V V G B
f
x V V G B j i
θ θ
θ
θ θ
θ
=
≠
∂
= − +
∂
∂
= − ≠
∂
∑
15
Two Bus Newton-Raphson
Example
Line Z = 0.1j
On e Tw o1.0 00 pu 1.00 0 pu
200 MW
100 MVR
0 MW
0 MVR
For the two bus power system shown below, use the
Newton-Raphson power flow to determine the
voltage magnitude and angle at bus two. Assume
that bus one is the slack and SBase = 100 MVA.
2
2
10 10
Unkown: , Also,
10 10
bus
j j
V j j
θ −   
= =   −  
x Y
16
Two Bus Example, cont’d
1
1
General power balance equations:
( cos sin ) 0
( sin cos ) 0
For bus two, the power balance equations are
(load real power is 2.0 per unit,
while react
n
i k ik ik ik ik Gi Di
k
n
i k ik ik ik ik Gi Di
k
V V G B P P
V V G B Q Q
θ θ
θ θ
=
=
+ − + =
− − + =
∑
∑
2 1 2
2
2 1 2 2
ive power is 1.0 per unit):
(10sin ) 2.0 0
( 10cos ) (10) 1.0 0
V V
V V V
θ
θ
+ =
− + + = 17
Two Bus Example, cont’d
2 2 2
2
2 2 2 2
2 2
2 2
2 2
2 2
2 2 2
2 2 2 2
( ) 2.0 (10sin ) 2.0
( ) 1.0 ( 10cos ) (10) 1.0
Now calculate the power flow Jacobian
( ) ( )
( )
( ) ( )
10 cos 10sin
10 sin 10cos 20
P V
Q V V
P P
x x
V
Q Q
x x
V
V
V V
θ
θ
θ
θ
θ θ
θ θ
+ = +
+ = − + +
∂ ∂ 
 ∂ ∂
 =
∂ ∂ 
 ∂ ∂ 
 
=  − + 
x
x
J x
18
Two Bus Example, First Iteration
(0)
2(0)
(0)
2
(0) (0)
2 2
(0)
2(0) (0) (0)
2 2 2
(0) (0) (0)
2 2 2(0)
(0) (0)
2 2
0
For 0, guess . Calculate:
1
(10sin ) 2.0 2.0
( )
1.0( 10cos ) (10) 1.0
10 cos 10sin
( )
10 sin 10cos
v
V
V
V V
V
V
θ
θ
θ
θ θ
θ
   
= = =   
   
 +
  = =     − + + 
=
−
x
f x
J x
(0) (0)
2 2
1
(1)
10 0
0 1020
0 10 0 2.0 0.2
Solve
1 0 10 1.0 0.9
Vθ
−
 
   =     + 
−       
= − =       
       
x
19
Two Bus Example, Next Iterations
(1)
2
(1)
1
(2)
0.9(10sin( 0.2)) 2.0 0.212
( )
0.2790.9( 10cos( 0.2)) 0.9 10 1.0
8.82 1.986
( )
1.788 8.199
0.2 8.82 1.986 0.212 0.233
0.9 1.788 8.199 0.279 0.8586
(
−
− +   
= =   − − + × +   
− 
=  − 
− − −       
= − =       −       
f x
J x
x
f (2) (3)
(3)
2
0.0145 0.236
)
0.0190 0.8554
0.0000906
( ) Close enough! 0.8554 13.52
0.0001175
V
−   
= =   
   
 
= = ∠ − ° 
 
x x
f x
20
Two Bus Solved Values
Line Z = 0 .1 j
On e T w o1 .0 0 0 p u 0 .8 5 5 p u
2 0 0 MW
1 0 0 MVR
2 0 0 .0 MW
1 6 8 .3 MVR
- 1 3 .5 2 2 De g
2 0 0 .0 M W
1 6 8 .3 M VR
- 2 0 0 .0 M W
- 1 0 0 .0 M VR
Once the voltage angle and magnitude at bus 2 are
known we can calculate all the other system values,
such as the line flows and the generator real and
reactive power output
21
Two Bus Case Low Voltage Solution
(0)
(0) (0)
2 2
(0)
(0) (0) (0
2 2 2
This case actually has two solutions! The second
"low voltage" is found by using a low initial guess.
0
Set 0, guess . Calculate:
0.25
(10sin ) 2.0
( )
( 10cos )
v
V
V V
θ
θ
 
= =  
 
+
=
− +
x
f x 2)
(0) (0) (0)
2 2 2(0)
(0) (0) (0) (0)
2 2 2 2
2
0.875(10) 1.0
10 cos 10sin 2.5 0
( )
0 510 sin 10cos 20
V
V V
θ θ
θ θ
 
   =    − + 
 
  = =  −   − + 
J x
22
Low Voltage Solution, cont'd
1
(1)
(2) (2) (3)
0 2.5 0 2 0.8
Solve
0.25 0 5 0.875 0.075
1.462 1.42 0.921
( )
0.534 0.2336 0.220
−
−       
= − =       − −       
− −     
= = =     
     
x
f x x x
Line Z = 0.1j
One Tw o1 .0 0 0 pu 0 .2 6 1 pu
200 MW
100 MVR
200.0 MW
831.7 MVR
-4 9 .9 1 4 Deg
2 0 0 .0 MW
8 3 1 .7 MVR
-2 0 0.0 MW
-1 0 0.0 MVR
Low voltage solution
23
Two Bus Region of Convergence
Graph shows the region of convergence for different initial
guesses of bus 2 angle (horizontal axis) and magnitude
(vertical axis).
Red region
converges
to the high
voltage
solution,
while the
yellow region
converges
to the low
voltage
solution
Maximum
of 15
iterations24
PV Buses
Since the voltage magnitude at PV buses is
fixed there is no need to explicitly include
these voltages in x nor write the reactive
power balance equations:
– the reactive power output of the generator
varies to maintain the fixed terminal voltage
(within limits), so we can just set the reactive
power product to whatever is needed.
– An alternative is these variations/equations can
be included by just writing the explicit voltage
constraint for the generator bus:
|Vi | – Visetpoint= 0 25
Three Bus PV Case Example
Line Z = 0.1j
Line Z = 0.1j Line Z = 0.1j
One Tw o1 .0 0 0 pu
0 .9 4 1 pu
200 MW
100 MVR
170.0 MW
68.2 MVR
-7 .4 6 9 Deg
Thr ee 1 .0 0 0 pu
30 MW
63 MVR
2 2 2
3 3 3
2 2 2
For this three bus case we have
( )
( ) ( ) 0
( )
D
G
D
P P
P P
V Q Q
θ
θ
+   
   = = − =
   
+     
x
x f x x
x
26
PV Buses
• With Newton-Raphson, PV buses means that
there are less unknown variables we need to
calculate explicitly and less equations we need
to satisfy explicitly.
• Reactive power balance is satisfied implicitly by
choosing reactive power production to be
whatever is needed, once we have a solved case
(like real and reactive power at the slack bus).
• Contrast to Gauss iterations where PV buses
complicated the algorithm. 27
Modeling Voltage Dependent Load
So far we've assumed that the load is independent of
the bus voltage (i.e., constant power). However, the
power flow can be easily extended to include voltage
dependence with both the real and reactive
1
1
load. This
is done by making and a function of :
( cos sin ) ( ) 0
( sin cos ) ( ) 0
Di Di i
n
i k ik ik ik ik Gi Di i
k
n
i k ik ik ik ik Gi Di i
k
P Q V
V V G B P P V
V V G B Q Q V
θ θ
θ θ
=
=
+ − + =
− − + =
∑
∑
28
Voltage Dependent Load Example
2 2
2 2 2 2 2
2 2 2
2 2 2 2 2 2
In previous two bus example now assume the load is
constant impedance, with corresponding per unit
admittance of 2.0 1.0:
( ) 2.0 (10sin ) 2.0 0
( ) 1.0 ( 10cos ) (10) 1.0 0
Now
j
P V V V
Q V V V V
θ
θ
+
+ = + =
+ = − + + =
x
x
2 2 2 2
2 2 2 2 2
calculate the power flow Jacobian
10 cos 10sin 4.0
( )
10 sin 10cos 20 2.0
V V
V V V
θ θ
θ θ
+ 
=  − + + 
J x
29
Voltage Dependent Load, cont'd
(0)
2(0)
(0)
2
2(0) (0) (0)
2 2 2(0)
2 2(0) (0) (0) (0)
2 2 2 2
(0)
(1)
0
Again for 0, guess . Calculate:
1
(10sin ) 2.0 2.0
( )
1.0
( 10cos ) (10) 1.0
10 4
( )
0 12
0
Solve
1
v
V
V V
V V V
θ
θ
θ
   
= = =   
   
 +   = =     − + +  
 
=  
 

= 

x
f x
J x
x
1
10 4 2.0 0.1667
0 12 1.0 0.9167
−
−      
− =      
      
30
Voltage Dependent Load, cont'd
Line Z = 0.1j
One Tw o1 .0 0 0 pu
0 .8 9 4 pu
160 MW
80 MVR
160.0 MW
120.0 MVR
-1 0 .3 0 4 Deg
1 6 0 .0 MW
1 2 0 .0 MVR
-1 6 0 .0 MW
-8 0 .0 MVR
With constant impedance load the MW/MVAr load at
bus 2 varies with the square of the bus 2 voltage
magnitude. This if the voltage level is less than 1.0,
the load is lower than 200/100 MW/MVAr.
31
In practice, load is the sum of constant power,
constant impedance, and, in some cases,
constant current load terms: “ZIP” load.
Solving Large Power Systems
Most difficult computational task is inverting the
Jacobian matrix (or solving the update equation):
– factorizing a full matrix is an order n3
operation, meaning
the amount of computation increases with the cube of
the size of the problem.
– this amount of computation can be decreased
substantially by recognizing that since Ybus is a sparse
matrix, the Jacobian is also a sparse matrix.
– using sparse matrix methods results in a computational
order of about n1.5
.
– this is a substantial savings when solving systems with
tens of thousands of buses. 32
Newton-Raphson Power Flow
Advantages
– fast convergence as long as initial guess is close to
solution
– large region of convergence
Disadvantages
– each iteration takes much longer than a Gauss-Seidel
iteration
– more complicated to code, particularly when
implementing sparse matrix algorithms
Newton-Raphson algorithm is very common in
power flow analysis.
33

More Related Content

What's hot

Lecture 9
Lecture 9Lecture 9
Lecture 9
Forward2025
 
Lecture 18
Lecture 18Lecture 18
Lecture 18
Forward2025
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
Forward2025
 
analisa sistem tenaga lanjut
analisa sistem tenaga lanjutanalisa sistem tenaga lanjut
analisa sistem tenaga lanjut
suparman unkhair
 
Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagasuparman unkhair
 
Gauss Seidel Method of Power Flow
Gauss Seidel Method of Power FlowGauss Seidel Method of Power Flow
Gauss Seidel Method of Power Flow
YunusAhmad9
 
ECNG 6503 #4
ECNG 6503 #4ECNG 6503 #4
ECNG 6503 #4
Chandrabhan Sharma
 
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5.	Newton Raphson load flow analysis Matlab SoftwareExp 5 (1)5.	Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Shweta Yadav
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperVasista Vinuthan
 
ECNG 6509 Switchgear Technology
ECNG 6509    Switchgear TechnologyECNG 6509    Switchgear Technology
ECNG 6509 Switchgear TechnologyChandrabhan Sharma
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
Carlo Magno
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
umavijay
 
ECNG 6509 Transformer Technology
ECNG 6509  Transformer TechnologyECNG 6509  Transformer Technology
ECNG 6509 Transformer TechnologyChandrabhan Sharma
 
Electrical circuits & fields
Electrical circuits & fieldsElectrical circuits & fields
Electrical circuits & fields
Kumaraswamy81
 

What's hot (20)

Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Lecture 18
Lecture 18Lecture 18
Lecture 18
 
ECNG 3013 D
ECNG 3013 DECNG 3013 D
ECNG 3013 D
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
analisa sistem tenaga lanjut
analisa sistem tenaga lanjutanalisa sistem tenaga lanjut
analisa sistem tenaga lanjut
 
Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenaga
 
ECNG 3013 E
ECNG 3013 EECNG 3013 E
ECNG 3013 E
 
ECNG 3013 B
ECNG 3013 BECNG 3013 B
ECNG 3013 B
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
Gauss Seidel Method of Power Flow
Gauss Seidel Method of Power FlowGauss Seidel Method of Power Flow
Gauss Seidel Method of Power Flow
 
ECNG 3013 C
ECNG 3013 CECNG 3013 C
ECNG 3013 C
 
ECNG 6503 #4
ECNG 6503 #4ECNG 6503 #4
ECNG 6503 #4
 
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5.	Newton Raphson load flow analysis Matlab SoftwareExp 5 (1)5.	Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
 
ECNG 6509 Switchgear Technology
ECNG 6509    Switchgear TechnologyECNG 6509    Switchgear Technology
ECNG 6509 Switchgear Technology
 
FinalReport
FinalReportFinalReport
FinalReport
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
ECNG 6509 Transformer Technology
ECNG 6509  Transformer TechnologyECNG 6509  Transformer Technology
ECNG 6509 Transformer Technology
 
Electrical circuits & fields
Electrical circuits & fieldsElectrical circuits & fields
Electrical circuits & fields
 

Viewers also liked

How Much Trouble is Early Foul Trouble?
How Much Trouble is Early Foul Trouble?How Much Trouble is Early Foul Trouble?
How Much Trouble is Early Foul Trouble?
Sloan Sports Conference
 
new visa application form
new visa application formnew visa application form
new visa application formIDW - Iran
 
民數記18-25
民數記18-25民數記18-25
民數記18-25
Kwan-yuet Ho
 
Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDBDeep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB
Amazon Web Services
 
Tuning PI controllers for stable processes with specifications on gain and ph...
Tuning PI controllers for stable processes with specifications on gain and ph...Tuning PI controllers for stable processes with specifications on gain and ph...
Tuning PI controllers for stable processes with specifications on gain and ph...
ISA Interchange
 
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
Francisco Gonzalez-Longatt
 
What executive coaching can do for engineers, scientists, tech and other real...
What executive coaching can do for engineers, scientists, tech and other real...What executive coaching can do for engineers, scientists, tech and other real...
What executive coaching can do for engineers, scientists, tech and other real...
Dr. Martina Carroll-Garrison "Dr Tina"
 
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client JourneysAccount-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
Demandbase
 
Data Security In Relational Database Management System
Data Security In Relational Database Management SystemData Security In Relational Database Management System
Data Security In Relational Database Management System
CSCJournals
 
Keys to Sales and Marketing Alignment Success
Keys to Sales and Marketing Alignment SuccessKeys to Sales and Marketing Alignment Success
Keys to Sales and Marketing Alignment Success
Demandbase
 
El Modernismo Y Antonio Gaudí
El Modernismo Y Antonio GaudíEl Modernismo Y Antonio Gaudí
El Modernismo Y Antonio Gaudí
Tomás Pérez Molina
 

Viewers also liked (13)

KOLAPO CV
KOLAPO CVKOLAPO CV
KOLAPO CV
 
How Much Trouble is Early Foul Trouble?
How Much Trouble is Early Foul Trouble?How Much Trouble is Early Foul Trouble?
How Much Trouble is Early Foul Trouble?
 
new visa application form
new visa application formnew visa application form
new visa application form
 
10a--EDPA_PerUnit.pptx
10a--EDPA_PerUnit.pptx10a--EDPA_PerUnit.pptx
10a--EDPA_PerUnit.pptx
 
民數記18-25
民數記18-25民數記18-25
民數記18-25
 
Deep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDBDeep Dive on Amazon DynamoDB
Deep Dive on Amazon DynamoDB
 
Tuning PI controllers for stable processes with specifications on gain and ph...
Tuning PI controllers for stable processes with specifications on gain and ph...Tuning PI controllers for stable processes with specifications on gain and ph...
Tuning PI controllers for stable processes with specifications on gain and ph...
 
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
 
What executive coaching can do for engineers, scientists, tech and other real...
What executive coaching can do for engineers, scientists, tech and other real...What executive coaching can do for engineers, scientists, tech and other real...
What executive coaching can do for engineers, scientists, tech and other real...
 
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client JourneysAccount-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
Account-Based Marketing: Lessons In Scalability & Impact from 2 Client Journeys
 
Data Security In Relational Database Management System
Data Security In Relational Database Management SystemData Security In Relational Database Management System
Data Security In Relational Database Management System
 
Keys to Sales and Marketing Alignment Success
Keys to Sales and Marketing Alignment SuccessKeys to Sales and Marketing Alignment Success
Keys to Sales and Marketing Alignment Success
 
El Modernismo Y Antonio Gaudí
El Modernismo Y Antonio GaudíEl Modernismo Y Antonio Gaudí
El Modernismo Y Antonio Gaudí
 

Similar to Lecture 12

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
Nazrul Kabir
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
LucasMogaka
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
Zahid Yousaf
 
Load flow study Part-II
Load flow study Part-IILoad flow study Part-II
Load flow study Part-II
Asif Jamadar
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
Godspower Bruno, GMNSE
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
Godspower Bruno, GMNSE
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
Godspower Bruno, GMNSE
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
muhammadzaid733820
 
ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptx
PrasenjitDey49
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
MohammedAhmed66819
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-I
Asif Jamadar
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
Abinaya Saraswathy T
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
BinodKumarSahu5
 
APSA LEC 9
APSA LEC 9APSA LEC 9
APSA LEC 9
mehmoodtahir1
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
Ahmed359095
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
DrOmarShAlyozbaky
 
Unit1 and 2 sample solutions
Unit1 and 2 sample solutionsUnit1 and 2 sample solutions
Unit1 and 2 sample solutionsAbha Tripathi
 
Unit1 And 2 Sample Solutions
Unit1 And 2 Sample SolutionsUnit1 And 2 Sample Solutions
Unit1 And 2 Sample Solutions
Abha Tripathi
 
Computer-Methods-in-Power-Systems.pptx
Computer-Methods-in-Power-Systems.pptxComputer-Methods-in-Power-Systems.pptx
Computer-Methods-in-Power-Systems.pptx
Godspower Bruno, GMNSE
 

Similar to Lecture 12 (20)

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
Load flow study Part-II
Load flow study Part-IILoad flow study Part-II
Load flow study Part-II
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptx
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-I
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
 
APSA LEC 9
APSA LEC 9APSA LEC 9
APSA LEC 9
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Unit1 and 2 sample solutions
Unit1 and 2 sample solutionsUnit1 and 2 sample solutions
Unit1 and 2 sample solutions
 
Unit1 And 2 Sample Solutions
Unit1 And 2 Sample SolutionsUnit1 And 2 Sample Solutions
Unit1 And 2 Sample Solutions
 
Computer-Methods-in-Power-Systems.pptx
Computer-Methods-in-Power-Systems.pptxComputer-Methods-in-Power-Systems.pptx
Computer-Methods-in-Power-Systems.pptx
 

More from Forward2025

Lecture 6
Lecture 6Lecture 6
Lecture 6
Forward2025
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
Forward2025
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
Forward2025
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
Forward2025
 
Lecture 17
Lecture 17Lecture 17
Lecture 17
Forward2025
 
Lecture 16
Lecture 16Lecture 16
Lecture 16
Forward2025
 
Lecture 15
Lecture 15Lecture 15
Lecture 15
Forward2025
 
Radar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measuresRadar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measures
Forward2025
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radar
Forward2025
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receivers
Forward2025
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2
Forward2025
 
Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1
Forward2025
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
Forward2025
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
Forward2025
 
Radar 2009 a 12 clutter rejection basics and mti
Radar 2009 a 12 clutter rejection   basics and mtiRadar 2009 a 12 clutter rejection   basics and mti
Radar 2009 a 12 clutter rejection basics and mti
Forward2025
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
Forward2025
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1
Forward2025
 
Radar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdfRadar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdf
Forward2025
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
Forward2025
 
Radar 2009 a 8 antennas 1
Radar 2009 a 8 antennas 1Radar 2009 a 8 antennas 1
Radar 2009 a 8 antennas 1
Forward2025
 

More from Forward2025 (20)

Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Lecture 17
Lecture 17Lecture 17
Lecture 17
 
Lecture 16
Lecture 16Lecture 16
Lecture 16
 
Lecture 15
Lecture 15Lecture 15
Lecture 15
 
Radar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measuresRadar 2009 a 19 electronic counter measures
Radar 2009 a 19 electronic counter measures
 
Radar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radarRadar 2009 a 18 synthetic aperture radar
Radar 2009 a 18 synthetic aperture radar
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receivers
 
Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2Radar 2009 a 16 parameter estimation and tracking part2
Radar 2009 a 16 parameter estimation and tracking part2
 
Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1Radar 2009 a 15 parameter estimation and tracking part 1
Radar 2009 a 15 parameter estimation and tracking part 1
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
 
Radar 2009 a 12 clutter rejection basics and mti
Radar 2009 a 12 clutter rejection   basics and mtiRadar 2009 a 12 clutter rejection   basics and mti
Radar 2009 a 12 clutter rejection basics and mti
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1
 
Radar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdfRadar 2009 a 10 radar clutter.2pdf
Radar 2009 a 10 radar clutter.2pdf
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 
Radar 2009 a 8 antennas 1
Radar 2009 a 8 antennas 1Radar 2009 a 8 antennas 1
Radar 2009 a 8 antennas 1
 

Recently uploaded

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 

Recently uploaded (20)

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 

Lecture 12

  • 1. EE 369 POWER SYSTEM ANALYSIS Lecture 12 Power Flow Tom Overbye and Ross Baldick 1
  • 2. Announcements • Homework 9 is 3.20, 3.23, 3.25, 3.27, 3.28, 3.29, 3.35, 3.38, 3.39, 3.41, 3.44, 3.47; due 11/5. • Midterm 2, Thursday, November 12, covering up to and including material in HW9 • Homework 10 is: 3.49, 3.55, 3.57, 6.2, 6.9, 6.13, 6.14, 6.18, 6.19, 6.20; due 11/19. (Use infinity norm and epsilon = 0.01 for any problems where norm or stopping criterion not specified.) 2
  • 3. Transmission System Planning Source: Federal Energy Regulatory Commission 3
  • 4. ERCOT •4Source: US Energy Information Administration
  • 5. ERCOT • Has considerable wind and expecting considerable more! • “Competitive Renewable Energy Zones” study identified most promising wind sites, • ERCOT ISO planned approximately $5 billion (original estimate, now closer to $7 billion) of new transmission to support an additional 11 GW of wind: – Used tools such as power flow to identify whether plan could accommodate wind generation. • Built by transmission companies. • Mostly completed by 2014. 5
  • 7. NR Application to Power Flow * * * * 1 1 We first need to rewrite complex power equations as equations with real coefficients (we've seen this earlier): These can be derived by defining n n i i i i ik k i ik k k k ik ik ik i S V I V Y V V Y V Y G jB V = =   = = = ÷   + ∑ ∑ @ Recall e cos sin ij i i i ik i k j V e V j θ θ θ θ θ θ θ θ = ∠ − = + @ @ 7
  • 8. Real Power Balance Equations * * 1 1 1 1 1 ( ) (cos sin )( ) Resolving into the real and imaginary parts: ( cos sin ) ( sin ik n n j i i i i ik k i k ik ik k k n i k ik ik ik ik k n i Gi Di i k ik ik ik ik k n i Gi Di i k ik ik k S P jQ V Y V V V e G jB V V j G jB P P P V V G B Q Q Q V V G θ θ θ θ θ θ = = = = = = + = = − = + − = − = + = − = ∑ ∑ ∑ ∑ ∑ cos )ik ikB θ− 8
  • 9. Newton-Raphson Power Flow In the Newton-Raphson power flow we use Newton's method to determine the voltage magnitude and angle at each bus in the power system that satisfies power balance. We need to solve the power balance equ 1 1 ations: ( cos sin ) 0 ( sin cos ) 0 n i k ik ik ik ik Gi Di k n i k ik ik ik ik Gi Di k V V G B P P V V G B Q Q θ θ θ θ = = + − + = − − + = ∑ ∑ 9
  • 10. Power Balance Equations •10 1 1 For convenience, write: ( ) ( cos sin ) ( ) ( sin cos ) The power balance equations are then: ( ) 0 ( ) 0 n i i k ik ik ik ik k n i i k ik ik ik ik k i Gi Di i Gi Di P V V G B Q V V G B P P P Q Q Q θ θ θ θ = = = + = − − + = − + = ∑ ∑ x x x x
  • 11. Power Balance Equations • Note that Pi( ) and Qi( ) mean the functions that expresses flow from bus i into the system in terms of voltage magnitudes and angles, • While PGi, PDi, QGi, QDi mean the generations and demand at the bus. • For a system with a slack bus and the rest PQ buses, the power flow problem is to use the power balance equations to solve for the unknown voltage magnitudes and angles in terms of the given bus generations and demands, and solve for the real and reactive injection at the slack bus. •11
  • 12. Power Flow Variables 2 n 2 Assume the slack bus is the first bus (with a fixed voltage angle/magnitude). We then need to determine the voltage angle/magnitude at the other buses. We must solve ( ) , where: n V V θ θ =     =  f x 0 x M M 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) G D n Gn Dn G D n Gn Dn P P P P P P Q Q Q Q Q Q − +         − +   =   − +            − +  x x f x x x M M 12
  • 13. N-R Power Flow Solution (0) ( ) ( 1) ( ) ( ) 1 ( ) The power flow is solved using the same procedure discussed previously for general equations: For 0; make an initial guess of , While ( ) Do [ ( )] ( ) 1 End v v v v v v v v ε + − = > = − = + x x f x x x J x f x 13
  • 14. Power Flow Jacobian Matrix 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 The most difficult part of the algorithm is determining and factorizing the Jacobian matrix, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n n n f f f x x x f f f x x x f f f x x x − − − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= ∂ ∂ ∂ ∂ ∂ ∂ J x x x x x x x J x x x L L M O O M L 2 2 ( ) n−                     x 14
  • 15. Power Flow Jacobian Matrix, cont’d 1 Jacobian elements are calculated by differentiating each function, ( ), with respect to each variable. For example, if ( ) is the bus real power equation ( ) ( cos sin ) i i n i i k ik ik ik ik Gi k f x f x i f x V V G B P Pθ θ = = + − +∑ 1 ( ) ( sin cos ) ( ) ( sin cos ) ( ) Di n i i k ik ik ik ik i k k i i i j ij ij ij ij j f x V V G B f x V V G B j i θ θ θ θ θ θ = ≠ ∂ = − + ∂ ∂ = − ≠ ∂ ∑ 15
  • 16. Two Bus Newton-Raphson Example Line Z = 0.1j On e Tw o1.0 00 pu 1.00 0 pu 200 MW 100 MVR 0 MW 0 MVR For the two bus power system shown below, use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and SBase = 100 MVA. 2 2 10 10 Unkown: , Also, 10 10 bus j j V j j θ −    = =   −   x Y 16
  • 17. Two Bus Example, cont’d 1 1 General power balance equations: ( cos sin ) 0 ( sin cos ) 0 For bus two, the power balance equations are (load real power is 2.0 per unit, while react n i k ik ik ik ik Gi Di k n i k ik ik ik ik Gi Di k V V G B P P V V G B Q Q θ θ θ θ = = + − + = − − + = ∑ ∑ 2 1 2 2 2 1 2 2 ive power is 1.0 per unit): (10sin ) 2.0 0 ( 10cos ) (10) 1.0 0 V V V V V θ θ + = − + + = 17
  • 18. Two Bus Example, cont’d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) 2.0 (10sin ) 2.0 ( ) 1.0 ( 10cos ) (10) 1.0 Now calculate the power flow Jacobian ( ) ( ) ( ) ( ) ( ) 10 cos 10sin 10 sin 10cos 20 P V Q V V P P x x V Q Q x x V V V V θ θ θ θ θ θ θ θ + = + + = − + + ∂ ∂   ∂ ∂  = ∂ ∂   ∂ ∂    =  − +  x x J x 18
  • 19. Two Bus Example, First Iteration (0) 2(0) (0) 2 (0) (0) 2 2 (0) 2(0) (0) (0) 2 2 2 (0) (0) (0) 2 2 2(0) (0) (0) 2 2 0 For 0, guess . Calculate: 1 (10sin ) 2.0 2.0 ( ) 1.0( 10cos ) (10) 1.0 10 cos 10sin ( ) 10 sin 10cos v V V V V V V θ θ θ θ θ θ     = = =         +   = =     − + +  = − x f x J x (0) (0) 2 2 1 (1) 10 0 0 1020 0 10 0 2.0 0.2 Solve 1 0 10 1.0 0.9 Vθ −      =     +  −        = − =                x 19
  • 20. Two Bus Example, Next Iterations (1) 2 (1) 1 (2) 0.9(10sin( 0.2)) 2.0 0.212 ( ) 0.2790.9( 10cos( 0.2)) 0.9 10 1.0 8.82 1.986 ( ) 1.788 8.199 0.2 8.82 1.986 0.212 0.233 0.9 1.788 8.199 0.279 0.8586 ( − − +    = =   − − + × +    −  =  −  − − −        = − =       −        f x J x x f (2) (3) (3) 2 0.0145 0.236 ) 0.0190 0.8554 0.0000906 ( ) Close enough! 0.8554 13.52 0.0001175 V −    = =          = = ∠ − °    x x f x 20
  • 21. Two Bus Solved Values Line Z = 0 .1 j On e T w o1 .0 0 0 p u 0 .8 5 5 p u 2 0 0 MW 1 0 0 MVR 2 0 0 .0 MW 1 6 8 .3 MVR - 1 3 .5 2 2 De g 2 0 0 .0 M W 1 6 8 .3 M VR - 2 0 0 .0 M W - 1 0 0 .0 M VR Once the voltage angle and magnitude at bus 2 are known we can calculate all the other system values, such as the line flows and the generator real and reactive power output 21
  • 22. Two Bus Case Low Voltage Solution (0) (0) (0) 2 2 (0) (0) (0) (0 2 2 2 This case actually has two solutions! The second "low voltage" is found by using a low initial guess. 0 Set 0, guess . Calculate: 0.25 (10sin ) 2.0 ( ) ( 10cos ) v V V V θ θ   = =     + = − + x f x 2) (0) (0) (0) 2 2 2(0) (0) (0) (0) (0) 2 2 2 2 2 0.875(10) 1.0 10 cos 10sin 2.5 0 ( ) 0 510 sin 10cos 20 V V V θ θ θ θ      =    − +      = =  −   − +  J x 22
  • 23. Low Voltage Solution, cont'd 1 (1) (2) (2) (3) 0 2.5 0 2 0.8 Solve 0.25 0 5 0.875 0.075 1.462 1.42 0.921 ( ) 0.534 0.2336 0.220 − −        = − =       − −        − −      = = =            x f x x x Line Z = 0.1j One Tw o1 .0 0 0 pu 0 .2 6 1 pu 200 MW 100 MVR 200.0 MW 831.7 MVR -4 9 .9 1 4 Deg 2 0 0 .0 MW 8 3 1 .7 MVR -2 0 0.0 MW -1 0 0.0 MVR Low voltage solution 23
  • 24. Two Bus Region of Convergence Graph shows the region of convergence for different initial guesses of bus 2 angle (horizontal axis) and magnitude (vertical axis). Red region converges to the high voltage solution, while the yellow region converges to the low voltage solution Maximum of 15 iterations24
  • 25. PV Buses Since the voltage magnitude at PV buses is fixed there is no need to explicitly include these voltages in x nor write the reactive power balance equations: – the reactive power output of the generator varies to maintain the fixed terminal voltage (within limits), so we can just set the reactive power product to whatever is needed. – An alternative is these variations/equations can be included by just writing the explicit voltage constraint for the generator bus: |Vi | – Visetpoint= 0 25
  • 26. Three Bus PV Case Example Line Z = 0.1j Line Z = 0.1j Line Z = 0.1j One Tw o1 .0 0 0 pu 0 .9 4 1 pu 200 MW 100 MVR 170.0 MW 68.2 MVR -7 .4 6 9 Deg Thr ee 1 .0 0 0 pu 30 MW 63 MVR 2 2 2 3 3 3 2 2 2 For this three bus case we have ( ) ( ) ( ) 0 ( ) D G D P P P P V Q Q θ θ +       = = − =     +      x x f x x x 26
  • 27. PV Buses • With Newton-Raphson, PV buses means that there are less unknown variables we need to calculate explicitly and less equations we need to satisfy explicitly. • Reactive power balance is satisfied implicitly by choosing reactive power production to be whatever is needed, once we have a solved case (like real and reactive power at the slack bus). • Contrast to Gauss iterations where PV buses complicated the algorithm. 27
  • 28. Modeling Voltage Dependent Load So far we've assumed that the load is independent of the bus voltage (i.e., constant power). However, the power flow can be easily extended to include voltage dependence with both the real and reactive 1 1 load. This is done by making and a function of : ( cos sin ) ( ) 0 ( sin cos ) ( ) 0 Di Di i n i k ik ik ik ik Gi Di i k n i k ik ik ik ik Gi Di i k P Q V V V G B P P V V V G B Q Q V θ θ θ θ = = + − + = − − + = ∑ ∑ 28
  • 29. Voltage Dependent Load Example 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 In previous two bus example now assume the load is constant impedance, with corresponding per unit admittance of 2.0 1.0: ( ) 2.0 (10sin ) 2.0 0 ( ) 1.0 ( 10cos ) (10) 1.0 0 Now j P V V V Q V V V V θ θ + + = + = + = − + + = x x 2 2 2 2 2 2 2 2 2 calculate the power flow Jacobian 10 cos 10sin 4.0 ( ) 10 sin 10cos 20 2.0 V V V V V θ θ θ θ +  =  − + +  J x 29
  • 30. Voltage Dependent Load, cont'd (0) 2(0) (0) 2 2(0) (0) (0) 2 2 2(0) 2 2(0) (0) (0) (0) 2 2 2 2 (0) (1) 0 Again for 0, guess . Calculate: 1 (10sin ) 2.0 2.0 ( ) 1.0 ( 10cos ) (10) 1.0 10 4 ( ) 0 12 0 Solve 1 v V V V V V V θ θ θ     = = =         +   = =     − + +     =      =   x f x J x x 1 10 4 2.0 0.1667 0 12 1.0 0.9167 − −       − =              30
  • 31. Voltage Dependent Load, cont'd Line Z = 0.1j One Tw o1 .0 0 0 pu 0 .8 9 4 pu 160 MW 80 MVR 160.0 MW 120.0 MVR -1 0 .3 0 4 Deg 1 6 0 .0 MW 1 2 0 .0 MVR -1 6 0 .0 MW -8 0 .0 MVR With constant impedance load the MW/MVAr load at bus 2 varies with the square of the bus 2 voltage magnitude. This if the voltage level is less than 1.0, the load is lower than 200/100 MW/MVAr. 31 In practice, load is the sum of constant power, constant impedance, and, in some cases, constant current load terms: “ZIP” load.
  • 32. Solving Large Power Systems Most difficult computational task is inverting the Jacobian matrix (or solving the update equation): – factorizing a full matrix is an order n3 operation, meaning the amount of computation increases with the cube of the size of the problem. – this amount of computation can be decreased substantially by recognizing that since Ybus is a sparse matrix, the Jacobian is also a sparse matrix. – using sparse matrix methods results in a computational order of about n1.5 . – this is a substantial savings when solving systems with tens of thousands of buses. 32
  • 33. Newton-Raphson Power Flow Advantages – fast convergence as long as initial guess is close to solution – large region of convergence Disadvantages – each iteration takes much longer than a Gauss-Seidel iteration – more complicated to code, particularly when implementing sparse matrix algorithms Newton-Raphson algorithm is very common in power flow analysis. 33