SlideShare a Scribd company logo
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 1 
Subjects : Advanced Power System Analysis 
Lecturer : Abraham Lomi, DR.Eng, Prof 
Name : Supaman, ST 
NPM : 136060300111003 
Class : Electric Power System 
Assignment #1 
1) A balanced delta connected load of 15 + j 18 › per phase is connected at the end of a three- phase line as shown in Figure 12. The line impedance is 1 + j 2 › per phase. The line is supplied from a three-phase source with a line-to-line voltage of 207.85 V rms. Taking Van as reference, determine the following: 
a) Current in phase a. 
b) Total complex power supplied from the source. 
c) Magnitude of the line-to-line voltage at the load terminal. 
Solution: 
푉푎푛= 207.85√3=120푉 
Transforming the delta connected load to an equivalent Y-connected load, result in the phase ’a’ equivalent circuit, shown in Figure 13. 
Figure 2 The equivalent circuit for a picture on a matter of no one. 
a) Current in phase a 
퐼푎= 120퐿006+푗8=12퐿−53.130퐴 
b) Total complex power supplied from the source. 
푆=3푉푎푛퐼푎∗ =(3)(120퐿00)(12퐿53.130=4320퐿53.130푉퐴 
=2592푊+푗3456푉푎푟 
c) Magnitude of the line-to-line voltage at the load terminal. 
푉2=120퐿00−(1+푗2)(12퐿−53.130=93.72퐿−2.930퐴
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 2 
Thus, the magnitude of the voltage line- to- line load terminals are : 
푉퐿=√3(93.72)=162.3푉 
Assignment #2 
1) A 69-kV, three-phase short transmission line is 16 km long. The line has a per-phase series impedance of 0.125+j0.4375 Ω per km. Determine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers 
a) 70 MVA, 0.8 lagging power factor at 64 kV 
b) 120 MW, unity power factor at 64 kV 
Solution: 
The line impedance is 
푍=(0,125+푗0,4375)푥(16)=2+푗7 Ω 
The receiving end voltage per phase is 
푉푅= 64퐿00√3=36,9504∟00퐾푣 
a) The complex power at the receiving end is 
푆푅(3∅)=70 ∠ 푐표푠−1푥 0,8=70 ∠36,870=56+푗42 푀푣푎 
The current per phase is given by 
퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 70000∠−36,8703푥36,9504∠00=631,477∠−36,870퐴 
The sending end voltage is 
푉푆=푉푅+푍퐼푅 
푉푆=푉푅+푍퐼푅=36,9504∠00+(2+푗7)푥(631,477∠−36,870)푥(10−3) 
=40,708∠3,91370푘푉 
The sending end line-to-line voltage magnitude is 
|푉푆(퐿−퐿)|=√3|푉푆| 
|푉푆(퐿−퐿)|=√3|40,708∟3,9137|=70,508 푘푉 
The sending end power is 
푆푆(3∅)=3푉푠퐼푆 ∗=3푥40,708∠3,91370푥 631,477∠−36,870푥10−3 
=58,393 푀푊+푗50,374 푀푣푎푟 
=77,1185 ∠ 40,7837 푀푉퐴
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 3 
Voltage regulation is 
Percent 푉푅= 70.508−6464 푥 100 %=10.169 % 
Transmission line efciency is 
ɳ= 푃푅(3∅) 푃푆(3∅) = 5658,393 푥100%=95,90% 
b) The complex power at the receiving end is 
푆푅(3∅)=120∟00=120+푗0 푀푉퐴 
The current per phase is given by 
퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 12000∠003푥36,9504∠00=1082,53∠00퐴 
The sending end voltage is 
푉푠=푉푅+푍퐼푅=36,9504∠00+(2+푗7)푥 1082,53∠00푥(10)−3 
=39,8427 ∠10,96390 푘푉 
The sending end line-to-line voltage magnitude is 
|푉푆(퐿−퐿)|=√3|푉푆| 
|푉푆(퐿−퐿)|=√3|39,8427 ∠10,96390|=69,0096 푘푉 
The sending end power is 
푆푆(3∅)=3푉푆퐼푆 ∗=3푥39,8427 ∠10,96390푥1082,53∠00푥(10)−3 
=127,031 푀푊+푗24,609 푀푣푎푟 
=129,393 ∠ 10,96390 푀푉퐴 
Voltage regulation is 
푃푒푟푐푒푛푡 푉푅= 69,0096−6464 푥 100 %=7,8275 % 
Transmission line efficiency is 
ɳ= 푃푅(3∅) 푃푆(3∅) = 120127,031 푥100%=94,465% 
Assignment #2 (cont’d) 
2) A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR 1,431,000, 45/7 Bobolink conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 Km long, and for the purpose of this problem, a lossless line is assumed.
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 4 
a) Determine the transmission line surge impedance Zc, phase constant β, wave length 휆, the surge impedance loading SIL, and the ABCD constant. 
b) The line delivers 2000 MVA at 0.8 lagging power factor at 735 kV. Determine the sending end quantities and voltage regulation. 
c) Determine the receiving end quantities when 1920 MW and 600 Mvar are being transmitted at 765 kV at the sending end. 
d) The line is terminated in a purely resistive load. Determine the sending end quantities and voltage regulation when the receiving end load resistance is 264.5Ω at 735 kV. 
Solution: 
a) For hand calculation we have 
퐺푀퐷=√(14)푥(14)푥(28)3=17,6389 푚 
퐺푀푅퐿=1,09√(45)3푥(1,439)4=20.75 푐푚 
퐺푀푅퐶=1,09√(45)3푥3,6252⁄4=21.98 푐푚 
퐿=0,217,638920,75 푥 10−2=0,8885 푚퐻퐾푚⁄ 
퐶= 0,0556 푙푛 17,638921,98푥10−2=0,01268 휇퐹/퐾푚 
The ABCD constants of the line are 
퐴=cos훽ℓ=cos290=0,8746 
퐵=푗푍푐sin훽ℓ=푗264,7sin290=푗128,33 
퐶=푗 1 푍푐 sin훽ℓ=푗 1264,7sin290=푗0,0018315 
퐷=퐴 
b) The complex power at the receiving end is 
푆푅(3∅)=2000 ∠36,870=1600 푀푊+푗1200 푀푣푎푟 
푉푅= 735 ∠00√3=424,352 ∠ 00 푘푉 
The current per phase is given by 
퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 2000000 ∠−36,8703푥424,352∠00=1571,02∠−36,870퐴
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 5 
The sending end voltage is 푉푠=퐴푉푅+퐵퐼푅=0,8746 푥 424,352∠00+푗128,33 푥 1571,02 푥 10−3∠36,870 
=517,86 ∠18,1470 푘푉 
The sending end line-to-line voltage magnitude is |푉푆(퐿−퐿)|=√3|푉푆| 
|푉푆(퐿−퐿)|=√3|517,86 ∠18,1470|=896,96 푘푉 훽=휔√퐿퐶 
훽=2휋푥60√0,88853 푥 0,01268 푥 10−9 =0,001265 푅푎푑푖푎푛/퐾푚 
훽ℓ=(0,001265 푥 400) 푥 (180휋⁄)=290 
휆= 2휋 훽 = 2휋 0,001265=4967 퐾푚 
푍퐶=√ 퐿 퐶 =√ 0,88853 푥 10−30,01268 푥 10−6=264,7 Ω 
푆퐼퐿= (퐾푉퐿푅푎푡푒푑)2 푍퐶 = (765)2264,7=2210,89 
The sending end current is 
퐼푆=퐶푉푅+퐷퐼푅=푗0,0018315 푥 424352 ∠00+0,8746 푥 1571,02 ∠−36,870 =1100,23 ∠−2,460 
The sending end power is 
푆푆(3∅)=3푉푆퐼푆 ∗=3푥517,86 ∠18,1470푥1100,23∠2,460푥(10)−3 
=1600 푀푊+푗601,59 푀푣푎푟 
=1709,3 ∠ 20,60 푀푉퐴 
Voltage regulation is 
푃푒푟푐푒푛푡 푉푅= 896,960,8746−735735 푥 100 %=39,53 % 
c) The complex power at the sending end is 
푆푆(3∅)=1920 푀푊+푗600 푀푣푎푟=2011,566 ∠−17,3540 푀푉퐴 
푉푆= 765 ∠00√3=441,673∠00
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 6 
The sending end current per phase is given by 
퐼푆= 푆푆(3∅) ∗ 3푉푆 ∗= 2011,566 ∠−17,35403푥441,673∠00=1518,14∠−17,3540퐴 
The receiving end voltage is 
푉푅=퐷푉푆−퐵퐼푆=0,8746 푥 441,673 ∠00−푗128,33 푥 1518,14 푥 10−3∠−17,3540=377,2 ∠−29,5370 푘푉 
The receiving end line-to-line voltage magnitude is 
|푉푅(퐿−퐿)|=√3|푉푆| 
|푉푅(퐿−퐿)|=√3|377,2 ∠−29,5370|=653,33 푘푉 
퐼푅=−퐶푉푆+퐴퐼푆=−푗0,0018315 푥 441673∠00+0,8746 푥 1518,14 ∠−17,3540=1748,73 ∠43,550 퐴 
The receiving end power is 
푆푅(3∅)=3푉푅퐼푅∗ =3푥377,2 ∠−29,5370 푥 1748,73 ∠43,55010−3 =1920 푀푊+푗479,2 푀푣푎푟 =1978,86 ∠ 14,0130 푀푉퐴 
Voltage regulation is 푃푒푟푐푒푛푡 푉푅= 7650,8746−653,33653,33 푥 100 %=33,88 % 
푉푅= 735∠00√3=424,352∠00 푘푉 
The receiving end current per phase is given by 퐼푅= 푉푅 푍퐿 = 424352∠00264,5=1604,357∠00 퐴 
The complex power at the receiving end is 
푆푅(3∅)=3푉푅퐼푅∗ =3푥424,352 ∠00 푥 1604,357 ∠00 푥 10−3=2042,44 푀푊 
The sending end voltage is 푉푆=퐴푉푅+퐵퐼푅=0,8746 푥 424,352 ∠00+푗128,33 푥 1604,357 푥 10−3∠00=424,42 ∠29,020 푘푉 
The sending end line-to-line voltage magnitude is 
|푉푆(퐿−퐿)|=√3|푉푆|
Power System Analysis 
Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 7 
|푉푆(퐿−퐿)|=√3|424,42 ∠29,020|=735,12 푘푉 
The sending end current is 
퐼푆=퐶푉푅+퐷퐼푅=푗0,0018315 푥 424352∠00+0,8746 푥 1604,357 ∠00=1604,04 ∠28,980 퐴 
푆푆(3∅)=3푉푆퐼푆 ∗=3푥424,42 ∠29,020 푥 1604,04 ∠−28,980 푥 10−3=2042,44 푀푊+푗1,4 푀푣푎푟 =2042,36 ∠0,040 푀푉퐴 
Voltage regulation is 
푃푒푟푐푒푛푡 푉푅= 735,120,8746−735735 푥 100 %=14,36 % 
Assignment #3 
3) A three-phase 420-kV, 60-Hz transmission line is 463 km long and may be assumed lossless. The line is energized with 420 kV at the sending end. When the load at the receiving end is removed, the voltage at the receiving end is 700 kV, and the per phase sending end current is 646.6∟90A. 
a) Find the phase constant β in radians per km and the surge impedance Zc in Ω. 
b) Ideal reactors are to be installed at the receiving end to keep |V| = |V| = 420 kV when load is removed. Determine the reactance per phase and the required three-phase Mvar. 
Solution: 
a) The sending end and receiving end voltages per phase are 
푉푠= 420√3=242,487 푘푣 푉푅푛푙= 700√3=404,145 푘푣 
With load removed 퐼푅=0,푓푟표푚 (5.71) we have 242,487=cos훽푙 푥 404,145 훽푙=53,130=0,927295 푅푎푑푖푎푛 
And from (5.72), we have 푗646,6=푗 1 푍푐 =sin53,130푥 404,145 푥 103 푍푐=500 Ω 
b) For 푉푠=푉푅 the required inductor reactance given by (5.100) is 
푋푙푠ℎ= sin53,1301−cos53,130푥500=1000 Ω 
The three-phase shunt reactor rating is 푄3휃=( 퐾푉퐿푅푎푡푒푑 푋퐿푠ℎ ) 2= 42021000=176,4 푀푣푎푟

More Related Content

What's hot

Ppt on diff. load curve
Ppt on diff. load curvePpt on diff. load curve
Ppt on diff. load curve
CraZzy Shubh
 
Psoc
PsocPsoc
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
MINAL RADE
 
Load on power system
Load on power systemLoad on power system
Load on power system
v Kalairajan
 
A presentation on solar inverter
A presentation on solar inverterA presentation on solar inverter
A presentation on solar inverter
Vishal Biswakarma
 
Ntpc training ppt
Ntpc training pptNtpc training ppt
Ntpc training ppt
Ambuj Kumar Singh
 
Power system stability
Power system stabilityPower system stability
Power system stability
Balaram Das
 
chapter13.pdf
chapter13.pdfchapter13.pdf
chapter13.pdf
LucasMogaka
 
Unit1 8
Unit1 8Unit1 8
Unit1 8
budashow1
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatchDeepak John
 
Wind Power Generation Schemes
Wind Power Generation SchemesWind Power Generation Schemes
Wind Power Generation Schemes
Vignesh Sekar
 
Transformers in NTPC
Transformers in NTPCTransformers in NTPC
Transformers in NTPC
Sagnik Saha
 
Power quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUSPower quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUS
MOHANASUNDARAM ANTHONY
 
Economic load dispatch(with and without losses)
Economic load dispatch(with and without losses)Economic load dispatch(with and without losses)
Economic load dispatch(with and without losses)
Asha Anu Kurian
 
Seminar Report on MPPT
Seminar Report on MPPTSeminar Report on MPPT
Seminar Report on MPPT
MANISH BARTHWAL
 
Power System Stability & Control
Power System Stability & ControlPower System Stability & Control
Power System Stability & ControlAzimah Aziz
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
MAHESH CHAND JATAV
 
Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Sifan Welisa
 
Perancangan plts off grid (mandiri)
Perancangan plts off grid (mandiri)Perancangan plts off grid (mandiri)
Perancangan plts off grid (mandiri)
Pamor Gunoto
 

What's hot (20)

Ppt on diff. load curve
Ppt on diff. load curvePpt on diff. load curve
Ppt on diff. load curve
 
Psoc
PsocPsoc
Psoc
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
Load on power system
Load on power systemLoad on power system
Load on power system
 
A presentation on solar inverter
A presentation on solar inverterA presentation on solar inverter
A presentation on solar inverter
 
Ntpc training ppt
Ntpc training pptNtpc training ppt
Ntpc training ppt
 
Power system stability
Power system stabilityPower system stability
Power system stability
 
voltage stability
voltage stabilityvoltage stability
voltage stability
 
chapter13.pdf
chapter13.pdfchapter13.pdf
chapter13.pdf
 
Unit1 8
Unit1 8Unit1 8
Unit1 8
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatch
 
Wind Power Generation Schemes
Wind Power Generation SchemesWind Power Generation Schemes
Wind Power Generation Schemes
 
Transformers in NTPC
Transformers in NTPCTransformers in NTPC
Transformers in NTPC
 
Power quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUSPower quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUS
 
Economic load dispatch(with and without losses)
Economic load dispatch(with and without losses)Economic load dispatch(with and without losses)
Economic load dispatch(with and without losses)
 
Seminar Report on MPPT
Seminar Report on MPPTSeminar Report on MPPT
Seminar Report on MPPT
 
Power System Stability & Control
Power System Stability & ControlPower System Stability & Control
Power System Stability & Control
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]
 
Perancangan plts off grid (mandiri)
Perancangan plts off grid (mandiri)Perancangan plts off grid (mandiri)
Perancangan plts off grid (mandiri)
 

Viewers also liked

Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
sunny katyara
 
Load flow analysis of 132 kv substation using etap
Load flow analysis of 132 kv substation using etapLoad flow analysis of 132 kv substation using etap
Load flow analysis of 132 kv substation using etap
majeed khan
 
Load flow study
Load flow studyLoad flow study
Load flow study
f s
 
Load flow study
Load flow studyLoad flow study
Load flow study
Hozefa Jinya
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Power System Analysis!
Power System Analysis!Power System Analysis!
Power System Analysis!
PRABHAHARAN429
 

Viewers also liked (9)

Load flow1
Load flow1Load flow1
Load flow1
 
Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
Load Flow Analysis of Jamshoro Thermal Power Station (JTPS) Pakistan Using MA...
 
Load flow analysis of 132 kv substation using etap
Load flow analysis of 132 kv substation using etapLoad flow analysis of 132 kv substation using etap
Load flow analysis of 132 kv substation using etap
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Gauss sediel
Gauss sedielGauss sediel
Gauss sediel
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
load flow 1
 load flow 1 load flow 1
load flow 1
 
Power System Analysis!
Power System Analysis!Power System Analysis!
Power System Analysis!
 

Similar to analisa sistem tenaga lanjut

Ehv line design
Ehv line designEhv line design
Ehv line design
Demsew Mitiku
 
Parametros linea de transmision
Parametros linea de transmisionParametros linea de transmision
Parametros linea de transmision
JuanMiguelDaniel
 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
sai divya sri sappa
 
Chapter 3 transmission line performance
Chapter 3  transmission line performanceChapter 3  transmission line performance
Chapter 3 transmission line performance
firaoltemesgen1
 
Tranp.pptx
Tranp.pptxTranp.pptx
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
ZunAib Ali
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
AIMST University
 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
VIVEK AHLAWAT
 
PERFORMANCE OF TRANSMISSION LINES:
PERFORMANCE OF TRANSMISSION LINES:PERFORMANCE OF TRANSMISSION LINES:
PERFORMANCE OF TRANSMISSION LINES:
Duddu Rajesh
 
L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019
TamimAhmed43
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
Abinaya Saraswathy T
 
Three phase balanced load circuits and synchronous generators
Three phase balanced load circuits and synchronous generatorsThree phase balanced load circuits and synchronous generators
Three phase balanced load circuits and synchronous generators
Isham Rashik
 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
AIMST University
 
Generalised circuit constants
Generalised circuit constantsGeneralised circuit constants
Generalised circuit constants
Kaustubh Nande
 
Exp 4
Exp 4 Exp 4
Single Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode AmplifierSingle Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode Amplifier
Aalay Kapadia
 
EEP303: Cycle ii exp 2
EEP303: Cycle ii   exp 2EEP303: Cycle ii   exp 2
EEP303: Cycle ii exp 2
Umang Gupta
 
Short And Medium Lines
Short And Medium LinesShort And Medium Lines
Short And Medium Lines
Abha Tripathi
 
Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter
johny renoald
 

Similar to analisa sistem tenaga lanjut (20)

Ehv line design
Ehv line designEhv line design
Ehv line design
 
Parametros linea de transmision
Parametros linea de transmisionParametros linea de transmision
Parametros linea de transmision
 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
 
Chapter 3 transmission line performance
Chapter 3  transmission line performanceChapter 3  transmission line performance
Chapter 3 transmission line performance
 
Tranp.pptx
Tranp.pptxTranp.pptx
Tranp.pptx
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
 
PERFORMANCE OF TRANSMISSION LINES:
PERFORMANCE OF TRANSMISSION LINES:PERFORMANCE OF TRANSMISSION LINES:
PERFORMANCE OF TRANSMISSION LINES:
 
L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
Three phase balanced load circuits and synchronous generators
Three phase balanced load circuits and synchronous generatorsThree phase balanced load circuits and synchronous generators
Three phase balanced load circuits and synchronous generators
 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
 
Generalised circuit constants
Generalised circuit constantsGeneralised circuit constants
Generalised circuit constants
 
Exp 4
Exp 4 Exp 4
Exp 4
 
Single Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode AmplifierSingle Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode Amplifier
 
EEP303: Cycle ii exp 2
EEP303: Cycle ii   exp 2EEP303: Cycle ii   exp 2
EEP303: Cycle ii exp 2
 
Short And Medium Lines
Short And Medium LinesShort And Medium Lines
Short And Medium Lines
 
Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter
 

More from suparman unkhair

Rangkuman sensor & tranduser by suparman
Rangkuman sensor & tranduser by suparmanRangkuman sensor & tranduser by suparman
Rangkuman sensor & tranduser by suparman
suparman unkhair
 
Acoustic wave biosensor
Acoustic wave biosensorAcoustic wave biosensor
Acoustic wave biosensor
suparman unkhair
 
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...suparman unkhair
 
Aplikasi motor listrik pada elevator
Aplikasi motor listrik pada elevatorAplikasi motor listrik pada elevator
Aplikasi motor listrik pada elevatorsuparman unkhair
 
Aplikasi motor listrik by suparman
Aplikasi motor listrik by suparmanAplikasi motor listrik by suparman
Aplikasi motor listrik by suparman
suparman unkhair
 
Improvement of damping power system stabilizer and svs supplementary controls
Improvement of damping power system stabilizer and svs supplementary controlsImprovement of damping power system stabilizer and svs supplementary controls
Improvement of damping power system stabilizer and svs supplementary controlssuparman unkhair
 
Answer assigment stabilitas & control. by suparman
Answer assigment stabilitas & control. by suparmanAnswer assigment stabilitas & control. by suparman
Answer assigment stabilitas & control. by suparmansuparman unkhair
 
Metodologi penelitian & riset by suparman
Metodologi penelitian & riset  by suparmanMetodologi penelitian & riset  by suparman
Metodologi penelitian & riset by suparmansuparman unkhair
 
Metodologi penelitian & riset (Hipotesa) by suparman
Metodologi penelitian & riset  (Hipotesa) by suparmanMetodologi penelitian & riset  (Hipotesa) by suparman
Metodologi penelitian & riset (Hipotesa) by suparmansuparman unkhair
 
Tugas metodologi penelitian & riset by suparman
Tugas metodologi penelitian & riset  by suparmanTugas metodologi penelitian & riset  by suparman
Tugas metodologi penelitian & riset by suparmansuparman unkhair
 
Answer assigment stabilitas & control
Answer assigment stabilitas & controlAnswer assigment stabilitas & control
Answer assigment stabilitas & controlsuparman unkhair
 
Protection of power system with distributed generation state of the art
Protection of  power system with distributed generation state of the artProtection of  power system with distributed generation state of the art
Protection of power system with distributed generation state of the artsuparman unkhair
 
Ringkasan materi presentasi stochastik
Ringkasan materi presentasi stochastikRingkasan materi presentasi stochastik
Ringkasan materi presentasi stochastiksuparman unkhair
 
Limbah kotoran manusia sebagai energi alternative
Limbah kotoran manusia sebagai energi alternativeLimbah kotoran manusia sebagai energi alternative
Limbah kotoran manusia sebagai energi alternativesuparman unkhair
 
Level keandalan sistem tenaga listrik
Level keandalan sistem tenaga listrikLevel keandalan sistem tenaga listrik
Level keandalan sistem tenaga listriksuparman unkhair
 
Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagasuparman unkhair
 
Introduction to genetic algoritms
Introduction to genetic algoritmsIntroduction to genetic algoritms
Introduction to genetic algoritmssuparman unkhair
 
Introduction to fuzzy logic using matlab
Introduction to fuzzy logic using matlabIntroduction to fuzzy logic using matlab
Introduction to fuzzy logic using matlabsuparman unkhair
 

More from suparman unkhair (20)

Rangkuman sensor & tranduser by suparman
Rangkuman sensor & tranduser by suparmanRangkuman sensor & tranduser by suparman
Rangkuman sensor & tranduser by suparman
 
Acoustic wave biosensor
Acoustic wave biosensorAcoustic wave biosensor
Acoustic wave biosensor
 
Acoustic wave biosensor
Acoustic wave biosensor Acoustic wave biosensor
Acoustic wave biosensor
 
Acoustic wave biosensor
Acoustic wave biosensorAcoustic wave biosensor
Acoustic wave biosensor
 
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...
protektive relay “Stability, Reclosing, Load Shedding, and Trip Circuit Desig...
 
Aplikasi motor listrik pada elevator
Aplikasi motor listrik pada elevatorAplikasi motor listrik pada elevator
Aplikasi motor listrik pada elevator
 
Aplikasi motor listrik by suparman
Aplikasi motor listrik by suparmanAplikasi motor listrik by suparman
Aplikasi motor listrik by suparman
 
Improvement of damping power system stabilizer and svs supplementary controls
Improvement of damping power system stabilizer and svs supplementary controlsImprovement of damping power system stabilizer and svs supplementary controls
Improvement of damping power system stabilizer and svs supplementary controls
 
Answer assigment stabilitas & control. by suparman
Answer assigment stabilitas & control. by suparmanAnswer assigment stabilitas & control. by suparman
Answer assigment stabilitas & control. by suparman
 
Metodologi penelitian & riset by suparman
Metodologi penelitian & riset  by suparmanMetodologi penelitian & riset  by suparman
Metodologi penelitian & riset by suparman
 
Metodologi penelitian & riset (Hipotesa) by suparman
Metodologi penelitian & riset  (Hipotesa) by suparmanMetodologi penelitian & riset  (Hipotesa) by suparman
Metodologi penelitian & riset (Hipotesa) by suparman
 
Tugas metodologi penelitian & riset by suparman
Tugas metodologi penelitian & riset  by suparmanTugas metodologi penelitian & riset  by suparman
Tugas metodologi penelitian & riset by suparman
 
Answer assigment stabilitas & control
Answer assigment stabilitas & controlAnswer assigment stabilitas & control
Answer assigment stabilitas & control
 
Protection of power system with distributed generation state of the art
Protection of  power system with distributed generation state of the artProtection of  power system with distributed generation state of the art
Protection of power system with distributed generation state of the art
 
Ringkasan materi presentasi stochastik
Ringkasan materi presentasi stochastikRingkasan materi presentasi stochastik
Ringkasan materi presentasi stochastik
 
Limbah kotoran manusia sebagai energi alternative
Limbah kotoran manusia sebagai energi alternativeLimbah kotoran manusia sebagai energi alternative
Limbah kotoran manusia sebagai energi alternative
 
Level keandalan sistem tenaga listrik
Level keandalan sistem tenaga listrikLevel keandalan sistem tenaga listrik
Level keandalan sistem tenaga listrik
 
Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenaga
 
Introduction to genetic algoritms
Introduction to genetic algoritmsIntroduction to genetic algoritms
Introduction to genetic algoritms
 
Introduction to fuzzy logic using matlab
Introduction to fuzzy logic using matlabIntroduction to fuzzy logic using matlab
Introduction to fuzzy logic using matlab
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 

analisa sistem tenaga lanjut

  • 1. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 1 Subjects : Advanced Power System Analysis Lecturer : Abraham Lomi, DR.Eng, Prof Name : Supaman, ST NPM : 136060300111003 Class : Electric Power System Assignment #1 1) A balanced delta connected load of 15 + j 18 › per phase is connected at the end of a three- phase line as shown in Figure 12. The line impedance is 1 + j 2 › per phase. The line is supplied from a three-phase source with a line-to-line voltage of 207.85 V rms. Taking Van as reference, determine the following: a) Current in phase a. b) Total complex power supplied from the source. c) Magnitude of the line-to-line voltage at the load terminal. Solution: 푉푎푛= 207.85√3=120푉 Transforming the delta connected load to an equivalent Y-connected load, result in the phase ’a’ equivalent circuit, shown in Figure 13. Figure 2 The equivalent circuit for a picture on a matter of no one. a) Current in phase a 퐼푎= 120퐿006+푗8=12퐿−53.130퐴 b) Total complex power supplied from the source. 푆=3푉푎푛퐼푎∗ =(3)(120퐿00)(12퐿53.130=4320퐿53.130푉퐴 =2592푊+푗3456푉푎푟 c) Magnitude of the line-to-line voltage at the load terminal. 푉2=120퐿00−(1+푗2)(12퐿−53.130=93.72퐿−2.930퐴
  • 2. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 2 Thus, the magnitude of the voltage line- to- line load terminals are : 푉퐿=√3(93.72)=162.3푉 Assignment #2 1) A 69-kV, three-phase short transmission line is 16 km long. The line has a per-phase series impedance of 0.125+j0.4375 Ω per km. Determine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers a) 70 MVA, 0.8 lagging power factor at 64 kV b) 120 MW, unity power factor at 64 kV Solution: The line impedance is 푍=(0,125+푗0,4375)푥(16)=2+푗7 Ω The receiving end voltage per phase is 푉푅= 64퐿00√3=36,9504∟00퐾푣 a) The complex power at the receiving end is 푆푅(3∅)=70 ∠ 푐표푠−1푥 0,8=70 ∠36,870=56+푗42 푀푣푎 The current per phase is given by 퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 70000∠−36,8703푥36,9504∠00=631,477∠−36,870퐴 The sending end voltage is 푉푆=푉푅+푍퐼푅 푉푆=푉푅+푍퐼푅=36,9504∠00+(2+푗7)푥(631,477∠−36,870)푥(10−3) =40,708∠3,91370푘푉 The sending end line-to-line voltage magnitude is |푉푆(퐿−퐿)|=√3|푉푆| |푉푆(퐿−퐿)|=√3|40,708∟3,9137|=70,508 푘푉 The sending end power is 푆푆(3∅)=3푉푠퐼푆 ∗=3푥40,708∠3,91370푥 631,477∠−36,870푥10−3 =58,393 푀푊+푗50,374 푀푣푎푟 =77,1185 ∠ 40,7837 푀푉퐴
  • 3. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 3 Voltage regulation is Percent 푉푅= 70.508−6464 푥 100 %=10.169 % Transmission line efciency is ɳ= 푃푅(3∅) 푃푆(3∅) = 5658,393 푥100%=95,90% b) The complex power at the receiving end is 푆푅(3∅)=120∟00=120+푗0 푀푉퐴 The current per phase is given by 퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 12000∠003푥36,9504∠00=1082,53∠00퐴 The sending end voltage is 푉푠=푉푅+푍퐼푅=36,9504∠00+(2+푗7)푥 1082,53∠00푥(10)−3 =39,8427 ∠10,96390 푘푉 The sending end line-to-line voltage magnitude is |푉푆(퐿−퐿)|=√3|푉푆| |푉푆(퐿−퐿)|=√3|39,8427 ∠10,96390|=69,0096 푘푉 The sending end power is 푆푆(3∅)=3푉푆퐼푆 ∗=3푥39,8427 ∠10,96390푥1082,53∠00푥(10)−3 =127,031 푀푊+푗24,609 푀푣푎푟 =129,393 ∠ 10,96390 푀푉퐴 Voltage regulation is 푃푒푟푐푒푛푡 푉푅= 69,0096−6464 푥 100 %=7,8275 % Transmission line efficiency is ɳ= 푃푅(3∅) 푃푆(3∅) = 120127,031 푥100%=94,465% Assignment #2 (cont’d) 2) A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR 1,431,000, 45/7 Bobolink conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 Km long, and for the purpose of this problem, a lossless line is assumed.
  • 4. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 4 a) Determine the transmission line surge impedance Zc, phase constant β, wave length 휆, the surge impedance loading SIL, and the ABCD constant. b) The line delivers 2000 MVA at 0.8 lagging power factor at 735 kV. Determine the sending end quantities and voltage regulation. c) Determine the receiving end quantities when 1920 MW and 600 Mvar are being transmitted at 765 kV at the sending end. d) The line is terminated in a purely resistive load. Determine the sending end quantities and voltage regulation when the receiving end load resistance is 264.5Ω at 735 kV. Solution: a) For hand calculation we have 퐺푀퐷=√(14)푥(14)푥(28)3=17,6389 푚 퐺푀푅퐿=1,09√(45)3푥(1,439)4=20.75 푐푚 퐺푀푅퐶=1,09√(45)3푥3,6252⁄4=21.98 푐푚 퐿=0,217,638920,75 푥 10−2=0,8885 푚퐻퐾푚⁄ 퐶= 0,0556 푙푛 17,638921,98푥10−2=0,01268 휇퐹/퐾푚 The ABCD constants of the line are 퐴=cos훽ℓ=cos290=0,8746 퐵=푗푍푐sin훽ℓ=푗264,7sin290=푗128,33 퐶=푗 1 푍푐 sin훽ℓ=푗 1264,7sin290=푗0,0018315 퐷=퐴 b) The complex power at the receiving end is 푆푅(3∅)=2000 ∠36,870=1600 푀푊+푗1200 푀푣푎푟 푉푅= 735 ∠00√3=424,352 ∠ 00 푘푉 The current per phase is given by 퐼푅= 푆푅(3∅) ∗ 3푉푅 ∗= 2000000 ∠−36,8703푥424,352∠00=1571,02∠−36,870퐴
  • 5. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 5 The sending end voltage is 푉푠=퐴푉푅+퐵퐼푅=0,8746 푥 424,352∠00+푗128,33 푥 1571,02 푥 10−3∠36,870 =517,86 ∠18,1470 푘푉 The sending end line-to-line voltage magnitude is |푉푆(퐿−퐿)|=√3|푉푆| |푉푆(퐿−퐿)|=√3|517,86 ∠18,1470|=896,96 푘푉 훽=휔√퐿퐶 훽=2휋푥60√0,88853 푥 0,01268 푥 10−9 =0,001265 푅푎푑푖푎푛/퐾푚 훽ℓ=(0,001265 푥 400) 푥 (180휋⁄)=290 휆= 2휋 훽 = 2휋 0,001265=4967 퐾푚 푍퐶=√ 퐿 퐶 =√ 0,88853 푥 10−30,01268 푥 10−6=264,7 Ω 푆퐼퐿= (퐾푉퐿푅푎푡푒푑)2 푍퐶 = (765)2264,7=2210,89 The sending end current is 퐼푆=퐶푉푅+퐷퐼푅=푗0,0018315 푥 424352 ∠00+0,8746 푥 1571,02 ∠−36,870 =1100,23 ∠−2,460 The sending end power is 푆푆(3∅)=3푉푆퐼푆 ∗=3푥517,86 ∠18,1470푥1100,23∠2,460푥(10)−3 =1600 푀푊+푗601,59 푀푣푎푟 =1709,3 ∠ 20,60 푀푉퐴 Voltage regulation is 푃푒푟푐푒푛푡 푉푅= 896,960,8746−735735 푥 100 %=39,53 % c) The complex power at the sending end is 푆푆(3∅)=1920 푀푊+푗600 푀푣푎푟=2011,566 ∠−17,3540 푀푉퐴 푉푆= 765 ∠00√3=441,673∠00
  • 6. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 6 The sending end current per phase is given by 퐼푆= 푆푆(3∅) ∗ 3푉푆 ∗= 2011,566 ∠−17,35403푥441,673∠00=1518,14∠−17,3540퐴 The receiving end voltage is 푉푅=퐷푉푆−퐵퐼푆=0,8746 푥 441,673 ∠00−푗128,33 푥 1518,14 푥 10−3∠−17,3540=377,2 ∠−29,5370 푘푉 The receiving end line-to-line voltage magnitude is |푉푅(퐿−퐿)|=√3|푉푆| |푉푅(퐿−퐿)|=√3|377,2 ∠−29,5370|=653,33 푘푉 퐼푅=−퐶푉푆+퐴퐼푆=−푗0,0018315 푥 441673∠00+0,8746 푥 1518,14 ∠−17,3540=1748,73 ∠43,550 퐴 The receiving end power is 푆푅(3∅)=3푉푅퐼푅∗ =3푥377,2 ∠−29,5370 푥 1748,73 ∠43,55010−3 =1920 푀푊+푗479,2 푀푣푎푟 =1978,86 ∠ 14,0130 푀푉퐴 Voltage regulation is 푃푒푟푐푒푛푡 푉푅= 7650,8746−653,33653,33 푥 100 %=33,88 % 푉푅= 735∠00√3=424,352∠00 푘푉 The receiving end current per phase is given by 퐼푅= 푉푅 푍퐿 = 424352∠00264,5=1604,357∠00 퐴 The complex power at the receiving end is 푆푅(3∅)=3푉푅퐼푅∗ =3푥424,352 ∠00 푥 1604,357 ∠00 푥 10−3=2042,44 푀푊 The sending end voltage is 푉푆=퐴푉푅+퐵퐼푅=0,8746 푥 424,352 ∠00+푗128,33 푥 1604,357 푥 10−3∠00=424,42 ∠29,020 푘푉 The sending end line-to-line voltage magnitude is |푉푆(퐿−퐿)|=√3|푉푆|
  • 7. Power System Analysis Lecture: Abraham Lomi, DR.Eng, Prof-------------Page 7 |푉푆(퐿−퐿)|=√3|424,42 ∠29,020|=735,12 푘푉 The sending end current is 퐼푆=퐶푉푅+퐷퐼푅=푗0,0018315 푥 424352∠00+0,8746 푥 1604,357 ∠00=1604,04 ∠28,980 퐴 푆푆(3∅)=3푉푆퐼푆 ∗=3푥424,42 ∠29,020 푥 1604,04 ∠−28,980 푥 10−3=2042,44 푀푊+푗1,4 푀푣푎푟 =2042,36 ∠0,040 푀푉퐴 Voltage regulation is 푃푒푟푐푒푛푡 푉푅= 735,120,8746−735735 푥 100 %=14,36 % Assignment #3 3) A three-phase 420-kV, 60-Hz transmission line is 463 km long and may be assumed lossless. The line is energized with 420 kV at the sending end. When the load at the receiving end is removed, the voltage at the receiving end is 700 kV, and the per phase sending end current is 646.6∟90A. a) Find the phase constant β in radians per km and the surge impedance Zc in Ω. b) Ideal reactors are to be installed at the receiving end to keep |V| = |V| = 420 kV when load is removed. Determine the reactance per phase and the required three-phase Mvar. Solution: a) The sending end and receiving end voltages per phase are 푉푠= 420√3=242,487 푘푣 푉푅푛푙= 700√3=404,145 푘푣 With load removed 퐼푅=0,푓푟표푚 (5.71) we have 242,487=cos훽푙 푥 404,145 훽푙=53,130=0,927295 푅푎푑푖푎푛 And from (5.72), we have 푗646,6=푗 1 푍푐 =sin53,130푥 404,145 푥 103 푍푐=500 Ω b) For 푉푠=푉푅 the required inductor reactance given by (5.100) is 푋푙푠ℎ= sin53,1301−cos53,130푥500=1000 Ω The three-phase shunt reactor rating is 푄3휃=( 퐾푉퐿푅푎푡푒푑 푋퐿푠ℎ ) 2= 42021000=176,4 푀푣푎푟