SlideShare a Scribd company logo
Electrical Machines-II
6th Semester, EE and EEE
By
Dr. Binod Kumar Sahu
Associate Professor, Electrical Engg.
Siksha ‘O’ Anusandhan, Deemed to be University,
Bhubaneswar, Odisha, India
Lecture-14
2
Learning Outcomes: - (Previous Lecture_13)
 To solve numerical related to voltage regulation of salient pole alternator
using phasor calculation.
 To solve numerical related to voltage regulation of salient pole alternator
by analytical method.
3
Learning Outcomes: - (Today’s Lecture_14)
 To understand the concept of active power & reactive power in a
cylindrical pole and salient pole type alternator.
 To analyse the power angle characteristic of a cylindrical pole and salient
pole type alternator.
 To solve numerical related to power equation and power angle
characteristic.
 To understand the significance of synchronizing power coefficient and
synchronizing torque coefficient.
4
Power Equation of a cylindrical pole Alternator: -
Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’.
i.e.
Field Circuit Armature Circuit
fV
fI
Field Circuit Armature Circuit
phE
Load
aIar sx
V
0
0
0 2
0
, 0 ,
,
,
0
0
, * 0 ( )
s s
a
s s
a
s s s
Let V V
E E
Z Z
E V E V
I
Z Z
E V EV V
Complex power S V I V
Z Z Z





  



 
 
 
 
 
   
 

   
        
 
2 2
cos( ) cos( ), sin( ) sin( )
s s s s
EV V EV V
P and Q
Z Z Z Z
          
5
 Condition for maximum power is
 So, the alternator delivers maximum power when the load angle is equal to impedance
angle and the maximum power is:
 If the armature resistance neglected because of its small value, then Synchronous
Impedance,
 So, expressions of active and reactive power becomes:
0
90s a s s sZ r jX jX X    
2
0 0
2 2
0 0
cos(90 ) cos(90 ) sin
sin(90 ) sin(90 ) cos
s s s
s s s s
EV V EV
P P
X X X
EV V EV V
and Q Q
X X X X
 
 
    
     
0 sin( ) 0 .
dP
d
   

     
2
cos .m
s s
EV V
P
Z Z
 
6
 Note: Power angle characteristics are drawn by taking E = 1.1 pu, V = 1.0 pu, and Xs =
1.0 pu.
7
Power Equation of a salient pole Alternator: -
0
, 0 , , ' ' .
, cos( ) sin( )a a a a q d
Let E E V V taking E as reference
So I I I jI I jI

  
 

    
        
E
V jIdXd
jIqXq
Id
Iq



Vcos d dI X
O
q qI X
Vsin
Ia
8
From the phasor diagram we get,
So, complex power,
sin
sin .
cos
cos
q q q
q
d d d
d
V
V I X I
X
E V
V I X E I
X




  

   
sin cos
* ( ) ( cos sin )a q d
q d
V E V
S V I V I jI V jV j
X X
 
  
   
          
 
 
Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’.
2 2 2
1 1
sin cos sin sin cos sin sin 2
2q d d d q d
V EV V EV V
P
X X X X X X
      
 
      
 
 
9
2 2 2 2
2 2
2
1 cos2 1 cos2
cos cos sin cos
2 2
1 1 1 1
cos cos2
2
d d q d d q
d q d q d
EV V V EV V V
Q
X X X X X X
EV V
X X X X X
 
   
 
 
       
    
        
    
    
Figures are plotted by taking E = 1.2 pu; V = 1.0 pu; Xd = 1.0 pu and Xq = 0.6 pu
10
Condition for maximum Power in Salient Pole type Alternator: -
Active Power equation is:
Condition for maximum power is
2
1 2
1 1
sin sin 2 sin sin 2
2
m m
d q d
EV V
P P P
X X X
   
 
     
 
 
1 2
2
2 1
2
2 1 2
2 2
1 1 2
2
2 2
1 1 21
2
0
cos 2 cos2 0
2 (2cos 1) cos 0
4 cos cos 2 0
32
cos
8
32
cos
8
m m
m m
m m m
m m m
m
m m m
m
dP
d
P P
P P
P P P
P P P
P
P P P
P

 
 
 

 

  
   
   
  
 
   
  
 
 
11
So, the load angle for maximum power output can be obtained using the relation:
2 2 2
1 1 21
1 2
2
32 1 1
cos , ,
8 2
m m m
m m m
m d q d
P P P EV V
Where P and P
P X X X
 
     
     
  
  
12
Numerical:-
1. A three phase, star connected alternator is delivering 20 MW and 8 MVAR to at 11
kV. The alternator has synchronous impedance of (0 + j 3) Ω/phase. Determine the
load angle and excitation of the alternator.
Solution: -
Complex power delivered by the alternator, S = (20 + j 8) MVA.
Phase voltage, V = 11 x 103/ √3 = 6350.85 Volt.
Armature current, Ia = S*/(3 x V*) = (20 - j 8) x 106/(3 x 6350.85) = A.
Induced emf/phase =
So, the load angle is δ = 22.480 and
The line value of excitation emf EL = √3 x 8236.31 = 14265.7 V
0
1130.6 21.8 
0 0 0
6350.85 0 1130.6 21.8 (0 3) 8236.31 22.48 .a sE V I Z j
  
           
13
2. A three phase, star connected alternator has synchronous impedance of (1 + j 10)
Ω/phase. It is operating at a constant voltage of 6.6 kV and its field excitation is
adjusted to give an excitation voltage of 6.4 kV. Find the power output, armature
current and power factor under the condition of maximum power output.
Solution: -
For maximum power output, load angle δ = impedance angle θ = tan-1(10/1) = 84.30.
Terminal voltage/phase, V = 6.6 x 103/√3 = 3810.51 Volt.
Induced emf/phase, E = 6.4 x 103/√3 = 3695.04 Volt.
Armature current,
So, armature current, Ia = 501.25 A and power factor = cos(48.83) = 0.66 leading.
Output power, Pmax = √3VLIacos(φ) = √3 x 6.6 x 103 x 501.25 x 0.66 = 3781.84 kW.
0 0
03695.04 84.3 3810.51 0
501.25 48.83
1 10
a
s
E V
I A
Z j
 
    
   

14
3. For a synchronous machine, excitation emf = 2 .3 pu , terminal voltage = 1 .0 pu, ra
= 0, Xs = 1.5 pu. Find the maximum values of active and reactive powers and the
corresponding load angles. In the reactive power diagram, indicate the reactive
power flow to or from the machine. At what load angle is the power factor unity?
Solution: -
Since, armature resistance is neglected,
Active Power,
Reactive Power,
So, active power will be maximum at δ = 900 and reactive power will be maximum at δ =
00.
Maximum active power,
Maximum reactive power,
max
2.3 1.0
sin 1.533
1.5s
EV
P pu
X


  
2
cos
s s
EV V
Q
X X
 
sin
s
EV
P
X

2
max
2.3 1.0 1.0
cos 0.866
1.5 1.5s s
EV V
Q pu
X X


    
15
Phasor diagram at unity power factor
with ra = 0 is shown in the figure.
From the phasor diagram, it is clear
that under this loading condition,
cosδ = (V/E).
δ = cos-1(V/E) = cos-1(1/2.3) = 64.230.
E
V
jIaXs
 O
Ia
02.3 1
sin sin(64.23 ) 1.381 .
1.5s
EV
P pu
X


  
2
max
2.3 1.0 1.0
cos cos(64.23) 0.0022
1.5 1.5s s
EV V
Q pu
X X


     
Active power output at this load angle,
Reactive power output at this load angle,
Since the reactive power output is negative, it is drawn by the machine.
16
3. A 3-phase, 50 Hz, 6.6 kV, star connected salient pole synchronous generator is
operating at 0.8 pf leading delivering 400 A. for this machine Xd = 4 Ω and Xq = 2.5
Ω. Calculate the maximum power that the alternator can deliver if its excitation is
maintained constant.
Solution: -
Phase voltage, V = 6.6 x 103/√3 = 3810.51 Volt.
Power factor is 0.8 leading. So the power factor angle is 36.870.
Armature current/phase Ia = 400 A.
Internal power factor angle ψ is –ve. So the armature current is leading both ‘V’ and ‘E’.
So, load angle δ = φ – |ψ| = 36.87-22.880 = 140.
So, Id = Iasinψ = 400 x sin(22.880) = 155.52 A.
Iq = Iacosψ = 400 x cos(22.880) = 368.53 A.
0
sin 400 2.5 3810.51 0.6
tan 22.88 .
cos 3810.51 0.8 400 0
a q
a a
I X V
V I r

 

   
    
   
V
E

 
Id Ia
17
Excitation emf, E = Vcosδ + Iq ra – IdXd = 3810.51 x cos(140) + 0 – 152.52 x 4 = 3087.24 V.
At this load angle, power output/phase
So, total electrical power output = 3 x 2.223 = 3.669 MW.
For maximum power output, load angle can be calculated as :
2
2
0 0
1 1
sin sin 2
2
3087.24 3810.51 3810.51 1 1
sin(14 ) sin(2 14 ) 1.223 .
4 2 2.5 4
d q d
EV V
P
X X X
MW
 
 
   
 
 
  
     
 
2 2
1 1 21
1 2
2
16 1 1
cos , ,
8 2
m m m
m m m
m d q d
P P P EV V
Where P and P
P X X X
 
     
     
  
  
1
2
2
3087.24 3810.51
2.941
4
3810.51 1 1
1.089
2 2.5 4
m
m
P MW and
P MW

 
 
   
 
18
2 2
1 1 21 0
2
32
cos 55.3
8
m m m
m
m
P P P
P
 
   
  
 
 
So the maximum power/phase,
1 2sin sin 2 2.941 sin(63.51) 1.089sin(2 63.51) 3.502m m m m mP P P MW       
19
Synchronizing Power Coefficient: -
 The rate at which synchronous power ‘P’ varies with load angle ‘δ’ is called the
synchronizing power coefficient ‘Psy’. It is also known as stiffness of coupling, rigidity
factor or, stability factor.
 For cylindrical pole type alternator, power output/phase
So, synchronizing power coefficient/phase in Watts/electrical radian
 For salient pole type alternator, power output/phase
So, synchronizing power coefficient/phase in Watts/electrical radian
sin
s
EV
P
X

cossy
s
dP EV
P
d X


 
2
1 1
sin sin 2
2d q d
EV V
P
X X X
 
 
   
 
 
2 1 1
cos cos2sy
d q d
EV
P V
X X X
 
 
   
 
 
20
So, synchronizing power coefficient (total for 3 phases) in Watts/electrical degree
 Synchronizing power coefficient (total for 3 phases) in Watts/mechanical degree
1
3 cos 3 cos
180 180
sy
s s
EV EV
P
X X

 

     
 
 
 
3 cos 3 cos
180 2 360
sy
s s
EV P P EV
P
X X
 
       
21
Cylindrical rotor Alternator Salient rotor Alternator
Figures are plotted by taking E = 1.2 pu; V = 1.0 pu; Xs = 1.0 pu For cylindrical pole alternator and
E = 1.2 pu; V = 1.0 pu; Xd = 1.0 pu and Xq = 0.6 pu for salient pole alternator
22
 Synchronizing power coefficient (Psy), is an indication of stiffness of electromagnetic
coupling between stator and rotor magnetic field.
 Too large stiffness of coupling means, that the stator field closely follow the variation in
the rotor speed caused by a sudden disturbance in prime-mover torque.
 A sudden disturbance in the generator or motor field current, also causes the
synchronizing power to come into play, so as to maintain the synchronism.
 So, too rigid electromagnetic coupling i.e. higher stiffness causes undue mechanical
shocks, whenever the alternator is subjected to a sudden change in mechanical power
input.
 Synchronizing power coefficient is directly proportional to excitation emf (E) and
inversely proportional to Xs or Xd.
 So, overexcited alternators are more stiffer.
 Again machines having large air-gaps will have less Xs or Xd, and therefore more stiffer.
 Synchronizing power coefficient (Psy), is positive for stable operating region and
negative for unstable region.
 For smaller values of load angle, Psy value large so, the degree of stability is high.
 As δ increases, Psy decreases and therefore the degree of stability is reduced.
23
Synchronizing Power: -
 The variation in synchronous power due to a small change in load angle is as called the
synchronizing power (Ps).
 When the load angle changes from δ to Δδ, the synchronizing power,
 Synchronizing power ‘Ps’ is transient in nature and comes into play whenever there is a
sudden change in steady state operating condition. Synchronizing power either flow
from or to the bus to restore steady state stability and maintain synchronism.
 The synchronizing power flows from, or to, the bus, in order to maintain the relative
velocity between interacting stator and rotor fields zero; once this is attained, the
synchronizing power vanishes.
2
cos .
1 1
cos cos2 .
s
s
d q d
EV
for cylindrial polealternator
X
dP
P
d EV
V for salient polealternator
X X X
 


  



     
    
   
  
24
 Synchronizing torque (Ts) can be calculated as:
Where, ‘Tsy’ is the synchronizing torque coefficient.
1 1
. . . .s s sy
s s
dP
T P m T
d
 
  
    
25
1. 5 MVA, 11 kV, 50 Hz, 4 pole, star-connected synchronous generator with
synchronous reactance 0.7 pu connected to an infinite bus. Find synchronizing power
and the corresponding torque per unit of mechanical angle displacement.
(a) at no load and
(b) at full load of 0.8 pf lagging.
Solution: -
a. At no-load, load angle, δ = 00 and induced emf/phase = terminal voltage/phase, i.e. E =
V.
Terminal voltage/phase, V = E = 11 x 103/√3 = 6350.85 Volt.
Base impedance ZB = base voltage/base current.
Base voltage is V = 6350.85 Volts.
Base current, IB = rated current = 5 x 106/(√3 x 11 x 103) = 262.43 A.
So, base Impedance ZB = 6350.85/262.43 = 24.2 Ω.
Now synchronous reactance Xs = 0.7 pu = 0.7 x 24.2 = 16.94 Ω.
Synchronizing Power per mechanical degree i.e. synchronizing power coefficient,
4 6350.85 6350.85
3 cos 3 249.33
360 360 16.94
sy
s
P EV
P kW
X
 

 
      
26
Angular speed in electrical radial/sec, ω = 2πf = 314.16.
So, angular speed in mechanical radian/sec, ωm = ω/(P/2) = 314.16/2 = 157.08.
Also, ωm =2 x π x Ns/60 = 2 x π x 1500/60 = 157.08 mechanical radian/sec.
Synchronizing torque, for one degree mechanical displacement of rotor
b. At full load, armature current, Ia = 5 x 106/(√3 x 11 x 103) = 262.43 A.
Power factor is 0.8 lagging.
So, the induced emf/phase,
Synchronizing power coefficient,
31 1
249.33 10 1587.28
157.08
sy sy
m
T P Nm

     
0 0 0
( ) 6350.85 0 262.43 36.87 (0 16.94) 9694.13 21.52a a sE V I r jX j Volt
  
            
04 9694.13 6350.85
3 cos 3 cos(21.52 ) 354.058
360 360 16.94
sy
s
P EV
P kW
X
 

 
      
31 1
354.058 10 2254
157.08
sy sy
m
T P Nm

     
27
Thank you

More Related Content

What's hot

Physics formula list 2
Physics formula list 2Physics formula list 2
Physics formula list 2
JSlinkyNY
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
Forward2025
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
LUIS POWELL
 
Vijay Balu Raskar E.T. Notes
Vijay Balu Raskar E.T. NotesVijay Balu Raskar E.T. Notes
Vijay Balu Raskar E.T. Notes
Vijay Raskar
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
Forward2025
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
Forward2025
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
Forward2025
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
Forward2025
 
Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25
BinodKumarSahu5
 
Electrical machines solved objective
Electrical machines solved objectiveElectrical machines solved objective
Electrical machines solved objective
maheshwareshwar
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
Forward2025
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
Forward2025
 
1 potential & capacity 09
1 potential & capacity 091 potential & capacity 09
1 potential & capacity 09
GODARAMANGERAM
 
Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37
BinodKumarSahu5
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
Forward2025
 
Chapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisikaChapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisika
risyanti ALENTA
 

What's hot (19)

Electrycity 2 p c r o 1
Electrycity 2 p c r o 1Electrycity 2 p c r o 1
Electrycity 2 p c r o 1
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
Physics formula list 2
Physics formula list 2Physics formula list 2
Physics formula list 2
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
 
Vijay Balu Raskar E.T. Notes
Vijay Balu Raskar E.T. NotesVijay Balu Raskar E.T. Notes
Vijay Balu Raskar E.T. Notes
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Anschp32
Anschp32Anschp32
Anschp32
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25
 
Electrical machines solved objective
Electrical machines solved objectiveElectrical machines solved objective
Electrical machines solved objective
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
1 potential & capacity 09
1 potential & capacity 091 potential & capacity 09
1 potential & capacity 09
 
Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Chapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisikaChapter19 giancoli edisi 5 jawaban fisika
Chapter19 giancoli edisi 5 jawaban fisika
 

Similar to Eet3082 binod kumar sahu lecturer_14

Eet3082 binod kumar sahu lecturer_23
Eet3082 binod kumar sahu lecturer_23Eet3082 binod kumar sahu lecturer_23
Eet3082 binod kumar sahu lecturer_23
BinodKumarSahu5
 
Electric potential
Electric potentialElectric potential
Electric potential
Johnel Esponilla
 
Ch21 ssm
Ch21 ssmCh21 ssm
Ch21 ssm
Marta Díaz
 
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdfEET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
BinodSahu10
 
Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_24
Eet3082 binod kumar sahu lecturer_24Eet3082 binod kumar sahu lecturer_24
Eet3082 binod kumar sahu lecturer_24
BinodKumarSahu5
 
RGPV EX 503 Unit IV
RGPV EX 503 Unit IVRGPV EX 503 Unit IV
RGPV EX 503 Unit IV
Mani Deep Dutt
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
Zahid Yousaf
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3
vandna123
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
Abinaya Saraswathy T
 
Unit1 And 2 Sample Solutions
Unit1 And 2 Sample SolutionsUnit1 And 2 Sample Solutions
Unit1 And 2 Sample Solutions
Abha Tripathi
 
Principle of Electric Field - Physics - by Arun Umrao
Principle of Electric Field - Physics - by Arun UmraoPrinciple of Electric Field - Physics - by Arun Umrao
Principle of Electric Field - Physics - by Arun Umrao
ssuserd6b1fd
 
Electric field for k12 student
Electric field for k12 studentElectric field for k12 student
Electric field for k12 student
Arun Umrao
 
Electric-Flux.pptx
Electric-Flux.pptxElectric-Flux.pptx
Electric-Flux.pptx
TRISTANRYANTINGSON2
 
2nd PUC Physics.pdf
2nd PUC Physics.pdf2nd PUC Physics.pdf
2nd PUC Physics.pdf
thriveniK3
 
2nd PUC Physics.pdf
2nd PUC Physics.pdf2nd PUC Physics.pdf
2nd PUC Physics.pdf
thriveniK3
 
Eet3082 binod kumar sahu lecturer_19
Eet3082 binod kumar sahu lecturer_19Eet3082 binod kumar sahu lecturer_19
Eet3082 binod kumar sahu lecturer_19
BinodKumarSahu5
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
ZunAib Ali
 

Similar to Eet3082 binod kumar sahu lecturer_14 (20)

Eet3082 binod kumar sahu lecturer_23
Eet3082 binod kumar sahu lecturer_23Eet3082 binod kumar sahu lecturer_23
Eet3082 binod kumar sahu lecturer_23
 
12 transformer
12 transformer12 transformer
12 transformer
 
Electric potential
Electric potentialElectric potential
Electric potential
 
Ch21 ssm
Ch21 ssmCh21 ssm
Ch21 ssm
 
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdfEET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
 
Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08
 
Eet3082 binod kumar sahu lecturer_24
Eet3082 binod kumar sahu lecturer_24Eet3082 binod kumar sahu lecturer_24
Eet3082 binod kumar sahu lecturer_24
 
RGPV EX 503 Unit IV
RGPV EX 503 Unit IVRGPV EX 503 Unit IV
RGPV EX 503 Unit IV
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3
 
jan25.pdf
jan25.pdfjan25.pdf
jan25.pdf
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
Unit1 And 2 Sample Solutions
Unit1 And 2 Sample SolutionsUnit1 And 2 Sample Solutions
Unit1 And 2 Sample Solutions
 
Principle of Electric Field - Physics - by Arun Umrao
Principle of Electric Field - Physics - by Arun UmraoPrinciple of Electric Field - Physics - by Arun Umrao
Principle of Electric Field - Physics - by Arun Umrao
 
Electric field for k12 student
Electric field for k12 studentElectric field for k12 student
Electric field for k12 student
 
Electric-Flux.pptx
Electric-Flux.pptxElectric-Flux.pptx
Electric-Flux.pptx
 
2nd PUC Physics.pdf
2nd PUC Physics.pdf2nd PUC Physics.pdf
2nd PUC Physics.pdf
 
2nd PUC Physics.pdf
2nd PUC Physics.pdf2nd PUC Physics.pdf
2nd PUC Physics.pdf
 
Eet3082 binod kumar sahu lecturer_19
Eet3082 binod kumar sahu lecturer_19Eet3082 binod kumar sahu lecturer_19
Eet3082 binod kumar sahu lecturer_19
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 

More from BinodKumarSahu5

Design of rotating electrical machines
Design of rotating electrical machinesDesign of rotating electrical machines
Design of rotating electrical machines
BinodKumarSahu5
 
Electrical machines 1
Electrical machines 1Electrical machines 1
Electrical machines 1
BinodKumarSahu5
 
Inductor and transformer desing
Inductor and transformer desingInductor and transformer desing
Inductor and transformer desing
BinodKumarSahu5
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07
BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
BinodKumarSahu5
 

More from BinodKumarSahu5 (20)

Design of rotating electrical machines
Design of rotating electrical machinesDesign of rotating electrical machines
Design of rotating electrical machines
 
Electrical machines 1
Electrical machines 1Electrical machines 1
Electrical machines 1
 
Inductor and transformer desing
Inductor and transformer desingInductor and transformer desing
Inductor and transformer desing
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39
 
Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38
 
Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32
 
Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31
 
Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30
 
Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29
 
Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28
 
Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27
 
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26
 
Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11
 
Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
 
Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
 
Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
 

Recently uploaded

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 

Recently uploaded (20)

J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 

Eet3082 binod kumar sahu lecturer_14

  • 1. Electrical Machines-II 6th Semester, EE and EEE By Dr. Binod Kumar Sahu Associate Professor, Electrical Engg. Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India Lecture-14
  • 2. 2 Learning Outcomes: - (Previous Lecture_13)  To solve numerical related to voltage regulation of salient pole alternator using phasor calculation.  To solve numerical related to voltage regulation of salient pole alternator by analytical method.
  • 3. 3 Learning Outcomes: - (Today’s Lecture_14)  To understand the concept of active power & reactive power in a cylindrical pole and salient pole type alternator.  To analyse the power angle characteristic of a cylindrical pole and salient pole type alternator.  To solve numerical related to power equation and power angle characteristic.  To understand the significance of synchronizing power coefficient and synchronizing torque coefficient.
  • 4. 4 Power Equation of a cylindrical pole Alternator: - Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’. i.e. Field Circuit Armature Circuit fV fI Field Circuit Armature Circuit phE Load aIar sx V 0 0 0 2 0 , 0 , , , 0 0 , * 0 ( ) s s a s s a s s s Let V V E E Z Z E V E V I Z Z E V EV V Complex power S V I V Z Z Z                                            2 2 cos( ) cos( ), sin( ) sin( ) s s s s EV V EV V P and Q Z Z Z Z           
  • 5. 5  Condition for maximum power is  So, the alternator delivers maximum power when the load angle is equal to impedance angle and the maximum power is:  If the armature resistance neglected because of its small value, then Synchronous Impedance,  So, expressions of active and reactive power becomes: 0 90s a s s sZ r jX jX X     2 0 0 2 2 0 0 cos(90 ) cos(90 ) sin sin(90 ) sin(90 ) cos s s s s s s s EV V EV P P X X X EV V EV V and Q Q X X X X                0 sin( ) 0 . dP d            2 cos .m s s EV V P Z Z  
  • 6. 6  Note: Power angle characteristics are drawn by taking E = 1.1 pu, V = 1.0 pu, and Xs = 1.0 pu.
  • 7. 7 Power Equation of a salient pole Alternator: - 0 , 0 , , ' ' . , cos( ) sin( )a a a a q d Let E E V V taking E as reference So I I I jI I jI                      E V jIdXd jIqXq Id Iq    Vcos d dI X O q qI X Vsin Ia
  • 8. 8 From the phasor diagram we get, So, complex power, sin sin . cos cos q q q q d d d d V V I X I X E V V I X E I X             sin cos * ( ) ( cos sin )a q d q d V E V S V I V I jI V jV j X X                         Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’. 2 2 2 1 1 sin cos sin sin cos sin sin 2 2q d d d q d V EV V EV V P X X X X X X                    
  • 9. 9 2 2 2 2 2 2 2 1 cos2 1 cos2 cos cos sin cos 2 2 1 1 1 1 cos cos2 2 d d q d d q d q d q d EV V V EV V V Q X X X X X X EV V X X X X X                                           Figures are plotted by taking E = 1.2 pu; V = 1.0 pu; Xd = 1.0 pu and Xq = 0.6 pu
  • 10. 10 Condition for maximum Power in Salient Pole type Alternator: - Active Power equation is: Condition for maximum power is 2 1 2 1 1 sin sin 2 sin sin 2 2 m m d q d EV V P P P X X X                 1 2 2 2 1 2 2 1 2 2 2 1 1 2 2 2 2 1 1 21 2 0 cos 2 cos2 0 2 (2cos 1) cos 0 4 cos cos 2 0 32 cos 8 32 cos 8 m m m m m m m m m m m m m m m dP d P P P P P P P P P P P P P P P                                      
  • 11. 11 So, the load angle for maximum power output can be obtained using the relation: 2 2 2 1 1 21 1 2 2 32 1 1 cos , , 8 2 m m m m m m m d q d P P P EV V Where P and P P X X X                    
  • 12. 12 Numerical:- 1. A three phase, star connected alternator is delivering 20 MW and 8 MVAR to at 11 kV. The alternator has synchronous impedance of (0 + j 3) Ω/phase. Determine the load angle and excitation of the alternator. Solution: - Complex power delivered by the alternator, S = (20 + j 8) MVA. Phase voltage, V = 11 x 103/ √3 = 6350.85 Volt. Armature current, Ia = S*/(3 x V*) = (20 - j 8) x 106/(3 x 6350.85) = A. Induced emf/phase = So, the load angle is δ = 22.480 and The line value of excitation emf EL = √3 x 8236.31 = 14265.7 V 0 1130.6 21.8  0 0 0 6350.85 0 1130.6 21.8 (0 3) 8236.31 22.48 .a sE V I Z j               
  • 13. 13 2. A three phase, star connected alternator has synchronous impedance of (1 + j 10) Ω/phase. It is operating at a constant voltage of 6.6 kV and its field excitation is adjusted to give an excitation voltage of 6.4 kV. Find the power output, armature current and power factor under the condition of maximum power output. Solution: - For maximum power output, load angle δ = impedance angle θ = tan-1(10/1) = 84.30. Terminal voltage/phase, V = 6.6 x 103/√3 = 3810.51 Volt. Induced emf/phase, E = 6.4 x 103/√3 = 3695.04 Volt. Armature current, So, armature current, Ia = 501.25 A and power factor = cos(48.83) = 0.66 leading. Output power, Pmax = √3VLIacos(φ) = √3 x 6.6 x 103 x 501.25 x 0.66 = 3781.84 kW. 0 0 03695.04 84.3 3810.51 0 501.25 48.83 1 10 a s E V I A Z j            
  • 14. 14 3. For a synchronous machine, excitation emf = 2 .3 pu , terminal voltage = 1 .0 pu, ra = 0, Xs = 1.5 pu. Find the maximum values of active and reactive powers and the corresponding load angles. In the reactive power diagram, indicate the reactive power flow to or from the machine. At what load angle is the power factor unity? Solution: - Since, armature resistance is neglected, Active Power, Reactive Power, So, active power will be maximum at δ = 900 and reactive power will be maximum at δ = 00. Maximum active power, Maximum reactive power, max 2.3 1.0 sin 1.533 1.5s EV P pu X      2 cos s s EV V Q X X   sin s EV P X  2 max 2.3 1.0 1.0 cos 0.866 1.5 1.5s s EV V Q pu X X       
  • 15. 15 Phasor diagram at unity power factor with ra = 0 is shown in the figure. From the phasor diagram, it is clear that under this loading condition, cosδ = (V/E). δ = cos-1(V/E) = cos-1(1/2.3) = 64.230. E V jIaXs  O Ia 02.3 1 sin sin(64.23 ) 1.381 . 1.5s EV P pu X      2 max 2.3 1.0 1.0 cos cos(64.23) 0.0022 1.5 1.5s s EV V Q pu X X         Active power output at this load angle, Reactive power output at this load angle, Since the reactive power output is negative, it is drawn by the machine.
  • 16. 16 3. A 3-phase, 50 Hz, 6.6 kV, star connected salient pole synchronous generator is operating at 0.8 pf leading delivering 400 A. for this machine Xd = 4 Ω and Xq = 2.5 Ω. Calculate the maximum power that the alternator can deliver if its excitation is maintained constant. Solution: - Phase voltage, V = 6.6 x 103/√3 = 3810.51 Volt. Power factor is 0.8 leading. So the power factor angle is 36.870. Armature current/phase Ia = 400 A. Internal power factor angle ψ is –ve. So the armature current is leading both ‘V’ and ‘E’. So, load angle δ = φ – |ψ| = 36.87-22.880 = 140. So, Id = Iasinψ = 400 x sin(22.880) = 155.52 A. Iq = Iacosψ = 400 x cos(22.880) = 368.53 A. 0 sin 400 2.5 3810.51 0.6 tan 22.88 . cos 3810.51 0.8 400 0 a q a a I X V V I r                  V E    Id Ia
  • 17. 17 Excitation emf, E = Vcosδ + Iq ra – IdXd = 3810.51 x cos(140) + 0 – 152.52 x 4 = 3087.24 V. At this load angle, power output/phase So, total electrical power output = 3 x 2.223 = 3.669 MW. For maximum power output, load angle can be calculated as : 2 2 0 0 1 1 sin sin 2 2 3087.24 3810.51 3810.51 1 1 sin(14 ) sin(2 14 ) 1.223 . 4 2 2.5 4 d q d EV V P X X X MW                        2 2 1 1 21 1 2 2 16 1 1 cos , , 8 2 m m m m m m m d q d P P P EV V Where P and P P X X X                     1 2 2 3087.24 3810.51 2.941 4 3810.51 1 1 1.089 2 2.5 4 m m P MW and P MW           
  • 18. 18 2 2 1 1 21 0 2 32 cos 55.3 8 m m m m m P P P P              So the maximum power/phase, 1 2sin sin 2 2.941 sin(63.51) 1.089sin(2 63.51) 3.502m m m m mP P P MW       
  • 19. 19 Synchronizing Power Coefficient: -  The rate at which synchronous power ‘P’ varies with load angle ‘δ’ is called the synchronizing power coefficient ‘Psy’. It is also known as stiffness of coupling, rigidity factor or, stability factor.  For cylindrical pole type alternator, power output/phase So, synchronizing power coefficient/phase in Watts/electrical radian  For salient pole type alternator, power output/phase So, synchronizing power coefficient/phase in Watts/electrical radian sin s EV P X  cossy s dP EV P d X     2 1 1 sin sin 2 2d q d EV V P X X X             2 1 1 cos cos2sy d q d EV P V X X X            
  • 20. 20 So, synchronizing power coefficient (total for 3 phases) in Watts/electrical degree  Synchronizing power coefficient (total for 3 phases) in Watts/mechanical degree 1 3 cos 3 cos 180 180 sy s s EV EV P X X                 3 cos 3 cos 180 2 360 sy s s EV P P EV P X X          
  • 21. 21 Cylindrical rotor Alternator Salient rotor Alternator Figures are plotted by taking E = 1.2 pu; V = 1.0 pu; Xs = 1.0 pu For cylindrical pole alternator and E = 1.2 pu; V = 1.0 pu; Xd = 1.0 pu and Xq = 0.6 pu for salient pole alternator
  • 22. 22  Synchronizing power coefficient (Psy), is an indication of stiffness of electromagnetic coupling between stator and rotor magnetic field.  Too large stiffness of coupling means, that the stator field closely follow the variation in the rotor speed caused by a sudden disturbance in prime-mover torque.  A sudden disturbance in the generator or motor field current, also causes the synchronizing power to come into play, so as to maintain the synchronism.  So, too rigid electromagnetic coupling i.e. higher stiffness causes undue mechanical shocks, whenever the alternator is subjected to a sudden change in mechanical power input.  Synchronizing power coefficient is directly proportional to excitation emf (E) and inversely proportional to Xs or Xd.  So, overexcited alternators are more stiffer.  Again machines having large air-gaps will have less Xs or Xd, and therefore more stiffer.  Synchronizing power coefficient (Psy), is positive for stable operating region and negative for unstable region.  For smaller values of load angle, Psy value large so, the degree of stability is high.  As δ increases, Psy decreases and therefore the degree of stability is reduced.
  • 23. 23 Synchronizing Power: -  The variation in synchronous power due to a small change in load angle is as called the synchronizing power (Ps).  When the load angle changes from δ to Δδ, the synchronizing power,  Synchronizing power ‘Ps’ is transient in nature and comes into play whenever there is a sudden change in steady state operating condition. Synchronizing power either flow from or to the bus to restore steady state stability and maintain synchronism.  The synchronizing power flows from, or to, the bus, in order to maintain the relative velocity between interacting stator and rotor fields zero; once this is attained, the synchronizing power vanishes. 2 cos . 1 1 cos cos2 . s s d q d EV for cylindrial polealternator X dP P d EV V for salient polealternator X X X                            
  • 24. 24  Synchronizing torque (Ts) can be calculated as: Where, ‘Tsy’ is the synchronizing torque coefficient. 1 1 . . . .s s sy s s dP T P m T d          
  • 25. 25 1. 5 MVA, 11 kV, 50 Hz, 4 pole, star-connected synchronous generator with synchronous reactance 0.7 pu connected to an infinite bus. Find synchronizing power and the corresponding torque per unit of mechanical angle displacement. (a) at no load and (b) at full load of 0.8 pf lagging. Solution: - a. At no-load, load angle, δ = 00 and induced emf/phase = terminal voltage/phase, i.e. E = V. Terminal voltage/phase, V = E = 11 x 103/√3 = 6350.85 Volt. Base impedance ZB = base voltage/base current. Base voltage is V = 6350.85 Volts. Base current, IB = rated current = 5 x 106/(√3 x 11 x 103) = 262.43 A. So, base Impedance ZB = 6350.85/262.43 = 24.2 Ω. Now synchronous reactance Xs = 0.7 pu = 0.7 x 24.2 = 16.94 Ω. Synchronizing Power per mechanical degree i.e. synchronizing power coefficient, 4 6350.85 6350.85 3 cos 3 249.33 360 360 16.94 sy s P EV P kW X            
  • 26. 26 Angular speed in electrical radial/sec, ω = 2πf = 314.16. So, angular speed in mechanical radian/sec, ωm = ω/(P/2) = 314.16/2 = 157.08. Also, ωm =2 x π x Ns/60 = 2 x π x 1500/60 = 157.08 mechanical radian/sec. Synchronizing torque, for one degree mechanical displacement of rotor b. At full load, armature current, Ia = 5 x 106/(√3 x 11 x 103) = 262.43 A. Power factor is 0.8 lagging. So, the induced emf/phase, Synchronizing power coefficient, 31 1 249.33 10 1587.28 157.08 sy sy m T P Nm        0 0 0 ( ) 6350.85 0 262.43 36.87 (0 16.94) 9694.13 21.52a a sE V I r jX j Volt                 04 9694.13 6350.85 3 cos 3 cos(21.52 ) 354.058 360 360 16.94 sy s P EV P kW X             31 1 354.058 10 2254 157.08 sy sy m T P Nm       