SlideShare a Scribd company logo
1 of 14
RLC resonant Circuits
Second order circuits have band-pass or band-reject filter characteristics. This lecture presents the characteristics of
this type of circuits and introduces the definition of interrelated five parameters (o, Qo, BW, 1, 2).
Example 1:
(a) A parallel resonant circuit with fo=800kHz. Assuming the input signal has an amplitude of 1, determine H at
850kHz Q=100. Also determine BW
Sol.
𝐻 =
1
1 + 𝑄2 πœ”
πœ”π‘œ
βˆ’
πœ”π‘œ
πœ”
2
=
1
1 + 1002 850
800
βˆ’
800
850
2
= 0.0832
βˆ… = βˆ’ tanβˆ’1
𝑄
850
800
βˆ’
800
850
= βˆ’85.3Β°
π΅π‘Š =
πœ”π‘œ
𝑄
= 160πœ‹
π‘Ÿπ‘Žπ‘‘
𝑠𝑒𝑐
= 80𝐻𝑧
Practice:
1-A parallel RLC with 8k, 40mH, and 0.25sec. determine:
ο‚· Q,
ο‚· BW
ο‚· The cutoff frequencies.
2-A high-frequency parallel RLC resonant circuit has o of 10MRad/sec and BW =200kRad/sec. Determine Q and L if
C=10pF.
Summary of the definitions of Q:
ο‚· Q is the ratio of the inductor (and capacitor) current amplitude to the source current amplitude at resonance.
ο‚· Q is 2 times the ratio of the energy stored to the energy dissipated at the resonant state.
ο‚· Q is the ratio of the resonant frequency to the bandwidth.
Other RLC resonant circuits and Bode Plots
The first part of this lecture focuses of on deriving the filter parameters for any circuit focusing on internal
resistance and the effect of loading.
1. Including the effect of stray resistance
Practically energy storage components (inductors and capacitors) are not ideal as the elements models suggest. The
inductor, for instance, has resistance associated with its wire. The capacitor has stray wire resistance and dielectric leakage
conductance. Accordingly, idealized model –as studied in the last lecture- may cause significant error. Including stray and
shunt resistors spoils the simple parallel and series RLC configurations studied earlier. This section studies the resonant state
of any combination of second order RLC circuits focusing on the effect of non-ideal elements.
In this section we are going to consider –as common example- the effect of the inductor internal resistance on the parallel
RLC circuits, as shown in Fig. 1. For this circuit we are going to derive the filter parameters using two methods as follows.
C R
L
rL
Ii
Vo
Fig. 1
The direct method
The direct method depends on the definition of the resonant state as the state at which the transfer function (H(j)) is real
number (at resonance the imaginary part =0).
For the circuit shown in Fig. 1:
𝐻 π‘—πœ” =
𝑉
π‘œ
πΌπ‘œ
= π‘π‘’π‘ž
π‘π‘’π‘ž =
1
π‘Œπ‘’π‘ž
π‘Œπ‘’π‘ž =
1
𝑅
+
1
π‘ŸπΏ + π‘—πœ”πΏ
+ π‘—πœ”πΆ
π‘Œπ‘’π‘ž =
π‘ŸπΏ + π‘—πœ”πΏ + 𝑅 + π‘—πœ”πΆπ‘… π‘ŸπΏ + π‘—πœ”πΏ
𝑅 π‘ŸπΏ + π‘—πœ”πΏ
π‘Œπ‘’π‘ž =
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ
π‘…π‘ŸπΏ + π‘—π‘…πœ”πΏ
π‘π‘’π‘ž
=
π‘…π‘ŸπΏ + π‘—π‘…πœ”πΏ
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ
Γ—
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ
π‘π‘’π‘ž
=
π‘…π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘…πœ”2𝐿 𝐿 + πΆπ‘…π‘ŸπΏ + 𝑗 π‘…πœ”π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—π‘…π‘ŸπΏπœ” 𝐿 + πΆπ‘…π‘ŸπΏ
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 2 + πœ”πΏ + πœ”πΆπ‘…π‘ŸπΏ
2
The imaginary part of π‘π‘’π‘ž = π‘‹π‘’π‘ž
π‘‹π‘’π‘ž =
βˆ’π‘…π‘ŸπΏπœ” 𝐿 + πΆπ‘…π‘ŸπΏ + π‘…πœ”πΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢
π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 2 + πœ”2 𝐿 + πΆπ‘…π‘ŸπΏ
2
At resonance π‘‹π‘’π‘ž = 0
βˆ’π‘…π‘ŸπΏπœ”π‘œ 𝐿 + πΆπ‘…π‘ŸπΏ + π‘…πœ”π‘œπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”π‘œ
2
𝑅𝐿𝐢 = 0
βˆ’π‘ŸπΏπΏ βˆ’ πΆπ‘…π‘ŸπΏ
2 + πΏπ‘ŸπΏ + 𝐿𝑅 βˆ’ πœ”π‘œ
2𝑅𝐿2𝐢 = 0
πœ”π‘œ
2
𝑅𝐿2
𝐢 = 𝐿𝑅 βˆ’ πΆπ‘…π‘ŸπΏ
2
πœ”π‘œ
2𝐿2𝐢 = 𝐿 βˆ’ πΆπ‘ŸπΏ
2
πœ”π‘œ
2 =
𝐿 + πΆπ‘ŸπΏ
2
𝐿2𝐢
=
1
𝐿𝐢
βˆ’
π‘ŸπΏ
2
𝐿2
πŽπ’ =
𝟏
𝑳π‘ͺ
βˆ’
𝒓𝑳
𝟐
π‘³πŸ
At this point, if we want to carry on the analysis to find other parameters using symbolic parameters, we will face tedious
analytical manipulations. This process can be mitigated if we use numerical –rather than symbolic- parameters. Example 1
shows complete analysis.
Example 1: Determine the following parameters of the circuit shown in Fig. 2: πœ”π‘œ, 𝑄, π΅π‘Š, πœ”π‘1, πœ”π‘2
Fig. 2
Sol.
From the analysis above
πœ”π‘œ =
1
𝐿𝐢
βˆ’
π‘ŸπΏ
2
𝐿2
=
1
5 Γ— 10βˆ’10
βˆ’
64
25 Γ— 10βˆ’8
= 41,761 π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐
To determine Q:
ο‚· Determine H(o),
ο‚· Determine the Energy stored and Energy Dissipated at resonance.
ο‚· Find Q
𝐻 πœ”π‘œ =
1
π‘—πœ”π‘œπΆ
 𝑅𝑙 + π‘—πœ”π‘œπΏ 𝑅𝑠
We substitute the numerical values of the components and o
𝐻 πœ”π‘œ = 55.56∠0Β°
𝑉
π‘œ πœ” = πœ”π‘œ = 𝐼𝑖 Γ— 𝐻 πœ”π‘œ = 0.04 Γ— 55.56∠0Β°
𝑉
π‘œ πœ” = πœ”π‘œ = 2.22∠0°𝑉
The current in the L branch:
𝐼𝐿 πœ” = πœ”π‘œ =
2.22∠0°
8 + 𝑗0.5π‘š Γ— 41761
β‰… 0.1∠ βˆ’ 69°𝐴
The energy dissipated in Rs
π‘Šπ‘…π‘  =
𝑉
π‘œ
2
𝑅𝑠
1
𝑓0
=
2.222
500
2πœ‹
41 761
= 1.4859πœ‡π½
π‘Šπ‘…π‘™ = 𝐼𝐿
2
𝑅𝑙
1
𝑓0
= 0.01 Γ— 8 Γ—
2πœ‹
41 761
= 12.036πœ‡π½
To Determine the energy stored assume (the arbitrary angle of the supply current=0), or:
𝑖𝑠 = 40 2cos(41761𝑑)
Gives π‘£π‘œ 𝑑 = 0 = 3.14𝑉
The energy stored in the capacitor at (t=0) is:
𝑀𝑐 𝑑 = 0 =
1
2
Γ— 10βˆ’6 Γ— 3.142 = 4.9298πœ‡π½
at t=0, the current in the inductor;
𝑖𝐿 𝑑 = 0 = 0.1 2 cos βˆ’69 = 0.0507𝐴
The corresponding inductor current:
𝑀𝐿 𝑑 = 0 =
1
2
Γ— 0.5 Γ— 10βˆ’3
Γ— (0.0507)2
= 0.642πœ‡π½
𝑄 = 2πœ‹
𝑀𝐿 + 𝑀𝐢
𝑀𝑅𝑠 + 𝑀𝑅𝑙
= 2πœ‹
5.5718
13.52
=
π΅π‘Š =
πœ”π‘œ
𝑄
=
41761
2.59
= 16,132π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐
The cutoff frequencies:
πœ”1 = 41761 1 +
1
2.59
2
βˆ’
16132
2
= 36700π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐
πœ”1 = 41761 1 +
1
2.59
2
+
16132
2
= 52830π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐
Equivalent-circuit method
As an alternative method for analysis, we are going to replace the series π‘ŸπΏπΏ branch with the equivalent parallel
resistance and inductance as explained in Fig. 3. After that the circuit of Fig. 1 becomes a pure parallel RLC resonant circuit.
L
rL
Lp
rp
Fig. 3
The series branch impedance is:
𝑍 = π‘ŸπΏ + π‘—πœ”πΏ
And the equivalent admittance:
π‘Œ =
1
π‘ŸπΏ + π‘—πœ”πΏ
=.
π‘ŸπΏ βˆ’ π‘—πœ”πΏ
π‘ŸπΏ
2 + πœ”πΏ 2
π‘Œ =
1
π‘Ÿπ‘
+
1
π‘—πœ”πΏπ‘
Gives:
π‘Ÿπ‘ =
π‘ŸπΏ
2+ πœ”πΏ 2
π‘ŸπΏ
And πœ”πΏπ‘ =
π‘ŸπΏ
2+ πœ”πΏ 2
πœ”πΏ
𝐿𝑝 =
π‘ŸπΏ
2
+ πœ”πΏ 2
πœ”2𝐿
The resonant frequency of the circuit shown in Fig. 4 (which is the circuit configuration after replacing the series branch by its parallel equivalent) satisfies the
equation:
πœ”π‘œ
2
=
1
𝐿𝑝𝐢
=
πœ”π‘œ
2𝐿
πΆπ‘ŸπΏ
2
+ πΆπœ”π‘œ
2𝐿2
πœ”π‘œ
2
πΆπ‘ŸπΏ
2
+ πΆπœ”π‘œ
4𝐿2 = πœ”π‘œ
2𝐿
Divide by πœ”π‘œ
2
πΆπ‘ŸπΏ
2
+ πΆπœ”π‘œ
2
𝐿2
= 𝐿
πΆπœ”π‘œ
2
𝐿2
= 𝐿 βˆ’ πΆπ‘ŸπΏ
2
πœ”π‘œ
2
=
𝐿 βˆ’ πΆπ‘ŸπΏ
2
𝐢𝐿2
=
1
𝐿𝐢
βˆ’
π‘ŸπΏ
2
𝐿2
πœ”π‘œ =
1
𝐿𝐢
βˆ’
π‘ŸπΏ
2
𝐿2
𝑄 = π‘…π‘’π‘žπœ”π‘œπΆ
Where π‘…π‘’π‘ž = π‘Ÿπ‘π‘…
C R
L
rL
Ii
Vo
C R
Ii
Vo
Lp
rp
2-Cascaded Filters
Many electronic systems are arranged as cascaded stages as shown in Fig. 5.
H1(j) H2(j) H3(j)
V1 V2 V3 V4
If we assume that the transfer functions are not affected by loading, the transfer function of the cascaded system:
H(jω)=V4V1=V2V1×V3V2×V4V3=H1×H2×H3
Fig. 5
3- Bode Plots
Bode plot is a tool used to draw the variation of the transfer function (H) with the frequency. Bode diagram
has two graphs drawn on the same frequency scale; (i) |H(j)| and (j) therefore it is also known as the
gain and phase plot. Bode Plot is drawn using a semi-log graph paper as shown in Fig. 6.
One Decade
Fig. 6
The base-10 log axis is used as a frequency axis. The cycle of
the frequency axis is called a decade. The graph paper shown in
Fig. 6 has 4 decades therefore its maximum frequency is 104
the minimum frequency.
The amplitude of transfer function (A) in Bode plots is draws
using logarithmic unit know as dB (for decibel or deci-Bell),
where:
𝐴 𝑖𝑛 𝑑𝐡 = 20 log( 𝐻 )
In this section we will show how to draw the Bode diagram of a
LPF and HPF.

More Related Content

Similar to Other RLC resonant circuits and Bode Plots 2024.pptx

Lecture 12
Lecture 12Lecture 12
Lecture 12Forward2025
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
Β 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
Β 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
Β 
431378390 convertirdor-sepic
431378390 convertirdor-sepic431378390 convertirdor-sepic
431378390 convertirdor-sepicDivar4
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdfMTharunKumar3
Β 
En mp ggf
En mp ggfEn mp ggf
En mp ggfRamjay41
Β 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage AmplifierJacob Ramey
Β 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsHussain K
Β 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdfLucasMogaka
Β 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculationSugavanam KR
Β 
Time Domain response of second order linear circuit
Time Domain response of second order linear circuitTime Domain response of second order linear circuit
Time Domain response of second order linear circuitAbhishek Choksi
Β 
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIK
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIKLAPORAN PROJECT DESAIN KOMPONEN MAGNETIK
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIKMohammadAgungDirmawa
Β 

Similar to Other RLC resonant circuits and Bode Plots 2024.pptx (20)

Dynamics
DynamicsDynamics
Dynamics
Β 
Lecture 12
Lecture 12Lecture 12
Lecture 12
Β 
Analysis
AnalysisAnalysis
Analysis
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
Β 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
Β 
PP+for+Ch+31.pdf
PP+for+Ch+31.pdfPP+for+Ch+31.pdf
PP+for+Ch+31.pdf
Β 
G1013238
G1013238G1013238
G1013238
Β 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
Β 
431378390 convertirdor-sepic
431378390 convertirdor-sepic431378390 convertirdor-sepic
431378390 convertirdor-sepic
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdf
Β 
En mp ggf
En mp ggfEn mp ggf
En mp ggf
Β 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage Amplifier
Β 
12 seri rlc
12 seri rlc12 seri rlc
12 seri rlc
Β 
Lecture 5
Lecture 5Lecture 5
Lecture 5
Β 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of Equations
Β 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
Β 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
Β 
Time Domain response of second order linear circuit
Time Domain response of second order linear circuitTime Domain response of second order linear circuit
Time Domain response of second order linear circuit
Β 
Lecture 2
Lecture 2Lecture 2
Lecture 2
Β 
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIK
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIKLAPORAN PROJECT DESAIN KOMPONEN MAGNETIK
LAPORAN PROJECT DESAIN KOMPONEN MAGNETIK
Β 

Recently uploaded

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 

Other RLC resonant circuits and Bode Plots 2024.pptx

  • 1. RLC resonant Circuits Second order circuits have band-pass or band-reject filter characteristics. This lecture presents the characteristics of this type of circuits and introduces the definition of interrelated five parameters (o, Qo, BW, 1, 2).
  • 2. Example 1: (a) A parallel resonant circuit with fo=800kHz. Assuming the input signal has an amplitude of 1, determine H at 850kHz Q=100. Also determine BW Sol. 𝐻 = 1 1 + 𝑄2 πœ” πœ”π‘œ βˆ’ πœ”π‘œ πœ” 2 = 1 1 + 1002 850 800 βˆ’ 800 850 2 = 0.0832 βˆ… = βˆ’ tanβˆ’1 𝑄 850 800 βˆ’ 800 850 = βˆ’85.3Β° π΅π‘Š = πœ”π‘œ 𝑄 = 160πœ‹ π‘Ÿπ‘Žπ‘‘ 𝑠𝑒𝑐 = 80𝐻𝑧
  • 3. Practice: 1-A parallel RLC with 8k, 40mH, and 0.25sec. determine: ο‚· Q, ο‚· BW ο‚· The cutoff frequencies. 2-A high-frequency parallel RLC resonant circuit has o of 10MRad/sec and BW =200kRad/sec. Determine Q and L if C=10pF. Summary of the definitions of Q: ο‚· Q is the ratio of the inductor (and capacitor) current amplitude to the source current amplitude at resonance. ο‚· Q is 2 times the ratio of the energy stored to the energy dissipated at the resonant state. ο‚· Q is the ratio of the resonant frequency to the bandwidth.
  • 4.
  • 5. Other RLC resonant circuits and Bode Plots The first part of this lecture focuses of on deriving the filter parameters for any circuit focusing on internal resistance and the effect of loading. 1. Including the effect of stray resistance Practically energy storage components (inductors and capacitors) are not ideal as the elements models suggest. The inductor, for instance, has resistance associated with its wire. The capacitor has stray wire resistance and dielectric leakage conductance. Accordingly, idealized model –as studied in the last lecture- may cause significant error. Including stray and shunt resistors spoils the simple parallel and series RLC configurations studied earlier. This section studies the resonant state of any combination of second order RLC circuits focusing on the effect of non-ideal elements. In this section we are going to consider –as common example- the effect of the inductor internal resistance on the parallel RLC circuits, as shown in Fig. 1. For this circuit we are going to derive the filter parameters using two methods as follows. C R L rL Ii Vo Fig. 1
  • 6. The direct method The direct method depends on the definition of the resonant state as the state at which the transfer function (H(j)) is real number (at resonance the imaginary part =0). For the circuit shown in Fig. 1: 𝐻 π‘—πœ” = 𝑉 π‘œ πΌπ‘œ = π‘π‘’π‘ž π‘π‘’π‘ž = 1 π‘Œπ‘’π‘ž π‘Œπ‘’π‘ž = 1 𝑅 + 1 π‘ŸπΏ + π‘—πœ”πΏ + π‘—πœ”πΆ π‘Œπ‘’π‘ž = π‘ŸπΏ + π‘—πœ”πΏ + 𝑅 + π‘—πœ”πΆπ‘… π‘ŸπΏ + π‘—πœ”πΏ 𝑅 π‘ŸπΏ + π‘—πœ”πΏ π‘Œπ‘’π‘ž = π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ π‘…π‘ŸπΏ + π‘—π‘…πœ”πΏ π‘π‘’π‘ž = π‘…π‘ŸπΏ + π‘—π‘…πœ”πΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ Γ— π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—πœ” 𝐿 + πΆπ‘…π‘ŸπΏ
  • 7. π‘π‘’π‘ž = π‘…π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 + π‘…πœ”2𝐿 𝐿 + πΆπ‘…π‘ŸπΏ + 𝑗 π‘…πœ”π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 βˆ’ π‘—π‘…π‘ŸπΏπœ” 𝐿 + πΆπ‘…π‘ŸπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 2 + πœ”πΏ + πœ”πΆπ‘…π‘ŸπΏ 2 The imaginary part of π‘π‘’π‘ž = π‘‹π‘’π‘ž π‘‹π‘’π‘ž = βˆ’π‘…π‘ŸπΏπœ” 𝐿 + πΆπ‘…π‘ŸπΏ + π‘…πœ”πΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 π‘ŸπΏ + 𝑅 βˆ’ πœ”2𝑅𝐿𝐢 2 + πœ”2 𝐿 + πΆπ‘…π‘ŸπΏ 2 At resonance π‘‹π‘’π‘ž = 0 βˆ’π‘…π‘ŸπΏπœ”π‘œ 𝐿 + πΆπ‘…π‘ŸπΏ + π‘…πœ”π‘œπΏ π‘ŸπΏ + 𝑅 βˆ’ πœ”π‘œ 2 𝑅𝐿𝐢 = 0 βˆ’π‘ŸπΏπΏ βˆ’ πΆπ‘…π‘ŸπΏ 2 + πΏπ‘ŸπΏ + 𝐿𝑅 βˆ’ πœ”π‘œ 2𝑅𝐿2𝐢 = 0 πœ”π‘œ 2 𝑅𝐿2 𝐢 = 𝐿𝑅 βˆ’ πΆπ‘…π‘ŸπΏ 2 πœ”π‘œ 2𝐿2𝐢 = 𝐿 βˆ’ πΆπ‘ŸπΏ 2 πœ”π‘œ 2 = 𝐿 + πΆπ‘ŸπΏ 2 𝐿2𝐢 = 1 𝐿𝐢 βˆ’ π‘ŸπΏ 2 𝐿2 πŽπ’ = 𝟏 𝑳π‘ͺ βˆ’ 𝒓𝑳 𝟐 π‘³πŸ
  • 8. At this point, if we want to carry on the analysis to find other parameters using symbolic parameters, we will face tedious analytical manipulations. This process can be mitigated if we use numerical –rather than symbolic- parameters. Example 1 shows complete analysis. Example 1: Determine the following parameters of the circuit shown in Fig. 2: πœ”π‘œ, 𝑄, π΅π‘Š, πœ”π‘1, πœ”π‘2 Fig. 2 Sol. From the analysis above πœ”π‘œ = 1 𝐿𝐢 βˆ’ π‘ŸπΏ 2 𝐿2 = 1 5 Γ— 10βˆ’10 βˆ’ 64 25 Γ— 10βˆ’8 = 41,761 π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐 To determine Q: ο‚· Determine H(o), ο‚· Determine the Energy stored and Energy Dissipated at resonance. ο‚· Find Q
  • 9. 𝐻 πœ”π‘œ = 1 π‘—πœ”π‘œπΆ 𝑅𝑙 + π‘—πœ”π‘œπΏ 𝑅𝑠 We substitute the numerical values of the components and o 𝐻 πœ”π‘œ = 55.56∠0Β° 𝑉 π‘œ πœ” = πœ”π‘œ = 𝐼𝑖 Γ— 𝐻 πœ”π‘œ = 0.04 Γ— 55.56∠0Β° 𝑉 π‘œ πœ” = πœ”π‘œ = 2.22∠0°𝑉 The current in the L branch: 𝐼𝐿 πœ” = πœ”π‘œ = 2.22∠0Β° 8 + 𝑗0.5π‘š Γ— 41761 β‰… 0.1∠ βˆ’ 69°𝐴 The energy dissipated in Rs π‘Šπ‘…π‘  = 𝑉 π‘œ 2 𝑅𝑠 1 𝑓0 = 2.222 500 2πœ‹ 41 761 = 1.4859πœ‡π½ π‘Šπ‘…π‘™ = 𝐼𝐿 2 𝑅𝑙 1 𝑓0 = 0.01 Γ— 8 Γ— 2πœ‹ 41 761 = 12.036πœ‡π½ To Determine the energy stored assume (the arbitrary angle of the supply current=0), or: 𝑖𝑠 = 40 2cos(41761𝑑) Gives π‘£π‘œ 𝑑 = 0 = 3.14𝑉
  • 10. The energy stored in the capacitor at (t=0) is: 𝑀𝑐 𝑑 = 0 = 1 2 Γ— 10βˆ’6 Γ— 3.142 = 4.9298πœ‡π½ at t=0, the current in the inductor; 𝑖𝐿 𝑑 = 0 = 0.1 2 cos βˆ’69 = 0.0507𝐴 The corresponding inductor current: 𝑀𝐿 𝑑 = 0 = 1 2 Γ— 0.5 Γ— 10βˆ’3 Γ— (0.0507)2 = 0.642πœ‡π½ 𝑄 = 2πœ‹ 𝑀𝐿 + 𝑀𝐢 𝑀𝑅𝑠 + 𝑀𝑅𝑙 = 2πœ‹ 5.5718 13.52 = π΅π‘Š = πœ”π‘œ 𝑄 = 41761 2.59 = 16,132π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐 The cutoff frequencies: πœ”1 = 41761 1 + 1 2.59 2 βˆ’ 16132 2 = 36700π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐 πœ”1 = 41761 1 + 1 2.59 2 + 16132 2 = 52830π‘Ÿπ‘Žπ‘‘/𝑠𝑒𝑐
  • 11. Equivalent-circuit method As an alternative method for analysis, we are going to replace the series π‘ŸπΏπΏ branch with the equivalent parallel resistance and inductance as explained in Fig. 3. After that the circuit of Fig. 1 becomes a pure parallel RLC resonant circuit. L rL Lp rp Fig. 3 The series branch impedance is: 𝑍 = π‘ŸπΏ + π‘—πœ”πΏ And the equivalent admittance: π‘Œ = 1 π‘ŸπΏ + π‘—πœ”πΏ =. π‘ŸπΏ βˆ’ π‘—πœ”πΏ π‘ŸπΏ 2 + πœ”πΏ 2 π‘Œ = 1 π‘Ÿπ‘ + 1 π‘—πœ”πΏπ‘
  • 12. Gives: π‘Ÿπ‘ = π‘ŸπΏ 2+ πœ”πΏ 2 π‘ŸπΏ And πœ”πΏπ‘ = π‘ŸπΏ 2+ πœ”πΏ 2 πœ”πΏ 𝐿𝑝 = π‘ŸπΏ 2 + πœ”πΏ 2 πœ”2𝐿 The resonant frequency of the circuit shown in Fig. 4 (which is the circuit configuration after replacing the series branch by its parallel equivalent) satisfies the equation: πœ”π‘œ 2 = 1 𝐿𝑝𝐢 = πœ”π‘œ 2𝐿 πΆπ‘ŸπΏ 2 + πΆπœ”π‘œ 2𝐿2 πœ”π‘œ 2 πΆπ‘ŸπΏ 2 + πΆπœ”π‘œ 4𝐿2 = πœ”π‘œ 2𝐿 Divide by πœ”π‘œ 2 πΆπ‘ŸπΏ 2 + πΆπœ”π‘œ 2 𝐿2 = 𝐿 πΆπœ”π‘œ 2 𝐿2 = 𝐿 βˆ’ πΆπ‘ŸπΏ 2 πœ”π‘œ 2 = 𝐿 βˆ’ πΆπ‘ŸπΏ 2 𝐢𝐿2 = 1 𝐿𝐢 βˆ’ π‘ŸπΏ 2 𝐿2 πœ”π‘œ = 1 𝐿𝐢 βˆ’ π‘ŸπΏ 2 𝐿2 𝑄 = π‘…π‘’π‘žπœ”π‘œπΆ Where π‘…π‘’π‘ž = π‘Ÿπ‘π‘… C R L rL Ii Vo C R Ii Vo Lp rp
  • 13. 2-Cascaded Filters Many electronic systems are arranged as cascaded stages as shown in Fig. 5. H1(j) H2(j) H3(j) V1 V2 V3 V4 If we assume that the transfer functions are not affected by loading, the transfer function of the cascaded system: H(jΟ‰)=V4V1=V2V1Γ—V3V2Γ—V4V3=H1Γ—H2Γ—H3 Fig. 5
  • 14. 3- Bode Plots Bode plot is a tool used to draw the variation of the transfer function (H) with the frequency. Bode diagram has two graphs drawn on the same frequency scale; (i) |H(j)| and (j) therefore it is also known as the gain and phase plot. Bode Plot is drawn using a semi-log graph paper as shown in Fig. 6. One Decade Fig. 6 The base-10 log axis is used as a frequency axis. The cycle of the frequency axis is called a decade. The graph paper shown in Fig. 6 has 4 decades therefore its maximum frequency is 104 the minimum frequency. The amplitude of transfer function (A) in Bode plots is draws using logarithmic unit know as dB (for decibel or deci-Bell), where: 𝐴 𝑖𝑛 𝑑𝐡 = 20 log( 𝐻 ) In this section we will show how to draw the Bode diagram of a LPF and HPF.