This document provides an introduction to Bayesian analysis and probabilistic modeling. It begins with an overview of Bayes' theorem and common probability distributions used in Bayesian modeling like the Bernoulli, binomial, beta, Dirichlet, and multinomial distributions. It then discusses how these distributions can be used in Bayesian modeling for problems like estimating probabilities based on observed data. Specifically, it explains how conjugate prior distributions allow the posterior distribution to be of the same family as the prior. The document concludes by discussing how neural networks can quantify classification uncertainty by outputting evidence for different classes modeled with a Dirichlet distribution.