Your SlideShare is downloading.
×

- 1. Are you sure about that!? Uncertainty Quantification in AI Florian Wilhelm Berlin, October 10th 2019
- 2. 2 Dr. Florian Wilhelm Principal Data Scientist @ inovex @FlorianWilhelm FlorianWilhelm florianwilhelm.info Mathematical Modelling Data Science to Production Recommender Systems Uncertainty Quantification & Causality Python Data Stack Maintainer PyScaffold
- 3. 3 Simon Bachstein Data Scientist @ inovex 2018/07 – 2019/01 Master Thesis at inovex: Uncertainty Quantification in Deep Learning • Blogpost: http://inovex.de/blog/uncertainty-quantification-deep-learning • Master Thesis: https://sbachstein.de/master_thesis.pdf @simonbachstein sbachstein sbachstein.de
- 4. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 4
- 5. Deep Networks cannot look beyond their horizon Motivation 5 90% cat 10% dog
- 6. Deep Networks cannot look beyond their horizon Motivation 6 40% cat 60% dog
- 7. Deep Networks cannot look beyond their horizon Motivation 7 ?
- 8. Boult, T. E., Cruz, S., Dhamija, A., Gunther, M., Henrydoss, J., & Scheirer, W. (2019). Learning and the Unknown: Surveying Steps Toward Open World Recognition. Aaai, 1–8. Retrieved from www.aaai.org Learning and the Unknown 8
- 9. Simple Regression Problem Interpolation 9
- 10. Simple Regression Problem Deep Networks don’t extrapolate Neural Arithmetic Logic Units, NIPS'18, Andrew Trask et. al.10
- 11. Simple Regression Problem Deep Networks don’t extrapolate 11
- 12. Simple Regression Problem Uncertainty about interpolation and extrapolation 12
- 13. Types of Uncertainty 13
- 14. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 14
- 15. Methods for Uncertainty Quantification 16 Relaxation of mathematical assumptions about data Gaussian Processes Deep Ensembles / Dropout Ensembles Quantile Regression Monte Carlo Dropout
- 16. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 17
- 17. A Gaussian Process can be thought of as a random function which is defined by its mean and covariance functions Gaussian Processes 18 Definition
- 18. Gaussian Processes 19 Example
- 19. Gaussian Processes 20 Inference
- 20. Gaussian Processes 21 Inference
- 21. Gaussian Processes 22 Inference with perfect interpolation
- 22. Gaussian Processes 23 Inference with noisy observations
- 23. Gaussian Processes 24 Inference Inference using given data points can be done analytically. For example, when assuming the (prior) mean function to be zero everywhere, we get: Good introduction: Bayesian Non-parametric Models for Data Science using PyMC by Christopher Fonnesbeck • https://www.youtube.com/watch?v=-sIOMs4MSuA • https://de.slideshare.net/mlreview/bayesian-nonparametric-models-for-data-science-using-pymc computationally intense
- 24. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 25
- 25. MC Dropout Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2016, Yarin Gal et. al. 26 ...
- 26. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 27
- 27. Deep Ensembles Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al28 Custom loss function: Capture uncertainty directly at training time
- 28. Deep Ensembles Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al29 Combine an ensemble of networks
- 29. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 30
- 30. Dropout Ensembles 31 The best of both worlds? ...
- 31. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 32
- 32. Using the cumulative distribution function (cdf) of a random variable Y, we define the quantile: Loss function to estimate quantile: Quantile Regression 33
- 33. Intuition behind Quantile Regression 34 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.2 0.5 0.8 Error: 0.0 + 1.6 = 1.6
- 34. Intuition behind Quantile Regression 35 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.4 0.7 Error: 0.0 + 1.2 = 1.2 0.0
- 35. Intuition behind Quantile Regression 36 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.3 0.6 Error: 0.1 + 0.9 = 1.0 0.0
- 36. Intuition behind Quantile Regression 37 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.2 0.2 0.5 Error: 0.3 + 0.7 = 1.0 0.1 No change due to the linearity of the error! +0.1 +0.1 -0.1 -0.1
- 37. Now the 0.75th Quantile 38 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume 𝜏 = 0.75 is here 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.2 0.2 0.5 0.1 Error: (1 − 0.75) ⋅ 0.3 + 0.75 ⋅ 0.7 = 0.6 Right-side error weights 3 times as much as the left-side error
- 38. Now the 0.75th Quantile 39 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 𝜏 = 0.75 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.5 0.1 0.2 Error: (1 − 0.75) ⋅ 1.0 + 0.75 ⋅ 0.2 = 0.4 0.4 Change in the right-side error also weights 3 times as much as the left-side error
- 39. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 40
- 40. According to the function Samples are generated as follows: Experiments Uncertainty in Deep Learning (Phd thesis), Yarin Gal, http://mlg.eng.cam.ac.uk/yarin/blog_2248.html41 Dataset
- 41. Experiments 42 Dataset
- 42. Neural networks › 2 hidden layers with 20 ReLU neurons each › 5 networks for Deep Ensembles › 100 iterations for Dropout predictions › Adam optimizer with batch size of 128 › LR, weight decay, dropout probability are optimized Gaussian Processes › squared exponential covariance and zero mean function prior › covariance function parameters and aleatory noise are optimized Experiments 43 Network setup and hyperparameters
- 43. Mean squared error (MSE) Mean negative log likelihood (MNLL) Mean Kullback-Leibler (KL) divergence Experiments 44 Measures for generalization quality
- 44. Experiments 45 Interpolation
- 45. Experiments 46 They still don’t extrapolate and they don’t quite realize
- 46. Experiments 47 Gaussian Process
- 47. Experiments Convergence 48
- 48. Experiments 49 Heteroscedastic noise
- 49. Experiments 50 Non-Gaussian noise
- 50. Experiments 51 Uncertainty split aleatoric epistemic
- 51. Summary 52 GP MCD DeepE DropoutE QR Homoscedastic noise ++ o + o o Heteroscedastic noise -- - ++ + + Non-Gaussian noise + o + + - Convergence ++ - + - + Speed (--) + - / (+) + ++ Uncertainty split yes no yes yes no
- 52. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 53
- 53. › Neural network approaches discussed here are very aware of aleatory uncertainty, however, not capable of correctly estimating epistemic uncertainty › Gaussian Processes give clear signals about ignorance but do not scale A combined solution needs to be developed because uncertainty estimation is needed in critical applications Conclusion 54 There is work to be done
- 54. › Bayesian Neural Networks (e.g. with PyMC) › Sparse Gaussian Process approximations › Gaussian Processes on top of neural networks Outlook 55 Other approaches
- 55. Thank You! Florian Wilhelm Principal Data Scientist inovex GmbH Schanzenstraße 6-20 Kupferhütte 1.13 51063 Köln florian.wilhelm@inovex.de