SlideShare a Scribd company logo
Collision Theory
Chemical rxn to occur bet A +B
• Molecule collide with right orientation(geometry)
( effective collisiontake place)
• Molecule collide with total energy greater > activationenergy
• Effectivecollisionwill lead to product formation
Collision bet A + B
No product formation
• Energy collision< activationenergy
• Collisionnot in correct orientation
or energetic enough to overcome Ea
Product formation
• Energy collision> activationenergy
• Collisionenergetic enough to overcome Ea
Rate of Reaction
• Conc reactant increase ↑
• Freq of collisionincrease ↑
• Freq of effectivecollisionincrease ↑
• Temp increase ↑ by 10 C
• Rate increase ↑ by 100%
• Exponential relationship
bet Temp and Rate
Rate = k [A]1[B]1 1st order – A
1st order – B
Conc A doubles x2 – Rate x2
Conc A triples x3 – Rate x3
Collision Theory
• Temp increase ↑ by 10C
• Fractionof molecules with
energy > Ea doubles
• Rate increases ↑ by 100%
Ineffective collision Effective collision
Concentration
Temperaturedepends
Effect Temp on Rate of rxn
• Area under curve proportional to number molecules
• Wide range of molecules with diff kinetic energy at particular temp
• Temp increases ↑ - curve shifted to right
• Temp increases ↑ - fraction of molecules with energy > Ea increase
• T2 > T1 by 10C – Area under curve for T2 = 2 X Area T1
• Y axis – fraction molecules having a given kinetic energy
• X axis – kinetic energy/speed for molecule
• Total area under curve for T1 and T2 same, BUT T2 is shift to right
with greater proportion molecules having higher kinetic energy
Ave Kinetic Energy α Abs Temp
• Ave kinetic energyfor all moleculesat T1 lower
• Fraction of molecule with energy> Ea is less ↓
• Ave kinetic energyfor all moleculesat T2 is higher
• Fractionof moleculewith energy> Ea is higher ↑
Maxwell Boltzmann Distribution -Temp affect Rate
At T1 (Low Temp)
At T2 (HighTemp)
T1
T2
RT
Ea
Aek


Relationship k and T - Arrhenius Eqn
Rate
constant
Arrheniusconstant
• Collision freq
and orientation factor
Ea = Activation
energy
T = Abs Tempin K
R = Gas constant
8.314 J K-1 mol-1
RT
Ea
Aek


Fraction of molecules
with energy> Ea
Rate constant,k increases ↑ exponentiallywithTemp
Fraction molecules with energy > Ea
Fraction molecules = e –Ea/RT
= e -55000/8.314 x 298
= 2.28 x10 -10
Fraction molecules with energy > Ea
Fraction molecules = e –Ea/RT
= e -55000/8.314 x 308
= 4.60 x 10 -10
Total number molecule with energy > Ea = Fraction molecule x total number molecule in 1 mol
= 2.28 x 10-10 x 6.0 x 10 23
= 1.37 x 1014
Total number molecule with energy > Ea = Fraction molecule x total number molecule in 1 mol
= 4.60 x 10-10 x 6.0 x 10 23
= 2.77 x 1014
Total number molecule with energy >E a
Fraction molecules with energy > Ea =
Total number of molecule in 1 mole gas
Rate double (increase by 100%) when temp rise by 10C
Total number molecule with energy > Ea at 35C 2.77 x 10 14 2 (Double)
Total number molecule with energy > Ea at 25C 1.37 x 10 14
Rate double = area under curve double = fraction molecule under curve double
Arrhenius Eqn - Rate doubles when temp rises from 25C to 35C
At 35C – 308KAt 25C – 298K
Convert fractionof molecules to total number of molecules in 1 mole of gas?
At 35C
At 25C
= =
Fraction of moleculeswith energy > EaRT
Ea
eAk

 ..
Temp increase from 25C to 35C (10C rise)
Rate doubles (100% increase)
Collision more energetic
Kinetic Energy α Abs Temp
• Ave Kinetic Energy = 1/2mv2 α Temp
• As Temp increase from 25C to 35C
1/2mv2 T2(35C)
1/2mv2 T1(25C)
↓
V2
2
308 √1.03
V1
2
298
↓
V2 1.01V1
Ave speed v2 = 1.01 x Ave speed v1
Ave speed increase by only 1.6%
Using Arrhenius eqn
k (35C) Ae -Ea/RT
k (25C) Ae -Ea/RT
k (35C) e -58000/8.31 x 308
k (25C) e -58000/8.31 x 298
e -23.03 2.2
e -23.82
k (35C) = 2.2 x k (25C)
Rate at 35C = 2 x Rate at 25C
Rate increase by 100%
Collision frequencyIncrease
Using Ave kinetic eqn - 1/2mv2α Temp
=
=
=
=
=
= =
=
Conclusion
• Temp increase ↑ – Rate increase ↑ due to more energetic collision and NOT due to increase in freq in collision
• Temp – cause more molecule having energy > Ea- lead to increase ↑ in rate
• Rate increase ↑ exponentially with increase Temp ↑
• Rate double X2 for every 10C rise in Temp
• Rate increase ↑ mainly due to more energetic collision
(collision bet molecules more energetic, with energy > Ea
Temp and rate constant link by Arrhenius Eqn
X + Y → Z
Rate of rxn = (Total number collision)x ( fractioncollision, energy >Ea) x ( [X] [Y] )
Arrhenius Constant
A
Fractionmolecule energy > Ea
e –Ea/RT
Conc
[X][Y]
Rate of rxn = A e –Ea/RT [X][Y]
Rate of rxn = k [X] [Y]
If conc constant BUT Temp changes, combine eqn 1 and 2
Rate of rxn = k [X]1
[Y]1
= A e –Ea/RT [X] [Y]
k = A e –Ea/RT
Rate rxn written in TWO forms
Rate of rxn = A e –Ea/RT [X] [Y]
Eqn 1 Eqn 2
Cancel both sides
Rate of rxn = A e –Ea/RT [X][Y]
Fractionmolecule energy > Ea
e –Ea/RT
Conc
[X][Y]
Temp increase
Fraction with energy> Ea increase
Rate increaseexponentially
Conc increase
Freq collision increase
Rate increase
ArrheniusEqn - Ea by graphicalMethod
RT
Ea
eAk

 ..







TR
E
Ak a 1
lnln 






TR
E
Ak a 1
303.2
lglg
Plot ln k vs 1/T
• Gradient = -Ea/R
• ln A = intercept y axis
Plot log k vs 1/T
• Gradient = -Ea/R
• log A = intercept yaxis
ln both sides log both sides
ln k lg k
1/T1/T
-Ea/R -Ea/R
Decomposition of 2HI ↔ H2 + I2 at diff tempand k was measured.Find Ea
Arrhenius Eqn
Ea from its gradient
Arrhenius Eqn - Ea by graphical Method
Temp/K 1/T k/dm3 mol-1 s-1 ln k
633 1.58 x 10-3 1.78 x 10-5 -10.94
666 1.50 x 10-3 1.07 x 10-4 -9.14
697 1.43 x 10-3 5.01 x 10-4 -7.60
715 1.40 x 10-3 1.05 x 10-5 -6.86
781 1.28 x 10-3 1.51 x 10-2 -4.19
1
RT
Ea
eAk

 .. 






TR
E
Ak a 1
lnln
Plot ln k vs 1/T
2
ln both sides
-Ea/R
Gradient = -Ea/R
Gradient = -2.25 x 104
-2.25 x 104 = -Ea/R
Ea = 2.25 x 104 x 8.314
= 1.87 x105 Jmol-1
ln k
1/T
Rxn 2HI ↔ H2 + I2 Find Ea
1
1 lnln
RT
E
Ak a

2
2 lnln
RT
E
Ak a

12
4
3
121
2
1066.1
600
1
650
1
314.8107.2
105.3
ln
11
ln






























kJmolE
E
TTR
E
k
k
a
a
a












121
2 11
ln
TTR
E
k
k a
600K ---k = 2.7 x 10-14 650K --- k= 3.5 x 10-3
Decomposition of Mass X at diff temp and k was measured.Find Ea
Arrhenius Eqn - Ea by graphical Method
3
1
1 lnln
RT
E
Ak a

2
2 lnln
RT
E
Ak a

1
121
2
7.52
273
1
286
1
314.855.0
4.1
ln
11
ln


























kJmolE
E
TTR
E
k
k
a
a
a












121
2 11
ln
TTR
E
k
k a
Time/m Mass left/g Mass loss
0 130 0
20 120 10
60 98 32
80 86 44
273K ---k = 0.55 286K ---k = 1.4
Time/m Mass left/g Mass loss
0 130 0
10 115 15
15 106 24
30 86 44
Plot mass loss vs time
Gradient will give rate constant, k
Mass loss
273K 286K
Mass loss
time
time
Gradient
↓
rate constant, k = 0.55
Gradient
↓
rate constant, k = 1.4

More Related Content

What's hot

LORENTZ TRANSFORMATION
LORENTZ TRANSFORMATIONLORENTZ TRANSFORMATION
LORENTZ TRANSFORMATION
Naveen Gupta
 
KVL & KCL
KVL & KCL KVL & KCL
KVL & KCL
Yasmin Begum
 
Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity
stemegypt.edu.eg
 
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqPhy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqMiza Kamaruzzaman
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
Mary Beth Smith
 
Enthalpy, Calorimetry, Hess's Law
Enthalpy, Calorimetry, Hess's LawEnthalpy, Calorimetry, Hess's Law
Enthalpy, Calorimetry, Hess's Law
Dixi Dawn
 
Physics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesPhysics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesMuhammad Solehin
 
Photoelectric effect
Photoelectric effectPhotoelectric effect
Photoelectric effect
Alessio Bernardelli
 
01 part1-ideal-gas
01 part1-ideal-gas01 part1-ideal-gas
01 part1-ideal-gas
gunabalan sellan
 
Equilibrium
EquilibriumEquilibrium
Equilibrium
Atul Saini
 
Ph 101-6
Ph 101-6Ph 101-6
Ph 101-6
Chandan Singh
 
Basics of Electric circuit theory
Basics of Electric circuit theoryBasics of Electric circuit theory
Basics of Electric circuit theory
Mohsin Mulla
 
Centripetal acceleration and force
Centripetal acceleration and forceCentripetal acceleration and force
Centripetal acceleration and force
Ces Joanne Fajarito
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
Samiul Ehsan
 
Flux
FluxFlux
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamicscairo university
 
APPLICATIONS OF SHM
APPLICATIONS OF SHMAPPLICATIONS OF SHM
APPLICATIONS OF SHM
KANNAN
 

What's hot (20)

LORENTZ TRANSFORMATION
LORENTZ TRANSFORMATIONLORENTZ TRANSFORMATION
LORENTZ TRANSFORMATION
 
KVL & KCL
KVL & KCL KVL & KCL
KVL & KCL
 
Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity
 
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqPhy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
 
Enthalpy, Calorimetry, Hess's Law
Enthalpy, Calorimetry, Hess's LawEnthalpy, Calorimetry, Hess's Law
Enthalpy, Calorimetry, Hess's Law
 
Physics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesPhysics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of Gases
 
Photoelectric effect
Photoelectric effectPhotoelectric effect
Photoelectric effect
 
01 part1-ideal-gas
01 part1-ideal-gas01 part1-ideal-gas
01 part1-ideal-gas
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Equilibrium
EquilibriumEquilibrium
Equilibrium
 
Ph 101-6
Ph 101-6Ph 101-6
Ph 101-6
 
Charle's law
Charle's lawCharle's law
Charle's law
 
Basics of Electric circuit theory
Basics of Electric circuit theoryBasics of Electric circuit theory
Basics of Electric circuit theory
 
Centripetal acceleration and force
Centripetal acceleration and forceCentripetal acceleration and force
Centripetal acceleration and force
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
Flux
FluxFlux
Flux
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamics
 
APPLICATIONS OF SHM
APPLICATIONS OF SHMAPPLICATIONS OF SHM
APPLICATIONS OF SHM
 
Gases cheat sheet
Gases cheat sheetGases cheat sheet
Gases cheat sheet
 

Viewers also liked

IB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half lifeIB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half life
Lawrence kok
 
IB Chemistry on Reaction Mechanism
IB Chemistry on Reaction MechanismIB Chemistry on Reaction Mechanism
IB Chemistry on Reaction Mechanism
Lawrence kok
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene Structure
Lawrence kok
 
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
Lawrence kok
 
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reactionIB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
Lawrence kok
 
DNA Barcoding Workshop
DNA Barcoding WorkshopDNA Barcoding Workshop
DNA Barcoding Workshop
Stephen Taylor
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
Lawrence kok
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
Lawrence kok
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
Lawrence kok
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
Lawrence kok
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
Lawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
Lawrence kok
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
Lawrence kok
 
IB Chemistry on Acid Base Indicator and Salt Hydrolysis
IB Chemistry on Acid Base Indicator and Salt HydrolysisIB Chemistry on Acid Base Indicator and Salt Hydrolysis
IB Chemistry on Acid Base Indicator and Salt Hydrolysis
Lawrence kok
 
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
Lawrence kok
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
Lawrence kok
 
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reactionIB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
Lawrence kok
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
Lawrence kok
 
IB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberIB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation number
Lawrence kok
 

Viewers also liked (20)

IB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half lifeIB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half life
 
IB Chemistry on Reaction Mechanism
IB Chemistry on Reaction MechanismIB Chemistry on Reaction Mechanism
IB Chemistry on Reaction Mechanism
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene Structure
 
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
 
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reactionIB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
 
DNA Barcoding Workshop
DNA Barcoding WorkshopDNA Barcoding Workshop
DNA Barcoding Workshop
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
 
IB Chemistry on Acid Base Indicator and Salt Hydrolysis
IB Chemistry on Acid Base Indicator and Salt HydrolysisIB Chemistry on Acid Base Indicator and Salt Hydrolysis
IB Chemistry on Acid Base Indicator and Salt Hydrolysis
 
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
Option B Stereochemistry Carbohydrates, Protein, Lipid, Vitamin and Iodine nu...
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reactionIB Chemistry on Uncertainty calculation for Order and Rate of reaction
IB Chemistry on Uncertainty calculation for Order and Rate of reaction
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
 
IB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberIB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation number
 

Similar to IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distribution

kinetics-lecture6.pdf
kinetics-lecture6.pdfkinetics-lecture6.pdf
kinetics-lecture6.pdf
Dr Nirankar Singh
 
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
Lumen Learning
 
Chemical kinetics I
Chemical kinetics IChemical kinetics I
Chemical kinetics I
PRAVIN SINGARE
 
chemicalkinetics-presentation-15034801-conversion-gate02.pptx
chemicalkinetics-presentation-15034801-conversion-gate02.pptxchemicalkinetics-presentation-15034801-conversion-gate02.pptx
chemicalkinetics-presentation-15034801-conversion-gate02.pptx
ssuser61ae70
 
Chemical kinetics presentation
Chemical kinetics   presentationChemical kinetics   presentation
Chemical kinetics presentation
University Of Johannesburg, SA
 
AP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineAP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineJane Hamze
 
chemicalkinetics-presentation-150214034801-conversion-gate02.pptx
chemicalkinetics-presentation-150214034801-conversion-gate02.pptxchemicalkinetics-presentation-150214034801-conversion-gate02.pptx
chemicalkinetics-presentation-150214034801-conversion-gate02.pptx
Jagdishannaya
 
Chemical kinetics v2
Chemical kinetics v2Chemical kinetics v2
Chemical kinetics v2
Mirza Salman Baig
 
Chemical Kinetics in Unit Processes
Chemical Kinetics in Unit ProcessesChemical Kinetics in Unit Processes
Chemical Kinetics in Unit Processes
Rahul Gaur
 
P05 Chemical Kinetics
P05 Chemical KineticsP05 Chemical Kinetics
P05 Chemical Kinetics
Edward Blurock
 
chemical_kinetics_part1.pptx
chemical_kinetics_part1.pptxchemical_kinetics_part1.pptx
chemical_kinetics_part1.pptx
FahadAlam52
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kinetics
IIS University, Jaipur
 
rate of reaction ppt.ppt
rate of reaction ppt.pptrate of reaction ppt.ppt
rate of reaction ppt.ppt
Hari prasath
 
Chemical Kinetics
Chemical Kinetics Chemical Kinetics
Chemical Kinetics
swapnil jadhav
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kineticsmiss j
 
Factores that effect on reaction rate1.pdf
Factores that effect on reaction rate1.pdfFactores that effect on reaction rate1.pdf
Factores that effect on reaction rate1.pdf
SayaYasinAliKakAbdul
 
Reaction Kinetics Biological waste water
Reaction Kinetics Biological waste waterReaction Kinetics Biological waste water
Reaction Kinetics Biological waste water
HemantYadav687083
 
9392189.ppt
9392189.ppt9392189.ppt
9392189.ppt
LawalBelloDanchadi
 

Similar to IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distribution (20)

kinetics-lecture6.pdf
kinetics-lecture6.pdfkinetics-lecture6.pdf
kinetics-lecture6.pdf
 
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
Chem 2 - Chemical Kinetics VIII: The Arrhenius Equation, Activation Energy, a...
 
Chemical kinetics I
Chemical kinetics IChemical kinetics I
Chemical kinetics I
 
Lec39post.pdf
Lec39post.pdfLec39post.pdf
Lec39post.pdf
 
chemicalkinetics-presentation-15034801-conversion-gate02.pptx
chemicalkinetics-presentation-15034801-conversion-gate02.pptxchemicalkinetics-presentation-15034801-conversion-gate02.pptx
chemicalkinetics-presentation-15034801-conversion-gate02.pptx
 
Chemical kinetics presentation
Chemical kinetics   presentationChemical kinetics   presentation
Chemical kinetics presentation
 
Kinetics pp
Kinetics ppKinetics pp
Kinetics pp
 
AP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineAP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 Outline
 
chemicalkinetics-presentation-150214034801-conversion-gate02.pptx
chemicalkinetics-presentation-150214034801-conversion-gate02.pptxchemicalkinetics-presentation-150214034801-conversion-gate02.pptx
chemicalkinetics-presentation-150214034801-conversion-gate02.pptx
 
Chemical kinetics v2
Chemical kinetics v2Chemical kinetics v2
Chemical kinetics v2
 
Chemical Kinetics in Unit Processes
Chemical Kinetics in Unit ProcessesChemical Kinetics in Unit Processes
Chemical Kinetics in Unit Processes
 
P05 Chemical Kinetics
P05 Chemical KineticsP05 Chemical Kinetics
P05 Chemical Kinetics
 
chemical_kinetics_part1.pptx
chemical_kinetics_part1.pptxchemical_kinetics_part1.pptx
chemical_kinetics_part1.pptx
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kinetics
 
rate of reaction ppt.ppt
rate of reaction ppt.pptrate of reaction ppt.ppt
rate of reaction ppt.ppt
 
Chemical Kinetics
Chemical Kinetics Chemical Kinetics
Chemical Kinetics
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kinetics
 
Factores that effect on reaction rate1.pdf
Factores that effect on reaction rate1.pdfFactores that effect on reaction rate1.pdf
Factores that effect on reaction rate1.pdf
 
Reaction Kinetics Biological waste water
Reaction Kinetics Biological waste waterReaction Kinetics Biological waste water
Reaction Kinetics Biological waste water
 
9392189.ppt
9392189.ppt9392189.ppt
9392189.ppt
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 

Recently uploaded (20)

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 

IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distribution

  • 1. Collision Theory Chemical rxn to occur bet A +B • Molecule collide with right orientation(geometry) ( effective collisiontake place) • Molecule collide with total energy greater > activationenergy • Effectivecollisionwill lead to product formation Collision bet A + B No product formation • Energy collision< activationenergy • Collisionnot in correct orientation or energetic enough to overcome Ea Product formation • Energy collision> activationenergy • Collisionenergetic enough to overcome Ea Rate of Reaction • Conc reactant increase ↑ • Freq of collisionincrease ↑ • Freq of effectivecollisionincrease ↑ • Temp increase ↑ by 10 C • Rate increase ↑ by 100% • Exponential relationship bet Temp and Rate Rate = k [A]1[B]1 1st order – A 1st order – B Conc A doubles x2 – Rate x2 Conc A triples x3 – Rate x3 Collision Theory • Temp increase ↑ by 10C • Fractionof molecules with energy > Ea doubles • Rate increases ↑ by 100% Ineffective collision Effective collision Concentration Temperaturedepends
  • 2. Effect Temp on Rate of rxn • Area under curve proportional to number molecules • Wide range of molecules with diff kinetic energy at particular temp • Temp increases ↑ - curve shifted to right • Temp increases ↑ - fraction of molecules with energy > Ea increase • T2 > T1 by 10C – Area under curve for T2 = 2 X Area T1 • Y axis – fraction molecules having a given kinetic energy • X axis – kinetic energy/speed for molecule • Total area under curve for T1 and T2 same, BUT T2 is shift to right with greater proportion molecules having higher kinetic energy Ave Kinetic Energy α Abs Temp • Ave kinetic energyfor all moleculesat T1 lower • Fraction of molecule with energy> Ea is less ↓ • Ave kinetic energyfor all moleculesat T2 is higher • Fractionof moleculewith energy> Ea is higher ↑ Maxwell Boltzmann Distribution -Temp affect Rate At T1 (Low Temp) At T2 (HighTemp) T1 T2 RT Ea Aek   Relationship k and T - Arrhenius Eqn Rate constant Arrheniusconstant • Collision freq and orientation factor Ea = Activation energy T = Abs Tempin K R = Gas constant 8.314 J K-1 mol-1 RT Ea Aek   Fraction of molecules with energy> Ea Rate constant,k increases ↑ exponentiallywithTemp
  • 3. Fraction molecules with energy > Ea Fraction molecules = e –Ea/RT = e -55000/8.314 x 298 = 2.28 x10 -10 Fraction molecules with energy > Ea Fraction molecules = e –Ea/RT = e -55000/8.314 x 308 = 4.60 x 10 -10 Total number molecule with energy > Ea = Fraction molecule x total number molecule in 1 mol = 2.28 x 10-10 x 6.0 x 10 23 = 1.37 x 1014 Total number molecule with energy > Ea = Fraction molecule x total number molecule in 1 mol = 4.60 x 10-10 x 6.0 x 10 23 = 2.77 x 1014 Total number molecule with energy >E a Fraction molecules with energy > Ea = Total number of molecule in 1 mole gas Rate double (increase by 100%) when temp rise by 10C Total number molecule with energy > Ea at 35C 2.77 x 10 14 2 (Double) Total number molecule with energy > Ea at 25C 1.37 x 10 14 Rate double = area under curve double = fraction molecule under curve double Arrhenius Eqn - Rate doubles when temp rises from 25C to 35C At 35C – 308KAt 25C – 298K Convert fractionof molecules to total number of molecules in 1 mole of gas? At 35C At 25C = = Fraction of moleculeswith energy > EaRT Ea eAk   ..
  • 4. Temp increase from 25C to 35C (10C rise) Rate doubles (100% increase) Collision more energetic Kinetic Energy α Abs Temp • Ave Kinetic Energy = 1/2mv2 α Temp • As Temp increase from 25C to 35C 1/2mv2 T2(35C) 1/2mv2 T1(25C) ↓ V2 2 308 √1.03 V1 2 298 ↓ V2 1.01V1 Ave speed v2 = 1.01 x Ave speed v1 Ave speed increase by only 1.6% Using Arrhenius eqn k (35C) Ae -Ea/RT k (25C) Ae -Ea/RT k (35C) e -58000/8.31 x 308 k (25C) e -58000/8.31 x 298 e -23.03 2.2 e -23.82 k (35C) = 2.2 x k (25C) Rate at 35C = 2 x Rate at 25C Rate increase by 100% Collision frequencyIncrease Using Ave kinetic eqn - 1/2mv2α Temp = = = = = = = = Conclusion • Temp increase ↑ – Rate increase ↑ due to more energetic collision and NOT due to increase in freq in collision • Temp – cause more molecule having energy > Ea- lead to increase ↑ in rate • Rate increase ↑ exponentially with increase Temp ↑ • Rate double X2 for every 10C rise in Temp • Rate increase ↑ mainly due to more energetic collision (collision bet molecules more energetic, with energy > Ea
  • 5. Temp and rate constant link by Arrhenius Eqn X + Y → Z Rate of rxn = (Total number collision)x ( fractioncollision, energy >Ea) x ( [X] [Y] ) Arrhenius Constant A Fractionmolecule energy > Ea e –Ea/RT Conc [X][Y] Rate of rxn = A e –Ea/RT [X][Y] Rate of rxn = k [X] [Y] If conc constant BUT Temp changes, combine eqn 1 and 2 Rate of rxn = k [X]1 [Y]1 = A e –Ea/RT [X] [Y] k = A e –Ea/RT Rate rxn written in TWO forms Rate of rxn = A e –Ea/RT [X] [Y] Eqn 1 Eqn 2 Cancel both sides Rate of rxn = A e –Ea/RT [X][Y] Fractionmolecule energy > Ea e –Ea/RT Conc [X][Y] Temp increase Fraction with energy> Ea increase Rate increaseexponentially Conc increase Freq collision increase Rate increase ArrheniusEqn - Ea by graphicalMethod RT Ea eAk   ..        TR E Ak a 1 lnln        TR E Ak a 1 303.2 lglg Plot ln k vs 1/T • Gradient = -Ea/R • ln A = intercept y axis Plot log k vs 1/T • Gradient = -Ea/R • log A = intercept yaxis ln both sides log both sides ln k lg k 1/T1/T -Ea/R -Ea/R
  • 6. Decomposition of 2HI ↔ H2 + I2 at diff tempand k was measured.Find Ea Arrhenius Eqn Ea from its gradient Arrhenius Eqn - Ea by graphical Method Temp/K 1/T k/dm3 mol-1 s-1 ln k 633 1.58 x 10-3 1.78 x 10-5 -10.94 666 1.50 x 10-3 1.07 x 10-4 -9.14 697 1.43 x 10-3 5.01 x 10-4 -7.60 715 1.40 x 10-3 1.05 x 10-5 -6.86 781 1.28 x 10-3 1.51 x 10-2 -4.19 1 RT Ea eAk   ..        TR E Ak a 1 lnln Plot ln k vs 1/T 2 ln both sides -Ea/R Gradient = -Ea/R Gradient = -2.25 x 104 -2.25 x 104 = -Ea/R Ea = 2.25 x 104 x 8.314 = 1.87 x105 Jmol-1 ln k 1/T Rxn 2HI ↔ H2 + I2 Find Ea 1 1 lnln RT E Ak a  2 2 lnln RT E Ak a  12 4 3 121 2 1066.1 600 1 650 1 314.8107.2 105.3 ln 11 ln                               kJmolE E TTR E k k a a a             121 2 11 ln TTR E k k a 600K ---k = 2.7 x 10-14 650K --- k= 3.5 x 10-3
  • 7. Decomposition of Mass X at diff temp and k was measured.Find Ea Arrhenius Eqn - Ea by graphical Method 3 1 1 lnln RT E Ak a  2 2 lnln RT E Ak a  1 121 2 7.52 273 1 286 1 314.855.0 4.1 ln 11 ln                           kJmolE E TTR E k k a a a             121 2 11 ln TTR E k k a Time/m Mass left/g Mass loss 0 130 0 20 120 10 60 98 32 80 86 44 273K ---k = 0.55 286K ---k = 1.4 Time/m Mass left/g Mass loss 0 130 0 10 115 15 15 106 24 30 86 44 Plot mass loss vs time Gradient will give rate constant, k Mass loss 273K 286K Mass loss time time Gradient ↓ rate constant, k = 0.55 Gradient ↓ rate constant, k = 1.4