SlideShare a Scribd company logo
cellnFEG  
Relationship between
Energetics and Equilibrium
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free
energy change
H
G
Relationshipbet ∆G, Kc and E cell
cellnFEG  
STHG  cKRTG ln 
cK
Relationship between
Energetics and Cell Potential

G cellE
Gibbs free
energy change
Cell potential
F = Faraday constant
(96 500 Cmol-1)
n = number
electron
Relationship bet ∆G, Kc and Ecell
ΔGθ Kc Eθ/V Extent of rxn
> 0 < 1 < 0 No Reaction
Non spontaneous
ΔGθ = 0 Kc = 1 0 Equilibrium
Mix reactant/product
< 0 > 1 > 0 Reaction complete
Spontaneous
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactants
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
Relationship bet ∆G and Kc
shift to left (reactant)
shift to right (products)
cellE

G
cK
K
nF
RT
E cell ln
Magnitudeof Kc
Extendof reaction
How far rxn shift to right or left?
Not how fast
cK
Positionof equilibrium
cK
Temp
dependent
Extend
of rxn
Not how fast
Shift to left/
favour reactant
Shift to right/
favour product
cK
Relationship between
Equilibrium and Energetics
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free energy change
H
G cK
G
Energetically
Thermodynamically
Favourable/feasible
ΔGθ ln K Kc Eq mixture
ΔGθ -ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ +ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
Measure work
available from system
Sign predict
spontaneity of rxn
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
cKRTG ln 
Magnitudeof Kc
Extendof reaction
How far rxn shift to right or left?
Not how fast
cK
Positionof equilibrium
cK
Temp
dependent
Extend
of rxn
Not how fast
Shift to left/
favour reactant
Shift to right/
favour product
cK
Relationship between
Equilibrium and Energetics
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free energy change
H
G cK
ΔGθ ln K Kc Eq mixture
ΔGθ -ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ +ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
cKRTG ln 
STHG 
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
Relationshipbet ∆G and Kc
G
Energetically
Thermodynamically
Favourable/feasible
Sign predict
spontaneity of rxn
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
KRTG ln
Predictwill rxn occur with ΔG and Kc
cK
Very SMALL
Kc < 1
Shift to right/
favour product
Shift to left/
favour reactant
Very BIG
Kc > 1
veG veG 
KRTG ln
1cK 1cK
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
Relationship bet ∆G and Kc
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactant
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
shift to left (reactant)
shift to right (product)
G, Gibbs free energy
A
Mixture composition
B
100% A 100% B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
Free energy system is lowered on the way to equilibrium
Rxn proceed to minimum free energy ∆G = 0
System seek lowest possible free energy
Product have lower free energy than reactant
∆G < 0 product
reactant
G
Energetically
Thermodynamically
Favourable/feasible
Sign predict
spontaneity of rxn
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
KRTG ln
cK
Very SMALL
Kc < 1
Shift to right/
favour product
Shift to left/
favour reactant
Very BIG
Kc > 1
veG veG 
KRTG ln
1cK 1cK
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
Relationship bet ∆G, Q and Kc
G, Gibbs free energy
A
B
100% A 100% B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy
minimum
∆G < 0
∆G < 0
∆G = 0
∆G < 0 product
reactant
G, Gibbs free energy
reactant product∆G < 0
A
B
∆G decreases ↓
100% A 100% B30 % A
70 % B
∆G = 0
Q = K
∆G < 0
Q < K
∆G > 0
∆G < 0
Q > K
∆G > 0
A ↔ B A ↔ B
Equilibrium mixture
Predictwill rxn occur with ΔG and Kc
Relationship bet ∆G and Kc
G, Gibbs free energy
A
B
100%
A
100%
B
∆G decreases ↓
30 % A
70 % B
Equilibrium mix close to product
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
∆G < -10
Kc > 1
A ↔ B A ↔ B
G, Gibbs free energy
A
B
∆G decreases ↓
∆G < -100
100%
A
100%
B
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc > 1Equilibrium mix close to product
10 % A
90 % B
∆G < 0
∆G < 0 ∆G = 0
∆G very –ve → Kc > 1 → (more product/closeto completion)∆G –ve → Kc > 1 → (more product > reactant)
A ↔ B
G, Gibbs free energy
100%
A
100%
B
A
B
∆G +ve → Kc < 1 → (more reactant > product)
∆G > +10
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc < 1
∆G increases ↑
70 % A
30 % B
Equilibrium mix close to reactant
∆G < 0
∆G = 0
A ↔ B
G, Gibbs free energy
∆G more +ve → Kc < 1 → (All reactant / no product at all)
A
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc < 1100%
A
100%
B
Equilibrium mix close to reactant/ No reaction.
∆G > +100
B
90 % A
10 % B
∆G increases ↑
∆G = 0
∆G < 0
reactant
reactant
reactant
reactant
productproduct
product product
Relationship bet ∆G and Kc
shift to left (reactant)
shift to right (product)
G, Gibbs free energy
A
B
100%
A
100%
B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
Free energy system is lowered on the way to equilibrium
Rxn proceed to minimum free energy ∆G = 0
System seek lowest possible free energy
Product have lower free energy than reactant
∆G < -10
Kc > 1
A ↔ B A ↔ B
G, Gibbs free energy
A
B
∆G decreases ↓
∆G < -100
100%
A
100%
B
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc > 1Equilibrium mixture
10 % A
90 % B
∆G < 0
∆G < 0 ∆G = 0
∆G very –ve → Kc > 1 → (All product/closeto completion)∆G –ve → Kc > 1 → (more product > reactant)
∆G
∆G = 0
∆G > 0
∆G < 0
No reaction/most reactants
Kc <1
Complete rxn/Most products
Kc > 1
Kc = 1 (Equilibrium)
Reactants= Products
reactant
reactant
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactant
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
298314.8
)212000(
ln





RT
G
Kc
Zn ↔ Zn2+ + 2e Eθ = +0.76
Cu2+ + 2e ↔ Cu Eθ = +0.34
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Voltaic Cell
-e -e
Zn/Cu half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
cellnFEG  
E cell with ∆G
F = Faraday constant
(96 500 Cmol-1)
n = number electron
cellnFEG  
kJJG
G
212212300
10.1965002




∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn SpontaneouscKRTG ln 
Equilibrium
constant
Gas constant, 8.314
∆G with Kc
cKRTG ln  37
103.1 cK
Favour products
Zn ↔ Zn2+ + 2e Eθ = +0.76
2Ag++2e ↔ 2Ag Eθ = +0.80
Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Ag Voltaic Cell
-e -e
Zn/Ag half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Ag + + e ↔ Ag(cathode) Eθ = +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reductionpotential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Ag+ + e ↔ Ag Eθ = +0.80V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br- +1.07
+
+1.56 V
Ag
Eθ
Zn/Ag = +1.56V
Ag+
-
-
-
-
+
+
+
+
Zn
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
301301000
56.1965002




∆G with Kc
cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
cKRTG ln 
298314.8
)301000(
ln





RT
G
Kc
52
105.3 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
Favour products
Mn ↔ Mn2+ + 2e Eθ = +1.19
Ni2+ + 2e ↔ Ni Eθ = -0.26
Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V
Mn half cell (-ve)
Oxidation
Ni half cell (+ve)
Reduction
Anode Cathode
Mn(s) | Mn2+
(aq) || Ni2+
(aq) | Ni (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Mn/Ni Voltaic Cell
-e -e
Mn/Ni half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.26 – (-1.19) = +0.93V
Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V
Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V
Std electrode potential as std reduction potential
Find Eθ
cell (use reductionpotential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Mn 2+ + 2e ↔ Mn Eθ = -1.19V
Ni2+ + 2e ↔ Ni Eθ = -0.26V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni - 0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
+
+0.93 V
Eθ
Mn/Ni = +0.93V
Ni2+
-
-
-
-
NiMn
+
+
+
+Mn2+
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
179179490
93.0965002




cKRTG ln 
298314.8
)179000(
ln





RT
G
Kc
cKRTG ln 
∆G with Kc
Gas constant, 8.314 Equilibrium
constant
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
31
102.2 cK
Favour products
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2S +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu ↔ Cu2+ + 2e Eθ = -0.34
2H+ + 2e ↔ H2 Eθ = +0.00
Cu + 2H+→ Cu2+ +H2 Eθ = -0.34V
Rxn bet Cu + H+
Will it happen ?
Eθ
= -0.34V
(NON spontaneous)
О
Cu(s) | Cu2+
(aq) || H+ H2 | Pt (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (+0.34) = -0.34V
Eθ
= -0.34V
(NON spontaneous)
О
Rxn not feasible
Determinespontaneityrxn. Will it HAPPEN?
Find Eθ
cell (use reductionpotential)
Eθ
Cu/H+ = - 0.34V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
6565620
34.0965002




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)65000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
12
104 
cK
Favour reactants
-0.34 V
acid
copper
Predictingwill rxn occur with ΔG, E cell and Kc
+
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2S +0.17
Cu2+ + 2e- ↔ Cu +0.34
Au3+ + 3e- ↔ Au +1.58
Rxn bet Au + H+
Will it happen ?
Eθ
= -1.58 V
(NON spontaneous)
О
Au(s) | Au3+
(aq) || H+ H2 | Pt (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (+1.58) = -1.58V
Eθ
= - 1.58 V
(NON spontaneous)
О
Rxn not feasible
Determinespontaneityrxn. Will it HAPPEN?
Find Eθ
cell (use reductionpotential)
Eθ
Au/H+ = - 1.58V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
914914820
58.1965006




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)914000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
50
104 
cK
Kc too small – No reactionat all
-1.58 V
acid
gold
2Au ↔ 2Au3+ + 6e Eθ = -1.58
6H+ + 6e ↔ 3H2 Eθ = 0.00
2Au + 6H+ → 2Au3+ + 3H2 Eθ = -1.58V
+
Predictingwill rxn occur with ΔG, E cell and Kc
Eθ
= - 0.20 V
(NON spontaneous)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.34 – (0.54) = - 0.20V
Eθ
= - 0.20 V
(NON spontaneous)
Determinespontaneityrxn. Will it HAPPEN?
Find Eθ
cell (use reductionpotential)
Eθ
Cu2+/I- = - 0.20V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
3838600
20.0965002




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)38000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
7
102.2 
cK
-1.58 V
Cu2+
I-Rxn bet Cu2+ +I-
Will it happen?
2I- ↔ I2 + 2e Eθ = -0.54
Cu2+ + 2e ↔ Cu Eθ = +0.34
2I- + Cu2+→ Cu + I2 Eθ = -0.20V
Pt(s) | I-, I2 || Cu2+
(aq) | Cu (s)
Favour reactants
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ I- +0.54
Rxn not feasible
О
О
- 0.20 V
Will I- oxidize
Cu2+ to Cu
Predictingwill rxn occur with ΔG, E cell and Kc
Click here to view free energy
PredictingSpontaneity of Rxn
Thermodynamic,ΔG Equilibrium, Kc
 1cK
 1cK
KRTG ln
G
veG 
cK
1cK
Energetically
favourable
0G
Predictingrxn will occur?
N2(g) + 3H2(g) ↔ 2NH3(g)
H2O(l) ↔ H+
(aq)+ OH-
(aq)
Shift toward
reactants
Energetically
unfavourable
Non spontaneous
Mixture
reactant/productEquilibrium
veG  Spontaneous Shift toward
product
79G
33G
6
10G
14
101 
cK
5
105cK
Fe(s) + 3O2(g) ↔ 2Fe2O3(s) 261
101cK
Shift toward
reactants
Energetically
unfavourable
Shift toward
product
Energetically
favourable
Energetically
favourable
Kinetically unfavourable/(stable)
Rate too slow due to HIGH activation energy
Rusting Process
Energy barrier
Shift toward
product
Click here for notes
cellnFEG  
Cell Potential
cellE
0cellE
0cellE
0cellE
0cellE
0cellE
0cellE
Eθ
= +0.44V
IB Questions
Esterification produce ethyl ethanoate. ΔG = -4.38kJmol-1 Cal Kc
CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l)
Kc = 5.9
cKRTG ln
RT
G
Kc

ln
29831.8
4380
ln


cK
2
?cK
NO oxidized to NO2. Kc = 1.7 x 1012. Cal ∆G at 298K1
3 4
2NO+ O2 ↔ NO2 ?G
cKRTG ln
11
12
7.6969772
)107.1ln(298314.8



kJmolJmolG
G
Predict if iron react with HCI in absence air. Cal E cell , ∆G and Kc
Oxidized sp ↔ Reduced sp Eθ/V
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
O2 +2H2O+4e ↔ 4OH- +0.40
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
О
О
Fe ↔ Fe2+ + 2e Eθ = +0.44
2H+ + 2e ↔ H2 Eθ = 0.00V
Fe + 2H+ → Fe2+ + H2 Eθ = +0.44V
cellnFEG  
kJJG
G
8584900
44.0965002




cKRTG ln 
298314.8
)85000(
ln





RT
G
Kc
14
108.7 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
Fe2+ + 2e- ↔ Fe -0.44
O2 +2H2O+4e ↔ 4OH- +0.40
2Fe ↔ 2Fe2+ + 4e Eθ = +0.44
O2+2H2O+4e↔ 4OH- Eθ = +0.40
2Fe+O2 +2H2O→2Fe2++4OH- Eθ = +0.84V
Eθ
= +0.84V
Oxidized sp ↔ Reduced sp Eθ/V
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
O2 +2H2O+4e ↔ 4OH- +0.40
Predict iron react HCI in presence of air. Cal E cell , ∆G and Kc
О
О
cellnFEG  
kJJG
G
324324000
84.0965004




cKRTG ln 
298314.8
)324000(
ln





RT
G
Kc
56
108.2 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn SpontaneousRusting is spontaneous
x 2
О
О
О
О
Predict if manganate will oxidize chloride ion?
MnO2 + 4H+ + 2CI- → Mn2+ + 2H2O + CI2
5
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
2CI- ↔ CI2 + 2e Eθ = -1.36
MnO2 + 4H+ + 2e ↔ Mn2+ + 2H2O Eθ = +1.23
MnO2 + 4H++2CI- → Mn2++2H2O+CI2 Eθ= -0.13V
Eθ
= -0.13V
Oxidized sp ↔ Reduced sp Eθ/V
Cr2O7
2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
Predict if MnO4
- able to oxidize aq CI- to CI2
2MnO4 + 16H+ + 10CI- → 2Mn2++ 8H2O + 5CI2
О
О
Oxidized sp ↔ Reduced sp Eθ/V
Cr2O7
2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
О
О
2CI- ↔ CI2 + 2e Eθ = -1.36
MnO4
- + 8H+ + 5e ↔ Mn2+ + 4H2O Eθ = +1.51
2MnO4 + 16H++10CI- → 2Mn2++8H2O+5CI2 Eθ= +0.15V
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
Eθ
= +0.15V
IB Questions
cellnFEG  
kJJG
G
2525000
13.0965002




cKRTG ln 
298314.8
)25000(
ln





RT
G
Kc
5
105.4 
cK
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
6
cellnFEG  
kJJG
G
144144750
15.09650010




cKRTG ln 
298314.8
)144000(
ln





RT
G
Kc
25
105.1 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
x 5
x 2
О
О
О
О

More Related Content

What's hot

Electrochemistry
ElectrochemistryElectrochemistry
Atomic structures cheat sheet
Atomic structures cheat sheetAtomic structures cheat sheet
Atomic structures cheat sheetTimothy Welsh
 
Physical chemistry presentation
Physical chemistry presentationPhysical chemistry presentation
Physical chemistry presentation
Gautam Yadav
 
Transition Elements and Coordination Compounds
Transition Elements and Coordination CompoundsTransition Elements and Coordination Compounds
Transition Elements and Coordination Compounds
Sidra Javed
 
Naming acids
Naming acidsNaming acids
Naming acids
Timothy Welsh
 
The determination of point groups
The determination of point groupsThe determination of point groups
The determination of point groupsZuhriyatusSholichah
 
Transition metal
Transition metalTransition metal
Transition metal
geetha T
 
Equilibrium 2017
Equilibrium 2017Equilibrium 2017
Equilibrium 2017
nysa tutorial
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
Lawrence kok
 
Kinetics ppt
Kinetics pptKinetics ppt
Kinetics pptekozoriz
 
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
Lawrence kok
 
electrochemistry
 electrochemistry electrochemistry
electrochemistry
JyotiPrakashRay1
 
Chemitry Chemical Equilibrium
Chemitry Chemical EquilibriumChemitry Chemical Equilibrium
Chemitry Chemical Equilibrium
Afzal Zubair
 
REDOX REACTION
REDOX REACTIONREDOX REACTION
REDOX REACTION
Arvind Singh Heer
 
Electro chemistry
Electro chemistryElectro chemistry
Electro chemistry
LALIT SHARMA
 
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
sirakash
 
Transport number
Transport numberTransport number
Transport number
Suresh Selvaraj
 
Lecture 18.5- rate laws
Lecture 18.5- rate lawsLecture 18.5- rate laws
Lecture 18.5- rate laws
Mary Beth Smith
 
Tang 02 balancing redox reactions 2
Tang 02   balancing redox reactions 2Tang 02   balancing redox reactions 2
Tang 02 balancing redox reactions 2mrtangextrahelp
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
Mary Beth Smith
 

What's hot (20)

Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Atomic structures cheat sheet
Atomic structures cheat sheetAtomic structures cheat sheet
Atomic structures cheat sheet
 
Physical chemistry presentation
Physical chemistry presentationPhysical chemistry presentation
Physical chemistry presentation
 
Transition Elements and Coordination Compounds
Transition Elements and Coordination CompoundsTransition Elements and Coordination Compounds
Transition Elements and Coordination Compounds
 
Naming acids
Naming acidsNaming acids
Naming acids
 
The determination of point groups
The determination of point groupsThe determination of point groups
The determination of point groups
 
Transition metal
Transition metalTransition metal
Transition metal
 
Equilibrium 2017
Equilibrium 2017Equilibrium 2017
Equilibrium 2017
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
Kinetics ppt
Kinetics pptKinetics ppt
Kinetics ppt
 
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
 
electrochemistry
 electrochemistry electrochemistry
electrochemistry
 
Chemitry Chemical Equilibrium
Chemitry Chemical EquilibriumChemitry Chemical Equilibrium
Chemitry Chemical Equilibrium
 
REDOX REACTION
REDOX REACTIONREDOX REACTION
REDOX REACTION
 
Electro chemistry
Electro chemistryElectro chemistry
Electro chemistry
 
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
Molecular orbital theory(mot) of SF6/CO2/I3-/B2H6
 
Transport number
Transport numberTransport number
Transport number
 
Lecture 18.5- rate laws
Lecture 18.5- rate lawsLecture 18.5- rate laws
Lecture 18.5- rate laws
 
Tang 02 balancing redox reactions 2
Tang 02   balancing redox reactions 2Tang 02   balancing redox reactions 2
Tang 02 balancing redox reactions 2
 
Chapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical EquilibriumChapter 15 Lecture- Chemical Equilibrium
Chapter 15 Lecture- Chemical Equilibrium
 

Viewers also liked

IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
Lawrence kok
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
Lawrence kok
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
Lawrence kok
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
Lawrence kok
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
Lawrence kok
 
IB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routesIB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routes
Lawrence kok
 
IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.
Lawrence kok
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
Lawrence kok
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
Lawrence kok
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
Lawrence kok
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
Lawrence kok
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
Lawrence kok
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
Lawrence kok
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
Lawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
Lawrence kok
 

Viewers also liked (20)

IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and ThermodynamicsIB Chemistry on Energetics, Enthalpy Change and Thermodynamics
IB Chemistry on Energetics, Enthalpy Change and Thermodynamics
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routesIB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routes
 
IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 

Similar to IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential

IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
Lawrence kok
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
Lawrence kok
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
Lawrence kok
 
F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibria
Mithil Fal Desai
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.ppt
HosamAhmed35
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibrium
HikaShasho
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
Sundar Singh
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 
4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.ppt
Narenova
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsx
FathiShokry
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
Arunesh Gupta
 
Basic chemistry in school for student to learn
Basic chemistry in school for student  to learnBasic chemistry in school for student  to learn
Basic chemistry in school for student to learn
widhyahrini1
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
Lawrence kok
 
Concept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgyConcept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgy
Arunesh Gupta
 
12 Entropy
12 Entropy12 Entropy
12 Entropyjanetra
 

Similar to IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential (20)

IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibria
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.ppt
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibrium
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.ppt
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsx
 
Lec39post.pdf
Lec39post.pdfLec39post.pdf
Lec39post.pdf
 
Chemistry chapter 20
Chemistry chapter 20Chemistry chapter 20
Chemistry chapter 20
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Basic chemistry in school for student to learn
Basic chemistry in school for student  to learnBasic chemistry in school for student  to learn
Basic chemistry in school for student to learn
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
 
Concept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgyConcept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgy
 
12 Entropy
12 Entropy12 Entropy
12 Entropy
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 

Recently uploaded (20)

The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 

IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential

  • 1. cellnFEG   Relationship between Energetics and Equilibrium cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G Relationshipbet ∆G, Kc and E cell cellnFEG   STHG  cKRTG ln  cK Relationship between Energetics and Cell Potential  G cellE Gibbs free energy change Cell potential F = Faraday constant (96 500 Cmol-1) n = number electron Relationship bet ∆G, Kc and Ecell ΔGθ Kc Eθ/V Extent of rxn > 0 < 1 < 0 No Reaction Non spontaneous ΔGθ = 0 Kc = 1 0 Equilibrium Mix reactant/product < 0 > 1 > 0 Reaction complete Spontaneous ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactants ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products Relationship bet ∆G and Kc shift to left (reactant) shift to right (products) cellE  G cK K nF RT E cell ln
  • 2. Magnitudeof Kc Extendof reaction How far rxn shift to right or left? Not how fast cK Positionof equilibrium cK Temp dependent Extend of rxn Not how fast Shift to left/ favour reactant Shift to right/ favour product cK Relationship between Equilibrium and Energetics cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G cK G Energetically Thermodynamically Favourable/feasible ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium Measure work available from system Sign predict spontaneity of rxn Negative (-ve) spontaneous Positive (+ve) NOT spontaneous veG  veG  NOT favourable Energetically favourable Product formation NO product cKRTG ln 
  • 3. Magnitudeof Kc Extendof reaction How far rxn shift to right or left? Not how fast cK Positionof equilibrium cK Temp dependent Extend of rxn Not how fast Shift to left/ favour reactant Shift to right/ favour product cK Relationship between Equilibrium and Energetics cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G cK ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium cKRTG ln  STHG  ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp Relationshipbet ∆G and Kc
  • 4. G Energetically Thermodynamically Favourable/feasible Sign predict spontaneity of rxn veG  veG  NOT favourable Energetically favourable Product formation NO product KRTG ln Predictwill rxn occur with ΔG and Kc cK Very SMALL Kc < 1 Shift to right/ favour product Shift to left/ favour reactant Very BIG Kc > 1 veG veG  KRTG ln 1cK 1cK Negative (-ve) spontaneous Positive (+ve) NOT spontaneous Relationship bet ∆G and Kc ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactant ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products shift to left (reactant) shift to right (product) G, Gibbs free energy A Mixture composition B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 Free energy system is lowered on the way to equilibrium Rxn proceed to minimum free energy ∆G = 0 System seek lowest possible free energy Product have lower free energy than reactant ∆G < 0 product reactant
  • 5. G Energetically Thermodynamically Favourable/feasible Sign predict spontaneity of rxn veG  veG  NOT favourable Energetically favourable Product formation NO product KRTG ln cK Very SMALL Kc < 1 Shift to right/ favour product Shift to left/ favour reactant Very BIG Kc > 1 veG veG  KRTG ln 1cK 1cK Negative (-ve) spontaneous Positive (+ve) NOT spontaneous Relationship bet ∆G, Q and Kc G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 ∆G < 0 product reactant G, Gibbs free energy reactant product∆G < 0 A B ∆G decreases ↓ 100% A 100% B30 % A 70 % B ∆G = 0 Q = K ∆G < 0 Q < K ∆G > 0 ∆G < 0 Q > K ∆G > 0 A ↔ B A ↔ B Equilibrium mixture Predictwill rxn occur with ΔG and Kc
  • 6. Relationship bet ∆G and Kc G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mix close to product ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 ∆G < -10 Kc > 1 A ↔ B A ↔ B G, Gibbs free energy A B ∆G decreases ↓ ∆G < -100 100% A 100% B ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc > 1Equilibrium mix close to product 10 % A 90 % B ∆G < 0 ∆G < 0 ∆G = 0 ∆G very –ve → Kc > 1 → (more product/closeto completion)∆G –ve → Kc > 1 → (more product > reactant) A ↔ B G, Gibbs free energy 100% A 100% B A B ∆G +ve → Kc < 1 → (more reactant > product) ∆G > +10 ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc < 1 ∆G increases ↑ 70 % A 30 % B Equilibrium mix close to reactant ∆G < 0 ∆G = 0 A ↔ B G, Gibbs free energy ∆G more +ve → Kc < 1 → (All reactant / no product at all) A ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc < 1100% A 100% B Equilibrium mix close to reactant/ No reaction. ∆G > +100 B 90 % A 10 % B ∆G increases ↑ ∆G = 0 ∆G < 0 reactant reactant reactant reactant productproduct product product
  • 7. Relationship bet ∆G and Kc shift to left (reactant) shift to right (product) G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 Free energy system is lowered on the way to equilibrium Rxn proceed to minimum free energy ∆G = 0 System seek lowest possible free energy Product have lower free energy than reactant ∆G < -10 Kc > 1 A ↔ B A ↔ B G, Gibbs free energy A B ∆G decreases ↓ ∆G < -100 100% A 100% B ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc > 1Equilibrium mixture 10 % A 90 % B ∆G < 0 ∆G < 0 ∆G = 0 ∆G very –ve → Kc > 1 → (All product/closeto completion)∆G –ve → Kc > 1 → (more product > reactant) ∆G ∆G = 0 ∆G > 0 ∆G < 0 No reaction/most reactants Kc <1 Complete rxn/Most products Kc > 1 Kc = 1 (Equilibrium) Reactants= Products reactant reactant ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactant ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products
  • 8. 298314.8 )212000( ln      RT G Kc Zn ↔ Zn2+ + 2e Eθ = +0.76 Cu2+ + 2e ↔ Cu Eθ = +0.34 Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Voltaic Cell -e -e Zn/Cu half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ - - - - Zn Cu + + + + cellnFEG   E cell with ∆G F = Faraday constant (96 500 Cmol-1) n = number electron cellnFEG   kJJG G 212212300 10.1965002     ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn SpontaneouscKRTG ln  Equilibrium constant Gas constant, 8.314 ∆G with Kc cKRTG ln  37 103.1 cK Favour products
  • 9. Zn ↔ Zn2+ + 2e Eθ = +0.76 2Ag++2e ↔ 2Ag Eθ = +0.80 Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Ag Voltaic Cell -e -e Zn/Ag half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Ag + + e ↔ Ag(cathode) Eθ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reductionpotential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Ag+ + e ↔ Ag Eθ = +0.80V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 + +1.56 V Ag Eθ Zn/Ag = +1.56V Ag+ - - - - + + + + Zn E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 301301000 56.1965002     ∆G with Kc cKRTG ln  Gas constant, 8.314 Equilibrium constant cKRTG ln  298314.8 )301000( ln      RT G Kc 52 105.3 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous Favour products
  • 10. Mn ↔ Mn2+ + 2e Eθ = +1.19 Ni2+ + 2e ↔ Ni Eθ = -0.26 Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V Mn half cell (-ve) Oxidation Ni half cell (+ve) Reduction Anode Cathode Mn(s) | Mn2+ (aq) || Ni2+ (aq) | Ni (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Mn/Ni Voltaic Cell -e -e Mn/Ni half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.26 – (-1.19) = +0.93V Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V Std electrode potential as std reduction potential Find Eθ cell (use reductionpotential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Mn 2+ + 2e ↔ Mn Eθ = -1.19V Ni2+ + 2e ↔ Ni Eθ = -0.26V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni - 0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 + +0.93 V Eθ Mn/Ni = +0.93V Ni2+ - - - - NiMn + + + +Mn2+ E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 179179490 93.0965002     cKRTG ln  298314.8 )179000( ln      RT G Kc cKRTG ln  ∆G with Kc Gas constant, 8.314 Equilibrium constant ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous 31 102.2 cK Favour products
  • 11. Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2S +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu ↔ Cu2+ + 2e Eθ = -0.34 2H+ + 2e ↔ H2 Eθ = +0.00 Cu + 2H+→ Cu2+ +H2 Eθ = -0.34V Rxn bet Cu + H+ Will it happen ? Eθ = -0.34V (NON spontaneous) О Cu(s) | Cu2+ (aq) || H+ H2 | Pt (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (+0.34) = -0.34V Eθ = -0.34V (NON spontaneous) О Rxn not feasible Determinespontaneityrxn. Will it HAPPEN? Find Eθ cell (use reductionpotential) Eθ Cu/H+ = - 0.34V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 6565620 34.0965002     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )65000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 12 104  cK Favour reactants -0.34 V acid copper Predictingwill rxn occur with ΔG, E cell and Kc +
  • 12. Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2S +0.17 Cu2+ + 2e- ↔ Cu +0.34 Au3+ + 3e- ↔ Au +1.58 Rxn bet Au + H+ Will it happen ? Eθ = -1.58 V (NON spontaneous) О Au(s) | Au3+ (aq) || H+ H2 | Pt (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (+1.58) = -1.58V Eθ = - 1.58 V (NON spontaneous) О Rxn not feasible Determinespontaneityrxn. Will it HAPPEN? Find Eθ cell (use reductionpotential) Eθ Au/H+ = - 1.58V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 914914820 58.1965006     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )914000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 50 104  cK Kc too small – No reactionat all -1.58 V acid gold 2Au ↔ 2Au3+ + 6e Eθ = -1.58 6H+ + 6e ↔ 3H2 Eθ = 0.00 2Au + 6H+ → 2Au3+ + 3H2 Eθ = -1.58V + Predictingwill rxn occur with ΔG, E cell and Kc
  • 13. Eθ = - 0.20 V (NON spontaneous) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.34 – (0.54) = - 0.20V Eθ = - 0.20 V (NON spontaneous) Determinespontaneityrxn. Will it HAPPEN? Find Eθ cell (use reductionpotential) Eθ Cu2+/I- = - 0.20V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 3838600 20.0965002     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )38000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 7 102.2  cK -1.58 V Cu2+ I-Rxn bet Cu2+ +I- Will it happen? 2I- ↔ I2 + 2e Eθ = -0.54 Cu2+ + 2e ↔ Cu Eθ = +0.34 2I- + Cu2+→ Cu + I2 Eθ = -0.20V Pt(s) | I-, I2 || Cu2+ (aq) | Cu (s) Favour reactants Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ I- +0.54 Rxn not feasible О О - 0.20 V Will I- oxidize Cu2+ to Cu Predictingwill rxn occur with ΔG, E cell and Kc
  • 14. Click here to view free energy PredictingSpontaneity of Rxn Thermodynamic,ΔG Equilibrium, Kc  1cK  1cK KRTG ln G veG  cK 1cK Energetically favourable 0G Predictingrxn will occur? N2(g) + 3H2(g) ↔ 2NH3(g) H2O(l) ↔ H+ (aq)+ OH- (aq) Shift toward reactants Energetically unfavourable Non spontaneous Mixture reactant/productEquilibrium veG  Spontaneous Shift toward product 79G 33G 6 10G 14 101  cK 5 105cK Fe(s) + 3O2(g) ↔ 2Fe2O3(s) 261 101cK Shift toward reactants Energetically unfavourable Shift toward product Energetically favourable Energetically favourable Kinetically unfavourable/(stable) Rate too slow due to HIGH activation energy Rusting Process Energy barrier Shift toward product Click here for notes cellnFEG   Cell Potential cellE 0cellE 0cellE 0cellE 0cellE 0cellE 0cellE
  • 15. Eθ = +0.44V IB Questions Esterification produce ethyl ethanoate. ΔG = -4.38kJmol-1 Cal Kc CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l) Kc = 5.9 cKRTG ln RT G Kc  ln 29831.8 4380 ln   cK 2 ?cK NO oxidized to NO2. Kc = 1.7 x 1012. Cal ∆G at 298K1 3 4 2NO+ O2 ↔ NO2 ?G cKRTG ln 11 12 7.6969772 )107.1ln(298314.8    kJmolJmolG G Predict if iron react with HCI in absence air. Cal E cell , ∆G and Kc Oxidized sp ↔ Reduced sp Eθ/V Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 О О Fe ↔ Fe2+ + 2e Eθ = +0.44 2H+ + 2e ↔ H2 Eθ = 0.00V Fe + 2H+ → Fe2+ + H2 Eθ = +0.44V cellnFEG   kJJG G 8584900 44.0965002     cKRTG ln  298314.8 )85000( ln      RT G Kc 14 108.7 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous Fe2+ + 2e- ↔ Fe -0.44 O2 +2H2O+4e ↔ 4OH- +0.40 2Fe ↔ 2Fe2+ + 4e Eθ = +0.44 O2+2H2O+4e↔ 4OH- Eθ = +0.40 2Fe+O2 +2H2O→2Fe2++4OH- Eθ = +0.84V Eθ = +0.84V Oxidized sp ↔ Reduced sp Eθ/V Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Predict iron react HCI in presence of air. Cal E cell , ∆G and Kc О О cellnFEG   kJJG G 324324000 84.0965004     cKRTG ln  298314.8 )324000( ln      RT G Kc 56 108.2 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn SpontaneousRusting is spontaneous x 2 О О О О
  • 16. Predict if manganate will oxidize chloride ion? MnO2 + 4H+ + 2CI- → Mn2+ + 2H2O + CI2 5 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 2CI- ↔ CI2 + 2e Eθ = -1.36 MnO2 + 4H+ + 2e ↔ Mn2+ + 2H2O Eθ = +1.23 MnO2 + 4H++2CI- → Mn2++2H2O+CI2 Eθ= -0.13V Eθ = -0.13V Oxidized sp ↔ Reduced sp Eθ/V Cr2O7 2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Predict if MnO4 - able to oxidize aq CI- to CI2 2MnO4 + 16H+ + 10CI- → 2Mn2++ 8H2O + 5CI2 О О Oxidized sp ↔ Reduced sp Eθ/V Cr2O7 2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 О О 2CI- ↔ CI2 + 2e Eθ = -1.36 MnO4 - + 8H+ + 5e ↔ Mn2+ + 4H2O Eθ = +1.51 2MnO4 + 16H++10CI- → 2Mn2++8H2O+5CI2 Eθ= +0.15V 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Eθ = +0.15V IB Questions cellnFEG   kJJG G 2525000 13.0965002     cKRTG ln  298314.8 )25000( ln      RT G Kc 5 105.4  cK ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 6 cellnFEG   kJJG G 144144750 15.09650010     cKRTG ln  298314.8 )144000( ln      RT G Kc 25 105.1 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous x 5 x 2 О О О О