P.2 
Cartesian 
Coordinate 
System 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 Cartesian Plane 
 Absolute Value of a Real Number 
 Distance Formulas 
 Midpoint Formulas 
 Equations of Circles 
 Applications 
… and why 
These topics provide the foundation for the material that 
will be covered in this textbook. 
Slide P.2 - 2 Copyright © 2011 Pearson, Inc.
The Cartesian Coordinate Plane 
or Rectangular Coordinate System 
 
 
 
 
Slide P.2 - 3 Copyright © 2011 Pearson, Inc.
Quadrants 
 
 
 
Slide P.2 - 4 Copyright © 2011 Pearson, Inc.
Absolute Value of a Real Number 
absolute value of a real num ber a 
The is 
a a 
> ìï 
= - < íï 
î = 
, if 0 
a a a 
| | if 0. 
a 
0, if 0 
Slide P.2 - 5 Copyright © 2011 Pearson, Inc.
Example Using the Definition of 
Absolute Value 
Evaluate: 
-7 
p - 5 
Slide P.2 - 6 Copyright © 2011 Pearson, Inc.
Solution 
Evaluate: 
-7 = 7 
because   - 7 < 0, -4 = -(-7) = 7 
p - 5 = -(p - 5) = 5 -p 
because p » 3.14, p - 5 < 0 
Slide P.2 - 7 Copyright © 2011 Pearson, Inc.
Properties of Absolute Value 
Let a and b be real numbers. 
1. | a |³ 0 
2.  |-a|=|a| 
3.  |ab |=|a||b | 
4.  a 
b 
= |a| 
|b | 
,  b ¹ 0 
Slide P.2 - 8 Copyright © 2011 Pearson, Inc.
Distance Formula (Number Line) 
Let a and b be real numbers. 
The distance between a and b is a -b . 
Note that  a-b = b -a . 
Slide P.2 - 9 Copyright © 2011 Pearson, Inc.
Distance Formula (Coordinate Plane) 
y2 
The distance d between points P ( x, y) 
1 1 and Q ( x, 2 ) in the coordinate plane is 
( )2 + y1 
 d = x1- x2 
( )2 . 
- y2 
Slide P.2 - 10 Copyright © 2011 Pearson, Inc.
The Distance Formula using the 
Pythagorean Theorem 
Slide P.2 - 11 Copyright © 2011 Pearson, Inc.
Example Finding the Distance 
Between Two Points 
Slide P.2 - 12 Copyright © 2011 Pearson, Inc.
Solution 
d = (2 - 5)2 + (7 - 3)2 
= (-3)2 + (4)2 
= 9 +16 
= 25 
= 5 
Slide P.2 - 13 Copyright © 2011 Pearson, Inc.
Midpoint Formula (Number Line) 
The midpoint of the line segment 
with endpoints a and b is 
a +b 
2 
. 
Slide P.2 - 14 Copyright © 2011 Pearson, Inc.
Midpoint Formula (Coordinate Plane) 
The midpoint of the line segment 
with endpoints (a,b) and (c,d) is 
a +c 
2 
,b +d 
2 
æè ç öø ÷ 
. 
Slide P.2 - 15 Copyright © 2011 Pearson, Inc.
Standard Form Equation of a Circle 
The standard formequation of a circle 
with center (h, k)and radius r is 
(x -h)2 + (y- k)2 = r2 . 
Slide P.2 - 16 Copyright © 2011 Pearson, Inc.
Standard Form Equation of a Circle 
Slide P.2 - 17 Copyright © 2011 Pearson, Inc.
Example Finding Standard Form 
Equations of Circles 
Find the standard form equation of the 
circlewith center (2, - 3) and radius 4. 
Slide P.2 - 18 Copyright © 2011 Pearson, Inc.
Example Finding Standard Form 
Equations of Circles 
Find the standard form equation of the 
circlewith center (2, - 3) and radius 4. 
(x -h)2 + (y- k)2 = r2    where h = 2,  k = -3,and r = 4. 
Thus the equation is (x - 2)2 + (y+ 3)2 = 16. 
Slide P.2 - 19 Copyright © 2011 Pearson, Inc.
Quick Review 
1. Find the distance between -5 and 3 . 
Use a calculator to evaluate the expression. Round answers 
to two decimal places. 
2. 8 2 + 
6 
2 
3. -12 + 
8 
2 
4. 3 2 + 
5 
2 
5. 2 − 5 + 1 − 
3 
( ) ( ) 
2 2 
4 2 
Slide P.2 - 20 Copyright © 2011 Pearson, Inc.
Quick Review Solutions 
1. Find the distance between -5 and 3 . 
2.75 
Use a calculator to evaluate the expression. Round answers 
to two decimal places. 
2. 8 2 + 
6 
2 
3. -12 + 
8 
2 
4. 3 5 
5. 2 
+ 
− + − 
2 2 
10 
-2 
5.83 
( ) ( ) 
2 2 
4 2 
5 1 3 3.61 
Slide P.2 - 21 Copyright © 2011 Pearson, Inc.

UNIT .01

  • 1.
    P.2 Cartesian Coordinate System Copyright © 2011 Pearson, Inc.
  • 2.
    What you’ll learnabout  Cartesian Plane  Absolute Value of a Real Number  Distance Formulas  Midpoint Formulas  Equations of Circles  Applications … and why These topics provide the foundation for the material that will be covered in this textbook. Slide P.2 - 2 Copyright © 2011 Pearson, Inc.
  • 3.
    The Cartesian CoordinatePlane or Rectangular Coordinate System     Slide P.2 - 3 Copyright © 2011 Pearson, Inc.
  • 4.
    Quadrants    Slide P.2 - 4 Copyright © 2011 Pearson, Inc.
  • 5.
    Absolute Value ofa Real Number absolute value of a real num ber a The is a a > ìï = - < íï î = , if 0 a a a | | if 0. a 0, if 0 Slide P.2 - 5 Copyright © 2011 Pearson, Inc.
  • 6.
    Example Using theDefinition of Absolute Value Evaluate: -7 p - 5 Slide P.2 - 6 Copyright © 2011 Pearson, Inc.
  • 7.
    Solution Evaluate: -7= 7 because - 7 < 0, -4 = -(-7) = 7 p - 5 = -(p - 5) = 5 -p because p » 3.14, p - 5 < 0 Slide P.2 - 7 Copyright © 2011 Pearson, Inc.
  • 8.
    Properties of AbsoluteValue Let a and b be real numbers. 1. | a |³ 0 2. |-a|=|a| 3. |ab |=|a||b | 4. a b = |a| |b | , b ¹ 0 Slide P.2 - 8 Copyright © 2011 Pearson, Inc.
  • 9.
    Distance Formula (NumberLine) Let a and b be real numbers. The distance between a and b is a -b . Note that a-b = b -a . Slide P.2 - 9 Copyright © 2011 Pearson, Inc.
  • 10.
    Distance Formula (CoordinatePlane) y2 The distance d between points P ( x, y) 1 1 and Q ( x, 2 ) in the coordinate plane is ( )2 + y1 d = x1- x2 ( )2 . - y2 Slide P.2 - 10 Copyright © 2011 Pearson, Inc.
  • 11.
    The Distance Formulausing the Pythagorean Theorem Slide P.2 - 11 Copyright © 2011 Pearson, Inc.
  • 12.
    Example Finding theDistance Between Two Points Slide P.2 - 12 Copyright © 2011 Pearson, Inc.
  • 13.
  • 14.
    Midpoint Formula (NumberLine) The midpoint of the line segment with endpoints a and b is a +b 2 . Slide P.2 - 14 Copyright © 2011 Pearson, Inc.
  • 15.
    Midpoint Formula (CoordinatePlane) The midpoint of the line segment with endpoints (a,b) and (c,d) is a +c 2 ,b +d 2 æè ç öø ÷ . Slide P.2 - 15 Copyright © 2011 Pearson, Inc.
  • 16.
    Standard Form Equationof a Circle The standard formequation of a circle with center (h, k)and radius r is (x -h)2 + (y- k)2 = r2 . Slide P.2 - 16 Copyright © 2011 Pearson, Inc.
  • 17.
    Standard Form Equationof a Circle Slide P.2 - 17 Copyright © 2011 Pearson, Inc.
  • 18.
    Example Finding StandardForm Equations of Circles Find the standard form equation of the circlewith center (2, - 3) and radius 4. Slide P.2 - 18 Copyright © 2011 Pearson, Inc.
  • 19.
    Example Finding StandardForm Equations of Circles Find the standard form equation of the circlewith center (2, - 3) and radius 4. (x -h)2 + (y- k)2 = r2 where h = 2, k = -3,and r = 4. Thus the equation is (x - 2)2 + (y+ 3)2 = 16. Slide P.2 - 19 Copyright © 2011 Pearson, Inc.
  • 20.
    Quick Review 1.Find the distance between -5 and 3 . Use a calculator to evaluate the expression. Round answers to two decimal places. 2. 8 2 + 6 2 3. -12 + 8 2 4. 3 2 + 5 2 5. 2 − 5 + 1 − 3 ( ) ( ) 2 2 4 2 Slide P.2 - 20 Copyright © 2011 Pearson, Inc.
  • 21.
    Quick Review Solutions 1. Find the distance between -5 and 3 . 2.75 Use a calculator to evaluate the expression. Round answers to two decimal places. 2. 8 2 + 6 2 3. -12 + 8 2 4. 3 5 5. 2 + − + − 2 2 10 -2 5.83 ( ) ( ) 2 2 4 2 5 1 3 3.61 Slide P.2 - 21 Copyright © 2011 Pearson, Inc.