Semi-Supervised Learning in Computer Vision
                  Part II

        Amir Saffari,Christian Leistner,Horst Bischof

  Institute for Computer Graphics and Vision, Graz University of Technology


                            June 18th, 2010
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outline

     1   SemiBoost & Visual Similarity Learning

     2   On-line Semi-supervised Boosting
          Tracking

     3   Semi-Supervised Random Forests
           MILForests
           On-line Random Forests

     4   On-line Manifold Regularization

     5   Conclusion & Outlook

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost
[Mallapragada et al.,PAMI’09] [Leistner et al.,CVPR’08]




     Loss function
                                                    (x,y)∈XL   e −yF (x) +

                                                                                                                             F (x)
                λu             s(x, x ) cosh(F (x) − F (x )) + λl                                s(x, x )e −2y
     x∈XU            x ∈XU                                                        (x ,y )∈XL


     Optimization Problem


                 arg min =                                    s(x, x )e −2y(F (x )+αf (x ))
                   f (x),α          x ∈XU         (x,y)∈XL

                                +λu                s(x, x )e ((F (x )−F (x)) e α(f (x)−f (x ))
                                        x ∈XU                                                                   Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost


                                                                        λu
    px = λl                    I(y = 1)s(x, x )e −2F (x ) +                          s(x, x )e F (x )−F (x)
                                                                        2
                (x ,y )∈XL                                                   x∈XU

    and
                                                                          λu
    qx = λl                    I(y = −1)s(x, x )e −2F (x ) +                            s(x, x )e F (x)−F (x )
                                                                          2
                (x ,y )∈XL                                                     x∈XU




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost

    Pseudo Labels and Weights

                                            ˆ
                                            yx = sign(px − qx )
                                               wx = |px − qx |

    Optimal α
                         1          x∈XU       pi I(f (x) = 1) + qi I(f (x) = −1)
                 α=        ln
                         4          x∈XU       pi I(f (x) = −1) + qi I(f (x) = 1)




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost

           labeled training data (x, y) ∈ XL and unlabeled data x ∈ XU
           Similarity measure s(x, x )
           Weak learners fi
           weight parameters λu , λl
           max iterations T

       1   For t = 1, 2, . . . , T
       2   Compute pi and qi for every given sample
       3   ˆ
           yx = sign(px − qx )
       4   wx = |px − qx |
       5   Train weak classifier ft (x)
       6   Compute αt
       7   F (x) ← F (x) + αt ft (x)
       8   EndFor                                                                                           Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost with learned Similarities
[Hertz et al.,CVPR’04]




     Radial Basis Function [Zhu et al.,ICML’03]
                                                                   d(x,x )2
                                                               −
                                                                     σ2
                                             s(x, x ) = e

                               d(x, x ) . . . distance between points




                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Learning Distance Functions

    Idea
    Learn distance or metric function on labeled data which then
    can discriminatively support task-specific classification.


    Distance Function
                                      F d : X × X → Y = [−1 1]

    Training Pairs of “same” or “different” [Hertz et al.,CVPR’04]


                         Dd       = {(x, x , +1)|y = y , x, x ∈ DL } ∪
                                        ∪{(x, x , −1)|y          y , x, x ∈ DL }

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost with learned Distance Functions

    Number of Training Pairs (Symmetric case)
                                                      n·(n−1)
                                                         2




                                                                                      ?
                               +-                                            ?    +
                                                                                      ?
                               + -                          SemiBoost
                                                                              ?
                               +                                                  -   ?




                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Using Arbitrary Classifiers


    Approximate pair-wise classifier
                                      |F (x, x )| ≈ |F (x) − F (x )|


                                                                    +

                                                                    +               ?

                                                            ?
                                                                           -




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Reusing Prior Classifiers
[Schapire et al,ML’02]




     Classifier Combination
     F C (x) = α0 F P (x) + F (x)



                                                                                         ?
                                                                                ?    +
                                                               SemiBoost                 ?
                                                                                 ?
                                                                                     -   ?




                                                                                                                 Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost Applications

                                               Car Detection




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Similarity Performance

                  Accuracy depending on the number of samples




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost Applications

                                               Car Detection




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost Applications

                                              Face Detection




                (a) prior                           (b) trained                    (c) combined




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Simple Data mining method
[Levin et al.,ICCV’03][Rosenberg et al.,2005]



        1    Labeled training data (x, y) ∈ XL
        2    Train cascaded detector F P (x) on XL using [Viola & Jones,2001]
        3    Use a web image search engine in order to collect huge
             amounts of possibly useful images XU ; pass phrases that are
             much likely related to your target object
        4    Apply F P (x) in a sliding window manner on XU and copy all
                                ∗
             detections to XU
                                                                                           ∗
        5    Train a SemiBoost classifier F (x) on XL and XU using F P (x)
             as prior
        6    Output the final classifier F (x)


                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost Applications

                                            Transfer Learning




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SemiBoost Applications

                                            Transfer Learning




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outline

     1   SemiBoost & Visual Similarity Learning

     2   On-line Semi-supervised Boosting
          Tracking

     3   Semi-Supervised Random Forests
           MILForests
           On-line Random Forests

     4   On-line Manifold Regularization

     5   Conclusion & Outlook

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Boosting




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




    [Oza,PhD-Thesis’01], [Grabner & Bischof,CVPR’06]




                                                                                                             Graz University of Technology




             Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




        Tracking is an One-Shot Semi-supervised Learning Problem




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line SemiBoost


                                                                                                          P
                   −Fn−1 (x)                                −Fn−1 (x)     +     e −Fn−1 (x) e F (x)
    ˜
    px ≈ e                                S(x, xi ) ≈ e                 F (x) ≈ F P (x)         P
                                xi ∈X+
                                                                               e        + e −F (x)


                                                                                                      P
                                                                                    e Fn−1 (x) e −F (x)
     qx ≈ e Fn−1 (x)
     ˜                                   S(x, xi ) ≈ e Fn−1 (x) F − (x) ≈              P            P
                               xi ∈X−
                                                                                   e F (x) + e −F (x)


                             sinh(F P (x) − Fn−1 )
    ˜      ˜
    pn (x)−qn (x) =                                = tanh(F P (x))−tanh(Fn−1 (x))
                                cosh(F P (x))


                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking



                          Problem: Rapid Appearance Changes




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Exploration-Exploitation Dilemma


    Convex Trade-off
                 (F (x)) = (1 − α) l (F (x)) + α u (F (x))



       We need more Robustness when minimizing the labeled loss!




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Loss Functions




    Random classification noise defeats all convex potential boosters
                                              [Long and Servidio,ICML’08]


                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Gradient Boost




                      Gradient Descent                      Functional Gradient Descent

    GradientBoost [Friedman et al.,Annals of Statistics’01]
                                   ft (x) = arg max −               LT f (x)
                                                    f (x)




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Gradient Boost
           A training sample: (xn , yn ), A differentiable loss function (·)
           Number of selectors M , Number of weak learners per selector K
       1 Set F0 (xn ) = 0.
       2 Set the initial weight wn = − (0).
       3 For m = 1 to M
       4 For k = 1 to K
       5 Train k th weak learner fm (x) with sample (xn , yn ) and weight wn .
                                  k

          k    k              k
       6 em ← em + wn I(sign(fm (xn ))                yn ) //Compute the error
       7 EndFor
       8 Find the best weak learner with the least total weighted error:
                        k
           j = arg min em .
                    k
                              j
       9 Set fm (xn ) = fm (xn ).
      10 Set Fm (xn ) = Fm−1 (xn ) + fm (xn ).
      11 Set the weight wn = − (yn Fm (xn )).
      12 EndFor                                                                                             Graz University of Technology




      13
            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Weight Updates




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Co-Training of Pedestrian Detectors




                   Exponential Loss                                     Logit Loss




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



SERBoost

    Expectation Regularization [Mann and MacCallum,ICML’07]
    Penalize model predictions on unlabeled data that deviate from
    certain expectation.

    SERBoost [Saffari et al.,ECCV’08]
               L(H (x), X) = Ll (H (x), Xl ) + βLu (H (x), Xu )


              L(H (x), X) =                   e −yH (x) +            e −yp H (x) cosh(H (x))
                                     x∈XL                   x∈XU


    Pseudo Label
                                                    +
                                             yp = 2Pp (x) − 1
                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line SERBoost with logistic loss


    Supervised Loss


                  Ll (XL ) =                   log 1 + e −2yF (x)
                                  (x,y)∈Xl

                              =                 log e −yF (x) (e yF (x) + e −yF (x) )
                                  (x,y)∈XL

                              =                 −yF (x) + log e F (x) + e −F (x) .
                                  (x,y)∈XL




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line SERBoost with logistic loss


    Minimize the cross entropy

                H (Pp , P) = −                      Pp (y = z|x) log P(y = z|x)
                                       z∈{−1,1}

                 = − 2Pp (y = 1|x) − 1 F (x) + log e F (x) + e −F (x)
                                    yp (x)




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line SERBoost with logistic loss


    Unsupervised Loss


    Lu (XU ) =                        ˆ
                              H (Pp , P) =                  −yp (x)F (x) + log e F (x) + e −F (x)
                     x∈XU                         x∈XU




                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line SERBoost with logistic loss


    Unsupervised Loss


    Lu (XU ) =                        ˆ
                              H (Pp , P) =                  −yp (x)F (x) + log e F (x) + e −F (x)
                     x∈XU                         x∈XU


    Unlabeled Update


                        ∀ x ∈ XU :wx = yp (x) − tanh(F (x))
                                  ˆ
                                  yx = sign yp (x) − tanh(F (x))


                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



OSER Tracking

                                                     λ = 0.5




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Influence of convex combination




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Boosting
[Viola et al.,NIPS’05][Babenko et al.,CVPR’09]




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Boosting
[Viola et al.,NIPS’05][Babenko et al.,CVPR’09]




     Bags
                                                 {(B1 , y1 ), . . . , (Bn , yn )}
                                                  Bi = {xi1 , xi2 , . . . , xini }

     Minimize binary log-likelihood


                        log       L=               (yi log p(yi ) + (1 − yi ) log p(yi ))
                                             i




                                                                                                                    Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof         Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semi-Supervised Multiple Instance Boosting
[Zeisl et al.,CVPR’10]




                                 Combine benefits of MIL and SSL




                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semi-Supervised Multiple Instance Boosting
[Zeisl et al.,CVPR’10]




     Unlabeled Loss of the Bags
                                                 Nu
                           Lu (XB ) = −
                                u                              Pp (z|Bu ) log(P(z|Bu ))
                                                                      i            i
                                                 i=1 z∈Y


     Approximate max with geometric mean
                                                        NBi
                                                                                            1/NBi
                         P(y = 1|Bi ) = 1 −                     1 − P(y = 1|xij )
                                                        j=1




                                                                                                                 Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semi-Supervised Multiple Instance Boosting
[Zeisl et al.,CVPR’10]




     Gradient for NOR and geometric mean

                                            2 z − P(y = 1|Bi )
                           aij (z) =                           P(y = 1|xij )
                                           NBi P(y = 1|Bi )

     Pseudo Labels and Weights


                                  wij =β             Pp (z|Bu )aij (z)
                                                            i
                                               z∈Y

                                   yij =I β              Pp (z|Bu )aij (z) > 0
                                                                i
                                                  z∈Y

                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semi-Supervised Multiple Instance Boosting
[Zeisl et al.,CVPR’10]



                                            Experimental Results

                            Sequence             MILSER         MIL        OSB       OAB
                            sylv                  0.64          0.61       0.46      0.50
                            david                 0.71          0.54       0.31      0.32
                            faceocc2              0.78          0.65       0.63      0.64
                            coke11                0.18          0.29       0.12      0.20
                            tiger1                0.60          0.51       0.17      0.27
                            tiger2                0.46          0.50       0.08      0.25
                            faceocc1              0.68          0.63       0.71      0.47
                            girl                  0.64          0.53       0.69      0.38




                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Co-Training
[Liu et al.,ICCV’09][Saffari et al.,ECCV’10]




     Performance measured in average location center errors in pixels


       Approach                    sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl
       MV-GPBoost                   17   20      10      15     16    20     12    15
       CoBoost                      15   33      11      22     19    14     13    17
       SemiBoost                    22   59      43      46     53    85     41    52
       MILBoost                     11   23      20      15     17    21     27    32




                                                                                                               Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo




                                                   End Part I




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Random Forests

    [Breiman,ML’01]




    Ensemble of n decision trees
                                                            N
                                            F (x) =         n=1 f   (x)

    Information Gain
                                        |Il |                           |Ir |
                              ∆H = − |I |+|Ir | H (Il ) −           |Il |+|Ir | H (Ir )
                                              l

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Random Forests

    Advantages:
           speed
           parallelism
           noise robust
           inherently multi-class




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Random Forests

    Advantages:
           speed
           parallelism
           noise robust
           inherently multi-class
    Applications:
           Object Detection, Semantic Segmentation, Categorization,
           Tracking, etc.




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Random Forests

    Advantages:
           speed
           parallelism
           noise robust
           inherently multi-class
    Applications:
           Object Detection, Semantic Segmentation, Categorization,
           Tracking, etc.
    Disadvantage:
           RFs demand a huge amount of data in order to leverage their
           full potential [Caruana et al.,ICML’08]

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semi-Supervised Random Forests

                          Random Forests maximize the margin

                                 ml (x, y) = p(y|x) − max p(k|x)
                                                                  k∈Y
                                                                  k y


    Unlabeled Margin

                                          mu (xu ) = max fi (xu )
                                                            i∈Y


    Semi-supervised Loss
                                 1                                  λ
                   L(f) =                            (fy (x)) +                    (mu (x))
                                |Xl |                              |Xu |
                                        (x,y)∈Xl                           x∈Xu
                                                                                                             Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof    Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Optimization

            Incorporate labels for the unlabeled data as additional
                           optimization variables!




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Optimization

            Incorporate labels for the unlabeled data as additional
                           optimization variables!



    Deterministic Annealing [Rose,IJCNN’98]

                                p ∗ = arg minEp (F(y)) − T H(p)
                                             p∈P

                                       T0 > T1 > . . . > T∞ = 0

                    p ∗ . . . distributions over the label predictions


                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Optimization


    DA-Loss for Semi-supervised Random Forests

                                               1
                          LDA (f, p) =
                                  ˆ                              (fy (x))+
                                              |Xl |
                                                      (x,y)∈Xl
                                                             K
                                              α
                                           +                     ˆ
                                                                 p(i|x) (fi (x))+
                                             |Xu |
                                                      x∈Xu i=1
                                                             K
                                              T
                                           +                        ˆ
                                                                 H (p)
                                             |Xu |
                                                      x∈Xu i=1



                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Two Step Optimization


    First Stage

                                                       1
                              f∗ = arg min
                               n                                          (fy (x))+
                                             f        |Xl |
                                                              (x,y)∈Xl
                                                       α
                                                  +                    (fyu (x))
                                                                         ˆ
                                                      |Xu |
                                                              x∈Xu




                                                                                                               Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof      Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Two Step Optimization


    Second Stage

                                                              K
                                                 α
                        p∗ =arg min
                        ˆ                                          ˆ
                                                                   p(i|x) (fi (x))+
                                      ˆ
                                      p         |Xu |
                                                        x∈Xu i=1
                                                   K
                                   T
                              +                         ˆ          ˆ
                                                        p(i|x) log(p(i|x))
                                  |Xu |
                                          x∈Xu i=1



                               p ∗ (i|x) = exp(− α
                               ˆ                            (fi (x))+T
                                                                T      )/Z (x)


                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Finding the optimal Distributions


    Take the derivate w.r.t. each class
                           ˆ       ˆ                         ˆ
                       hi (p, x) = p(i|x)(α (gi (x)) + T log(p(i|x)))                                      (1)
                             dhi
                                                       ˆ
                                  = α (gi (x)) + T log(p(i|x)) + T                                         (2)
                               ˆ
                             d pi

    Optimal Distribution
                               p ∗ (i|x) = exp(− α
                               ˆ                            (fi (x))+T
                                                                T      )/Z (x)



                    K
    Z (x) =             ˆ∗
                    i=1 p (i|x)       is the partition function
                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Experiments

                                   Classification Accuracy in %

           Method           SVM          TSVM           SER      RMSB           RF        DAS-RF
           g50c             91.7          93.1          91.9      94.2         89.1        93.3
           Letter           70.3          65.9          76.5      79.9         76.4        79.7
           SensIt           80.2          79.9          81.9      83.7         76.5        84.3

                                Train and Test time in Seconds


      Method           SVM          TSVM           SER      RMSB           RF        DAS-RF            GPU
      Letter            25           74            3124      125            35         72               29
      SensIt           195           687           1158      514           125        410              137
                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Caltech-101

                                     binary classification error
                       Class           RF            DAS-RF         Improvement
                       C4            0.0081          0.0033             58%
                       C5            0.0078           0.002             65%
                       C20           0.011           0.0013            87.5%
                       C33           0.007            0.003             52%
                       C81           0.0027           0.001            62.5%
       classification error over different numbers of labeled samples
                                Algorithm                   l = 15      l = 30
                                RF                           0.72        0.64
                                DAS-RF                       0.70        0.60
                                LinSVM                       0.74        0.65
                                                                                                            Graz University of Technology

                                improvement                   2%          4%
            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Prior Regularization


    Potential Information Gain
                                        |Il |                         |Ir |
                              ∆H = − |I |+|Ir | H (Il ) −         |Il |+|Ir | H (Ir )
                                              l



    Kullback-Leibler Divergence
                                DKL (q p) = H (q, p) − H (q)
                                        1
                          DSKL (q p) = 2 (DKL (q p) + DKL (p q))

    Prior-regularized node score
                                    ∆H ∗ = ∆H + λ∆DSKL (q p)
                                                          ˆ


                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Airbag




                                                                    m−1  m
                                                            OOBE : eF − eF




                                                                                                             Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof    Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Airbag




                                                                    m−1  m
                                                            OOBE : eF − eF




                                                                                                             Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof    Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outline

     1   SemiBoost & Visual Similarity Learning

     2   On-line Semi-supervised Boosting
          Tracking

     3   Semi-Supervised Random Forests
           MILForests
           On-line Random Forests

     4   On-line Manifold Regularization

     5   Conclusion & Outlook

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Forests
[Leistner et al.,ECCV’10]




                                                                  -
                                                                      -
                                                          -               -
                                           +                                        -

                                                                              -
                                              +                                         -


                                                              -                    -
                                                      -
                                 +
                                                      -

                                                                                               [Dietterich,AI’97]

             Content-based Image Retrieval
             Object Detection and Categorization
             Tracking
             Action Recognition
                                                                                                                                  Graz University of Technology




               Amir Saffari,Christian Leistner,Horst Bischof                      Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Forests



      Multiple Instance Learning is a special case of semi-supervised
                                Learning!




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Forests

    Multi-class Instance Classifier
                                      F (x) : X → Y = {1, . . . , K }
                       {(B1 , y1 ), . . . , (Bn , yn )}, where yi ∈ {1, . . . , K }

    Objective Function

                                                            n   ni
                      j                                                        j
                   ({yi }∗ , F ∗ )   =arg min                         (Fy j (xi ))
                                           j                               i
                                         {yi },F (·)   i=1 j=1
                                                 ni
                                                                                        j
                                 s.t. ∀i :             I(yi = arg max Fk (xi ))                  1.
                                                j=1                   k∈Y

                                                                                                                Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof       Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Multiple Instance Forests


    DA Loss Function

                                     n     ni    K                                       n
                                                           j            j
              LDA (F , p) =
                       ˆ                              ˆ
                                                      p(k|xi )    (Fk (xi ))    +T              ˆ
                                                                                             H (pi )
                                   i=1 j=1 k=1                                         i=1


    Entropy of the distribution inside a bag
                                                ni    K
                                                                 j            j
                              ˆ
                           H (pi ) = −                      ˆ            ˆ
                                                            p(k|xi ) log(p(k|xi ))
                                                j=1 k=1




                                                                                                              Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof     Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Evaluation

         Method                                 Elephant       Fox      Tiger      Musk1         Musk2
         RandomForest[Breiman,2001]                  74         60        77          85            78
         MILForest                                   84         64        82          85            82
         MI-Kernel[Andrews,2003]                     84         60        84          88            89
         MI-SVM[Zhou,2009]                           81         59        84          78            84
         mi-SVM[Zhou,2009]                           82         58        79          87            84
         MILES[Chen,2006]                            81         62        80          88            83
         SIL-SVM[Bunescu,2007]                       85         53        77          88            87
         AW-SVM[Gehler,2007]                         82         64        83          86            84
         AL-SVM[Gehler,2007]                         79         63        78          86            83
         EM-DD[Zhang,2001]                           78         56        72          85            85
         MILBoost-NOR[Viola,2006]                    73         58        56          71            61

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Corel Data Set




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Corel Data Set

           Results for the COREL image categorization benchmark



        Method            Corel-1000          Corel-2000           Testing[sec.]        Training[sec.]
        MILForest               59                  66                    4.6                  22.0
        MILES                   58                  67                   180                    960




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Semantic Segmentation

    [Vezhnevets & Buhmann,CVPR’10]




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outline

     1   SemiBoost & Visual Similarity Learning

     2   On-line Semi-supervised Boosting
          Tracking

     3   Semi-Supervised Random Forests
           MILForests
           On-line Random Forests

     4   On-line Manifold Regularization

     5   Conclusion & Outlook

                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Random Forests

           On-line Bagging [Oza,PhD-Thesis’01] → Poisson(λ)
           On-line recursive splitting is hard → Tree Growing
    Info Gain
                                                       |Rjls |            |Rjrs |
                    ∆L(Rj , s) = L(Rj ) −                      L(Rjls ) −         L(Rjrs )
                                                        |Rj |              |Rj |

    Splitting Rules
                              |Rj | > α and ∃s ∈ S : ∆L(Rj , s) > β

           On-line DA → Annealing Schedule for each sample xi

                                                                                                             Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof    Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Random Forests




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Interactive Segmentation




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking with On-line RF




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Tracking

                                          RT ∩ RGT /RT ∪ RGT


      Sequence          OSERB          MILBoost             OSB     OAB        ORF       MILForest           RF
      sylv               0.64             0.61              0.46    0.50       0.53          0.59           0.50
      david              0.69             0.54              0.31    0.32       0.69          0.72           0.32
      faceocc2           0.77             0.65              0.63    0.64       0.72          0.77           0.79
      tiger1             0.65             0.51              0.17    0.27       0.38          0.55           0.34
      tiger2             0.42             0.50              0.08    0.25       0.43          0.53           0.32
      coke                0.2             0.33              0.08    0.25       0.35          0.35           0.15
      faceocc1           0.77             0.63              0.71    0.47       0.71          0.77           0.77
      girl               0.77             0.53              0.69    0.38       0.70          0.71           0.74




                                                                                                               Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof      Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Manifold Regularization
[Goldberg et al.,ECML’08]




            Based on Convex Programming in kernel space using
            stochastic gradient descent
            Random Projection Trees [Dasgupta & Freund, TR, 2007]




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Manifold Regularization
[Goldberg et al.,ECML’08]




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Graph-based SSL
[Kveton et al.,OLCV’10]




                                    Harmonic Function Solution




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Graph-based SSL
[Kveton et al.,OLCV’10]




         Merge the two most similar vertices and add the new vertex




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



On-line Graph-based SSL
[Kveton et al.,OLCV’10]




                                     Face recognition of 8 people




                                                                                                              Graz University of Technology




              Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Conclusion

     Semi-supervised Learning is a powerful learning paradigm with
            many potential applications in Computer Vision




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Conclusion

     Semi-supervised Learning is a powerful learning paradigm with
            many potential applications in Computer Vision

           It is often also the way how learning is done in nature
           It can be applied virtually everywhere where classifiers are
           applied
           On-line SSL can be used in order to make
           tracking-by-detection systems more robust




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outlook

    We need to increase the robustness of SSL algorithms in order to
                      leverage more applications




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



Outlook

    We need to increase the robustness of SSL algorithms in order to
                      leverage more applications

           Demand for more on-line Semi-Supervised Methods
           SSL from weakly-related unlabeled data




                                                                                                            Graz University of Technology




            Amir Saffari,Christian Leistner,Horst Bischof   Semi-Supervised Learning in Computer Vision Part II
SemiBoost & Visual Similarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo



References
    Books
            O. Chapelle and B. Schoelkopf and A. Zien, “Semi-Supervised Learning”, The MIT Press, 2006
            Xiaojin Zhu and Andrew B. Goldberg, “Introduction to Semi-Supervised Learning”, Morgan & Claypool, 2009
    Papers and Articles
            C. Leistner, A. Saffari and H. Bischof, “MILForests: Multiple-Instance Learning with Randomized
            Trees”,ECCV’10
            C. Leistner, A. Saffari, J. Santner and H. Bischof: “,Semi-Supervised Random Forests”,ICCV’09
            C. Leistner, A. Saffari, P Roth and H. Bischof: “On Robustness of On-line Boosting – A Competitive
                                      .M.
            Study”,(ICCV) OLCV’09
            H. Grabner, C. Leistner and H. Bischof: “On-line Semi-Supervised Boosting for Robust Tracking”,ECCV’08
            B. Zeisl, C. Leistner, A. Saffari and H. Bischof: “On-line Semi-supervised Multiple-Instance Boosting”,CVPR’10
            C. Leistner, “Semi-Supervised Ensemble Methods for Computer Vision”, PhD-Thesis, Graz University of
            Technology, 2010
            A. Saffari, C. Leistner, M. Godec, J. Santner and H. Bischof, “On-line Random Forests”, (ICCV) OLCV’09
            A. Saffari, C. Leistner, M. Godec and H. Bischof, “Robust Multi-View Multi-Class Boosting with Priors”,ECCV’10
            B. Kveton, M. Valko, M. Philipose and L. Huang, “Online Semi-Supervised Perception: Real-Time Learning
            without Explicit Feedback”, (CVPR) OLCV’10
            A. Saffari, C. Leistner and H. Bischof, “Regularized Multi-Class Semi-Supervised Boosting”,CVPR’09
            C. Leistner, H. Grabner and H. Bischof, “Semi-Supervised Boosting using Visual Similarity Learning”,CVPR’08
            A. Saffari, C. Leistner and H. Bischof, “Regularized Multi-Class Semi-Supervised Boosting”,CVPR’09
            A. Saffari, H. Grabner and H. Bischof, “SERBoost: Semi-supervised Boosting with Expectation                Graz University of Technology
            Regularization”,ECCV’08

             Amir Saffari,Christian Leistner,Horst Bischof        Semi-Supervised Learning in Computer Vision Part II

CVPR2010: Semi-supervised Learning in Vision: Part 3: Algorithms and Applications

  • 1.
    Semi-Supervised Learning inComputer Vision Part II Amir Saffari,Christian Leistner,Horst Bischof Institute for Computer Graphics and Vision, Graz University of Technology June 18th, 2010
  • 2.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outline 1 SemiBoost & Visual Similarity Learning 2 On-line Semi-supervised Boosting Tracking 3 Semi-Supervised Random Forests MILForests On-line Random Forests 4 On-line Manifold Regularization 5 Conclusion & Outlook Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 3.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost [Mallapragada et al.,PAMI’09] [Leistner et al.,CVPR’08] Loss function (x,y)∈XL e −yF (x) + F (x) λu s(x, x ) cosh(F (x) − F (x )) + λl s(x, x )e −2y x∈XU x ∈XU (x ,y )∈XL Optimization Problem arg min = s(x, x )e −2y(F (x )+αf (x )) f (x),α x ∈XU (x,y)∈XL +λu s(x, x )e ((F (x )−F (x)) e α(f (x)−f (x )) x ∈XU Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 4.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost λu px = λl I(y = 1)s(x, x )e −2F (x ) + s(x, x )e F (x )−F (x) 2 (x ,y )∈XL x∈XU and λu qx = λl I(y = −1)s(x, x )e −2F (x ) + s(x, x )e F (x)−F (x ) 2 (x ,y )∈XL x∈XU Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 5.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Pseudo Labels and Weights ˆ yx = sign(px − qx ) wx = |px − qx | Optimal α 1 x∈XU pi I(f (x) = 1) + qi I(f (x) = −1) α= ln 4 x∈XU pi I(f (x) = −1) + qi I(f (x) = 1) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 6.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost labeled training data (x, y) ∈ XL and unlabeled data x ∈ XU Similarity measure s(x, x ) Weak learners fi weight parameters λu , λl max iterations T 1 For t = 1, 2, . . . , T 2 Compute pi and qi for every given sample 3 ˆ yx = sign(px − qx ) 4 wx = |px − qx | 5 Train weak classifier ft (x) 6 Compute αt 7 F (x) ← F (x) + αt ft (x) 8 EndFor Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 7.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost with learned Similarities [Hertz et al.,CVPR’04] Radial Basis Function [Zhu et al.,ICML’03] d(x,x )2 − σ2 s(x, x ) = e d(x, x ) . . . distance between points Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 8.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Learning Distance Functions Idea Learn distance or metric function on labeled data which then can discriminatively support task-specific classification. Distance Function F d : X × X → Y = [−1 1] Training Pairs of “same” or “different” [Hertz et al.,CVPR’04] Dd = {(x, x , +1)|y = y , x, x ∈ DL } ∪ ∪{(x, x , −1)|y y , x, x ∈ DL } Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 9.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost with learned Distance Functions Number of Training Pairs (Symmetric case) n·(n−1) 2 ? +- ? + ? + - SemiBoost ? + - ? Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 10.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Using Arbitrary Classifiers Approximate pair-wise classifier |F (x, x )| ≈ |F (x) − F (x )| + + ? ? - Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 11.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Reusing Prior Classifiers [Schapire et al,ML’02] Classifier Combination F C (x) = α0 F P (x) + F (x) ? ? + SemiBoost ? ? - ? Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 12.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Applications Car Detection Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 13.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Similarity Performance Accuracy depending on the number of samples Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 14.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Applications Car Detection Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 15.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Applications Face Detection (a) prior (b) trained (c) combined Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 16.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Simple Data mining method [Levin et al.,ICCV’03][Rosenberg et al.,2005] 1 Labeled training data (x, y) ∈ XL 2 Train cascaded detector F P (x) on XL using [Viola & Jones,2001] 3 Use a web image search engine in order to collect huge amounts of possibly useful images XU ; pass phrases that are much likely related to your target object 4 Apply F P (x) in a sliding window manner on XU and copy all ∗ detections to XU ∗ 5 Train a SemiBoost classifier F (x) on XL and XU using F P (x) as prior 6 Output the final classifier F (x) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 17.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Applications Transfer Learning Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 18.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SemiBoost Applications Transfer Learning Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 19.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outline 1 SemiBoost & Visual Similarity Learning 2 On-line Semi-supervised Boosting Tracking 3 Semi-Supervised Random Forests MILForests On-line Random Forests 4 On-line Manifold Regularization 5 Conclusion & Outlook Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 20.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Boosting Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 21.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking [Oza,PhD-Thesis’01], [Grabner & Bischof,CVPR’06] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 22.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 23.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 24.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 25.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Tracking is an One-Shot Semi-supervised Learning Problem Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 26.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line SemiBoost P −Fn−1 (x) −Fn−1 (x) + e −Fn−1 (x) e F (x) ˜ px ≈ e S(x, xi ) ≈ e F (x) ≈ F P (x) P xi ∈X+ e + e −F (x) P e Fn−1 (x) e −F (x) qx ≈ e Fn−1 (x) ˜ S(x, xi ) ≈ e Fn−1 (x) F − (x) ≈ P P xi ∈X− e F (x) + e −F (x) sinh(F P (x) − Fn−1 ) ˜ ˜ pn (x)−qn (x) = = tanh(F P (x))−tanh(Fn−1 (x)) cosh(F P (x)) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 27.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 28.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 29.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Problem: Rapid Appearance Changes Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 30.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 31.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Exploration-Exploitation Dilemma Convex Trade-off (F (x)) = (1 − α) l (F (x)) + α u (F (x)) We need more Robustness when minimizing the labeled loss! Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 32.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Loss Functions Random classification noise defeats all convex potential boosters [Long and Servidio,ICML’08] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 33.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Gradient Boost Gradient Descent Functional Gradient Descent GradientBoost [Friedman et al.,Annals of Statistics’01] ft (x) = arg max − LT f (x) f (x) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 34.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Gradient Boost A training sample: (xn , yn ), A differentiable loss function (·) Number of selectors M , Number of weak learners per selector K 1 Set F0 (xn ) = 0. 2 Set the initial weight wn = − (0). 3 For m = 1 to M 4 For k = 1 to K 5 Train k th weak learner fm (x) with sample (xn , yn ) and weight wn . k k k k 6 em ← em + wn I(sign(fm (xn )) yn ) //Compute the error 7 EndFor 8 Find the best weak learner with the least total weighted error: k j = arg min em . k j 9 Set fm (xn ) = fm (xn ). 10 Set Fm (xn ) = Fm−1 (xn ) + fm (xn ). 11 Set the weight wn = − (yn Fm (xn )). 12 EndFor Graz University of Technology 13 Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 35.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Weight Updates Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 36.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Co-Training of Pedestrian Detectors Exponential Loss Logit Loss Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 37.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo SERBoost Expectation Regularization [Mann and MacCallum,ICML’07] Penalize model predictions on unlabeled data that deviate from certain expectation. SERBoost [Saffari et al.,ECCV’08] L(H (x), X) = Ll (H (x), Xl ) + βLu (H (x), Xu ) L(H (x), X) = e −yH (x) + e −yp H (x) cosh(H (x)) x∈XL x∈XU Pseudo Label + yp = 2Pp (x) − 1 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 38.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line SERBoost with logistic loss Supervised Loss Ll (XL ) = log 1 + e −2yF (x) (x,y)∈Xl = log e −yF (x) (e yF (x) + e −yF (x) ) (x,y)∈XL = −yF (x) + log e F (x) + e −F (x) . (x,y)∈XL Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 39.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line SERBoost with logistic loss Minimize the cross entropy H (Pp , P) = − Pp (y = z|x) log P(y = z|x) z∈{−1,1} = − 2Pp (y = 1|x) − 1 F (x) + log e F (x) + e −F (x) yp (x) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 40.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line SERBoost with logistic loss Unsupervised Loss Lu (XU ) = ˆ H (Pp , P) = −yp (x)F (x) + log e F (x) + e −F (x) x∈XU x∈XU Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 41.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line SERBoost with logistic loss Unsupervised Loss Lu (XU ) = ˆ H (Pp , P) = −yp (x)F (x) + log e F (x) + e −F (x) x∈XU x∈XU Unlabeled Update ∀ x ∈ XU :wx = yp (x) − tanh(F (x)) ˆ yx = sign yp (x) − tanh(F (x)) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 42.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo OSER Tracking λ = 0.5 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 43.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Influence of convex combination Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 44.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Boosting [Viola et al.,NIPS’05][Babenko et al.,CVPR’09] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 45.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Boosting [Viola et al.,NIPS’05][Babenko et al.,CVPR’09] Bags {(B1 , y1 ), . . . , (Bn , yn )} Bi = {xi1 , xi2 , . . . , xini } Minimize binary log-likelihood log L= (yi log p(yi ) + (1 − yi ) log p(yi )) i Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 46.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semi-Supervised Multiple Instance Boosting [Zeisl et al.,CVPR’10] Combine benefits of MIL and SSL Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 47.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semi-Supervised Multiple Instance Boosting [Zeisl et al.,CVPR’10] Unlabeled Loss of the Bags Nu Lu (XB ) = − u Pp (z|Bu ) log(P(z|Bu )) i i i=1 z∈Y Approximate max with geometric mean NBi 1/NBi P(y = 1|Bi ) = 1 − 1 − P(y = 1|xij ) j=1 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 48.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semi-Supervised Multiple Instance Boosting [Zeisl et al.,CVPR’10] Gradient for NOR and geometric mean 2 z − P(y = 1|Bi ) aij (z) = P(y = 1|xij ) NBi P(y = 1|Bi ) Pseudo Labels and Weights wij =β Pp (z|Bu )aij (z) i z∈Y yij =I β Pp (z|Bu )aij (z) > 0 i z∈Y Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 49.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semi-Supervised Multiple Instance Boosting [Zeisl et al.,CVPR’10] Experimental Results Sequence MILSER MIL OSB OAB sylv 0.64 0.61 0.46 0.50 david 0.71 0.54 0.31 0.32 faceocc2 0.78 0.65 0.63 0.64 coke11 0.18 0.29 0.12 0.20 tiger1 0.60 0.51 0.17 0.27 tiger2 0.46 0.50 0.08 0.25 faceocc1 0.68 0.63 0.71 0.47 girl 0.64 0.53 0.69 0.38 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 50.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Co-Training [Liu et al.,ICCV’09][Saffari et al.,ECCV’10] Performance measured in average location center errors in pixels Approach sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl MV-GPBoost 17 20 10 15 16 20 12 15 CoBoost 15 33 11 22 19 14 13 17 SemiBoost 22 59 43 46 53 85 41 52 MILBoost 11 23 20 15 17 21 27 32 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 51.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo End Part I Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 52.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Random Forests [Breiman,ML’01] Ensemble of n decision trees N F (x) = n=1 f (x) Information Gain |Il | |Ir | ∆H = − |I |+|Ir | H (Il ) − |Il |+|Ir | H (Ir ) l Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 53.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Random Forests Advantages: speed parallelism noise robust inherently multi-class Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 54.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Random Forests Advantages: speed parallelism noise robust inherently multi-class Applications: Object Detection, Semantic Segmentation, Categorization, Tracking, etc. Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 55.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Random Forests Advantages: speed parallelism noise robust inherently multi-class Applications: Object Detection, Semantic Segmentation, Categorization, Tracking, etc. Disadvantage: RFs demand a huge amount of data in order to leverage their full potential [Caruana et al.,ICML’08] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 56.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semi-Supervised Random Forests Random Forests maximize the margin ml (x, y) = p(y|x) − max p(k|x) k∈Y k y Unlabeled Margin mu (xu ) = max fi (xu ) i∈Y Semi-supervised Loss 1 λ L(f) = (fy (x)) + (mu (x)) |Xl | |Xu | (x,y)∈Xl x∈Xu Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 57.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Optimization Incorporate labels for the unlabeled data as additional optimization variables! Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 58.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Optimization Incorporate labels for the unlabeled data as additional optimization variables! Deterministic Annealing [Rose,IJCNN’98] p ∗ = arg minEp (F(y)) − T H(p) p∈P T0 > T1 > . . . > T∞ = 0 p ∗ . . . distributions over the label predictions Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 59.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Optimization DA-Loss for Semi-supervised Random Forests 1 LDA (f, p) = ˆ (fy (x))+ |Xl | (x,y)∈Xl K α + ˆ p(i|x) (fi (x))+ |Xu | x∈Xu i=1 K T + ˆ H (p) |Xu | x∈Xu i=1 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 60.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Two Step Optimization First Stage 1 f∗ = arg min n (fy (x))+ f |Xl | (x,y)∈Xl α + (fyu (x)) ˆ |Xu | x∈Xu Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 61.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Two Step Optimization Second Stage K α p∗ =arg min ˆ ˆ p(i|x) (fi (x))+ ˆ p |Xu | x∈Xu i=1 K T + ˆ ˆ p(i|x) log(p(i|x)) |Xu | x∈Xu i=1 p ∗ (i|x) = exp(− α ˆ (fi (x))+T T )/Z (x) Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 62.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Finding the optimal Distributions Take the derivate w.r.t. each class ˆ ˆ ˆ hi (p, x) = p(i|x)(α (gi (x)) + T log(p(i|x))) (1) dhi ˆ = α (gi (x)) + T log(p(i|x)) + T (2) ˆ d pi Optimal Distribution p ∗ (i|x) = exp(− α ˆ (fi (x))+T T )/Z (x) K Z (x) = ˆ∗ i=1 p (i|x) is the partition function Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 63.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Experiments Classification Accuracy in % Method SVM TSVM SER RMSB RF DAS-RF g50c 91.7 93.1 91.9 94.2 89.1 93.3 Letter 70.3 65.9 76.5 79.9 76.4 79.7 SensIt 80.2 79.9 81.9 83.7 76.5 84.3 Train and Test time in Seconds Method SVM TSVM SER RMSB RF DAS-RF GPU Letter 25 74 3124 125 35 72 29 SensIt 195 687 1158 514 125 410 137 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 64.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Caltech-101 binary classification error Class RF DAS-RF Improvement C4 0.0081 0.0033 58% C5 0.0078 0.002 65% C20 0.011 0.0013 87.5% C33 0.007 0.003 52% C81 0.0027 0.001 62.5% classification error over different numbers of labeled samples Algorithm l = 15 l = 30 RF 0.72 0.64 DAS-RF 0.70 0.60 LinSVM 0.74 0.65 Graz University of Technology improvement 2% 4% Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 65.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Prior Regularization Potential Information Gain |Il | |Ir | ∆H = − |I |+|Ir | H (Il ) − |Il |+|Ir | H (Ir ) l Kullback-Leibler Divergence DKL (q p) = H (q, p) − H (q) 1 DSKL (q p) = 2 (DKL (q p) + DKL (p q)) Prior-regularized node score ∆H ∗ = ∆H + λ∆DSKL (q p) ˆ Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 66.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Airbag m−1 m OOBE : eF − eF Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 67.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Airbag m−1 m OOBE : eF − eF Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 68.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outline 1 SemiBoost & Visual Similarity Learning 2 On-line Semi-supervised Boosting Tracking 3 Semi-Supervised Random Forests MILForests On-line Random Forests 4 On-line Manifold Regularization 5 Conclusion & Outlook Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 69.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Forests [Leistner et al.,ECCV’10] - - - - + - - + - - - - + - [Dietterich,AI’97] Content-based Image Retrieval Object Detection and Categorization Tracking Action Recognition Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 70.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Forests Multiple Instance Learning is a special case of semi-supervised Learning! Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 71.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Forests Multi-class Instance Classifier F (x) : X → Y = {1, . . . , K } {(B1 , y1 ), . . . , (Bn , yn )}, where yi ∈ {1, . . . , K } Objective Function n ni j j ({yi }∗ , F ∗ ) =arg min (Fy j (xi )) j i {yi },F (·) i=1 j=1 ni j s.t. ∀i : I(yi = arg max Fk (xi )) 1. j=1 k∈Y Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 72.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Multiple Instance Forests DA Loss Function n ni K n j j LDA (F , p) = ˆ ˆ p(k|xi ) (Fk (xi )) +T ˆ H (pi ) i=1 j=1 k=1 i=1 Entropy of the distribution inside a bag ni K j j ˆ H (pi ) = − ˆ ˆ p(k|xi ) log(p(k|xi )) j=1 k=1 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 73.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Evaluation Method Elephant Fox Tiger Musk1 Musk2 RandomForest[Breiman,2001] 74 60 77 85 78 MILForest 84 64 82 85 82 MI-Kernel[Andrews,2003] 84 60 84 88 89 MI-SVM[Zhou,2009] 81 59 84 78 84 mi-SVM[Zhou,2009] 82 58 79 87 84 MILES[Chen,2006] 81 62 80 88 83 SIL-SVM[Bunescu,2007] 85 53 77 88 87 AW-SVM[Gehler,2007] 82 64 83 86 84 AL-SVM[Gehler,2007] 79 63 78 86 83 EM-DD[Zhang,2001] 78 56 72 85 85 MILBoost-NOR[Viola,2006] 73 58 56 71 61 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 74.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Corel Data Set Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 75.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Corel Data Set Results for the COREL image categorization benchmark Method Corel-1000 Corel-2000 Testing[sec.] Training[sec.] MILForest 59 66 4.6 22.0 MILES 58 67 180 960 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 76.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Semantic Segmentation [Vezhnevets & Buhmann,CVPR’10] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 77.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outline 1 SemiBoost & Visual Similarity Learning 2 On-line Semi-supervised Boosting Tracking 3 Semi-Supervised Random Forests MILForests On-line Random Forests 4 On-line Manifold Regularization 5 Conclusion & Outlook Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 78.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Random Forests On-line Bagging [Oza,PhD-Thesis’01] → Poisson(λ) On-line recursive splitting is hard → Tree Growing Info Gain |Rjls | |Rjrs | ∆L(Rj , s) = L(Rj ) − L(Rjls ) − L(Rjrs ) |Rj | |Rj | Splitting Rules |Rj | > α and ∃s ∈ S : ∆L(Rj , s) > β On-line DA → Annealing Schedule for each sample xi Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 79.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Random Forests Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 80.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Interactive Segmentation Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 81.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking with On-line RF Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 82.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 83.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Tracking RT ∩ RGT /RT ∪ RGT Sequence OSERB MILBoost OSB OAB ORF MILForest RF sylv 0.64 0.61 0.46 0.50 0.53 0.59 0.50 david 0.69 0.54 0.31 0.32 0.69 0.72 0.32 faceocc2 0.77 0.65 0.63 0.64 0.72 0.77 0.79 tiger1 0.65 0.51 0.17 0.27 0.38 0.55 0.34 tiger2 0.42 0.50 0.08 0.25 0.43 0.53 0.32 coke 0.2 0.33 0.08 0.25 0.35 0.35 0.15 faceocc1 0.77 0.63 0.71 0.47 0.71 0.77 0.77 girl 0.77 0.53 0.69 0.38 0.70 0.71 0.74 Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 84.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Manifold Regularization [Goldberg et al.,ECML’08] Based on Convex Programming in kernel space using stochastic gradient descent Random Projection Trees [Dasgupta & Freund, TR, 2007] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 85.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Manifold Regularization [Goldberg et al.,ECML’08] Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 86.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Graph-based SSL [Kveton et al.,OLCV’10] Harmonic Function Solution Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 87.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Graph-based SSL [Kveton et al.,OLCV’10] Merge the two most similar vertices and add the new vertex Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 88.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo On-line Graph-based SSL [Kveton et al.,OLCV’10] Face recognition of 8 people Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 89.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Conclusion Semi-supervised Learning is a powerful learning paradigm with many potential applications in Computer Vision Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 90.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Conclusion Semi-supervised Learning is a powerful learning paradigm with many potential applications in Computer Vision It is often also the way how learning is done in nature It can be applied virtually everywhere where classifiers are applied On-line SSL can be used in order to make tracking-by-detection systems more robust Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 91.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outlook We need to increase the robustness of SSL algorithms in order to leverage more applications Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 92.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo Outlook We need to increase the robustness of SSL algorithms in order to leverage more applications Demand for more on-line Semi-Supervised Methods SSL from weakly-related unlabeled data Graz University of Technology Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II
  • 93.
    SemiBoost & VisualSimilarity Learning On-line Semi-supervised Boosting Semi-Supervised Random Forests On-line Manifo References Books O. Chapelle and B. Schoelkopf and A. Zien, “Semi-Supervised Learning”, The MIT Press, 2006 Xiaojin Zhu and Andrew B. Goldberg, “Introduction to Semi-Supervised Learning”, Morgan & Claypool, 2009 Papers and Articles C. Leistner, A. Saffari and H. Bischof, “MILForests: Multiple-Instance Learning with Randomized Trees”,ECCV’10 C. Leistner, A. Saffari, J. Santner and H. Bischof: “,Semi-Supervised Random Forests”,ICCV’09 C. Leistner, A. Saffari, P Roth and H. Bischof: “On Robustness of On-line Boosting – A Competitive .M. Study”,(ICCV) OLCV’09 H. Grabner, C. Leistner and H. Bischof: “On-line Semi-Supervised Boosting for Robust Tracking”,ECCV’08 B. Zeisl, C. Leistner, A. Saffari and H. Bischof: “On-line Semi-supervised Multiple-Instance Boosting”,CVPR’10 C. Leistner, “Semi-Supervised Ensemble Methods for Computer Vision”, PhD-Thesis, Graz University of Technology, 2010 A. Saffari, C. Leistner, M. Godec, J. Santner and H. Bischof, “On-line Random Forests”, (ICCV) OLCV’09 A. Saffari, C. Leistner, M. Godec and H. Bischof, “Robust Multi-View Multi-Class Boosting with Priors”,ECCV’10 B. Kveton, M. Valko, M. Philipose and L. Huang, “Online Semi-Supervised Perception: Real-Time Learning without Explicit Feedback”, (CVPR) OLCV’10 A. Saffari, C. Leistner and H. Bischof, “Regularized Multi-Class Semi-Supervised Boosting”,CVPR’09 C. Leistner, H. Grabner and H. Bischof, “Semi-Supervised Boosting using Visual Similarity Learning”,CVPR’08 A. Saffari, C. Leistner and H. Bischof, “Regularized Multi-Class Semi-Supervised Boosting”,CVPR’09 A. Saffari, H. Grabner and H. Bischof, “SERBoost: Semi-supervised Boosting with Expectation Graz University of Technology Regularization”,ECCV’08 Amir Saffari,Christian Leistner,Horst Bischof Semi-Supervised Learning in Computer Vision Part II