1. The document presents Plug-and-Play priors for Bayesian imaging using Langevin-based sampling methods.
2. It introduces the Bayesian framework for image restoration and discusses challenges in modeling the prior.
3. A Plug-and-Play approach is proposed that uses an implicit prior defined by a denoising network in conjunction with Langevin sampling, termed PnP-ULA. Experiments demonstrate its effectiveness on image deblurring and inpainting tasks.