This document summarizes results on analyzing stochastic gradient descent (SGD) algorithms for minimizing convex functions. It shows that a continuous-time version of SGD (SGD-c) can strongly approximate the discrete-time version (SGD-d) under certain conditions. It also establishes that SGD achieves the minimax optimal convergence rate of O(t^-1/2) for α=1/2 by using an "averaging from the past" procedure, closing the gap between previous lower and upper bound results.