The document discusses computer vision techniques for object detection and localization. It describes methods like selective search that group image regions hierarchically to propose object locations. Large datasets like ImageNet and LabelMe that provide training examples are also discussed. Performance on object detection benchmarks like PASCAL VOC is shown to improve significantly over time. Evaluation standards for concept detection like those used in TRECVID are presented. The document concludes that results are impressively improving each year but that the number of detectable concepts remains limited. It also discusses making feature extraction more efficient using techniques like SURF that take advantage of integral images.