SlideShare a Scribd company logo
Manufacturing Automation
Computer Numerical Control (CNC)
Overview
A numerical control, or “NC”, system controls many machine functions and
movements which were traditionally performed by skilled machinists.
Numerical control developed out of the need to meet the requirements of high
production rates, uniformity and consistent part quality.
Programmed instructions are converted into output signals which in turn control
machine operations such as spindle speeds, tool selection, tool movement, and
cutting fluid flow.
Overview
By integrating a computer processor, computer numerical control, or “CNC” as it
is now known, allows part machining programs to be edited and stored in the
computer memory as well as permitting diagnostics and quality control functions
during the actual machining.
All CNC machining begins with a part
program, which is a sequential
instructions or coded commands that
direct the specific machine functions. The
part program may be manually generated
or, more commonly, generated by
computer aided part programming
systems.
Basic CNC Principles
All computer controlled machines are able to accurately and repeatedly control
motion in various directions. Each of these directions of motion is called an axis.
Depending on the machine type there are commonly two to five axes.
Additionally, a CNC axis may be either a linear axis in which movement is in a
straight line, or a rotary axis with motion following a circular path.
Basic CNC Principles
Each axis consists of a mechanical component, such as a slide that moves, a
servo drive motor that powers the mechanical movement, and a ball screw to
transfer the power from the servo drive motor to the mechanical component.
These components, along with the computer controls that govern them, are
referred to as an axis drive system.
Basic CNC Principles
Using a vertical mill machining center as an example, there are typically three
linear axes of motion. Each is given an alphabetic designation or address. The
machine table motion side to side is called the “X” axis. Table movement in and
out is the “Y” axis, while head movement up and down the column is the “Z”
axis.
Basic CNC Principles
If a rotary table is added to the machine table, then the fourth axis is
designated the “b” axis.
The method of accurate work positioning in relation to the cutting tool is called the
“rectangular coordinate system.” On the vertical mill, the horizontal base line is
designated the “X” axis, while the vertical base line is designated the “Y” axis. The “Z” axis
is at a right angle, perpendicular to both the “X” and “Y” axes.
Increments for all base lines are specified in linear measurements, for most machines the
smallest increment is one ten-thousandth of an inch (.0001). If the machine is graduated
in metric the smallest increment is usually one thousandth of a millimeter (.001mm).
The rectangular coordinate system allows the mathematical plotting of points in space.
These points or locations are called “coordinates.” The coordinates in turn relate to the
tool center and dictate the “tool path” through the work.
Work Positioning
Basic CNC Principles
CNC instructions are called part program commands.
When running, a part program is interpreted one command line at a time until all
lines are completed.
Commands, which are also referred to as blocks, are made up of words which
each begin with a letter address and end with a numerical value.
Each letter address relates to a specific machine function. “G” and “M” letter
addresses are two of the most common. A “G” letter specifies certain machine
preparations such as inch or metric modes, or absolutes versus incremental
modes.
A “M” letter specifies miscellaneous machine functions and work like on/off
switches for coolant flow, tool changing, or spindle rotation. Other letter
addresses are used to direct a wide variety of other machine commands.
CNC Programming Basics
Optimum machine programming requires consideration of certain machine operating
parameters including:
• Positioning control
• Compensations
• Special machine features
Positioning control is the ability to program tool and machine slide movement
simultaneously along two or more axes. Positioning may be for point-to-point movement
or for contouring movement along a continuous path. Contouring requires tool
movement along multiple axes simultaneously. This movement is referred to as
“Interpolation” which is the process of calculating intermediate values between specific
points along a programmed path and outputting those values as a precise motion.
Interpolation may be linear having just a start and end point along a straight line, or
circular which requires an end point, a center and a direction around the arc.
Program Command Parameters
Two computer-based systems which impact the use of CNC technology are computer
aided design and computer aided manufacturing.
A computer aided design, or CAD, system uses computers to graphically create product
designs and models. These designs can be reviewed, revised, and refined for optimum
end use and application. Once finalized, the CAD design is then exported to a computer
aided manufacturing, or CAM, system.
CAM systems assist in all phases of manufacturing a product, including process
planning, production planning, machining, scheduling, management and quality
control.
CAD/CAM
APT Programming Example
Cylindrical Part
F25
F22.5
F17.5
20
Raw Material
Finished Part
70
30
APT Programming Example
Cylindrical Part
O0013
N0005 G53
N0010 T0303
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X22.50 Z2.0 S500
N0080 G01 Z-30.0 F100
N0090 G00 X23.0 Z2.0 S500
N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650
N0110 G00 Z2.0
N0120 X50.0 Z50.0
N0130 M30
Please sign up to the lab demo and watch this program running
APT Program Interpretation
O0013
Program identification number
APT Program Interpretation
O0013
N0005 G53
To cancel any previous working zero point
APT Program Interpretation
O0013
N0005 G53
N0010 T0303
N0010 Sequence number
T0303 Select tool number 303
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.0 Z0.0 S500 M04
G57 To set the working zero point as saved
G00 Rapid movement (no cutting)
X26.0 X location (as a diameter; 13 form zero)
Z0.0 Z location
S500 Spindle speed is 500 rpm
M04 Rotate spindle counterclockwise
APT Program Interpretation
x
z
(0,0) +ve
+ve
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
G01 Linear interpolation (cutting)
X-0.20 Move only in x direction until you pass
the center by 0.1 mm (facing)
F100 Set feed rate to 100 mm/min.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
G00 Move rapidly away from workpiece (no cutting)
Z2.0 the movement is 2 mm away from the face.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
Go to a safe location away from the
workpiece [x = 50 (25 from zero), z = 50] to
change the tool.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
T0404 Select tool number 404
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X22.50 Z2.0 S500
G57 PS0
G00 Rapid movement (no cutting)
X22.50 X location (as a diameter; 11.25 form zero)
Z2.0 Z location
S500 Spindle speed is 500 rpm
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 Z-30.0 F100
G01 Linear interpolation (cutting)
Z-30 Move only in z direction (external turning)
F100 Set feed rate to 100 mm/min.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 X22.5 Z-70.0 F100
N0090 G00 X23.0 Z2.0 S500
G00 Move rapidly away from workpiece (no cutting) to
location x= 23.0 (11.50 from zero) and z = 2.0.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 X22.5 Z-70.0 F100
N0090 G00 X26.0 Z2.0 S500
N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650
G84 Turning cycle for machining the step
X17.5 final diameter
Z-20 length of step is 20 mm
D0=200 Finish allowance in X direction (0.2 mm)
D2=200 Finish allowance in Z direction (0.2 mm)
D3=650 Depth of cut in each pass (0.65 mm)
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 X22.5 Z-70.0 F100
N0090 G00 X26.0 Z2.0 S500
N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650
N0110 G00 Z2.0
G00 Move rapidly away from workpiece (no cutting)
Z2.0 the movement is 2 mm away from the face.
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 X22.5 Z-70.0 F100
N0090 G00 X26.0 Z2.0 S500
N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650
N0110 G00 Z2.0
N0120 X50.0 Z50.0
X50.0 Z50.0 Move to the tool changing location
APT Program Interpretation
O0013
N0005 G53
N0010 T0404
N0020 G57 G00 X26.00 Z0.0 S500 M04
N0030 G01 X-0.20 F100
N0040 G00 Z2.0
N0050 X50.0 Z50.0
N0060 T0404
N0070 G57 G00 X25.00 Z2.0 S500 M04
N0080 G01 X22.5 Z-70.0 F100
N0090 G00 X26.0 Z2.0 S500
N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650
N0110 G00 Z2.0
N0120 X50.0 Z50.0 T00
N0130 M30
M30 Program End
APT Program Interpretation
Programming Example
Raw Material Finished Part
Programming Example
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
N009 G01 X0 Y0 Z-0.5 XYFeed 75
N010 G81 R3 E9 N7 Z-0.5
N011 M05
N012 M02
x
y
Programming Example
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
N012 G01 X50 Y45 Z10 ZFeed 150
N013 M05
N014 M02
x
y
Program Interpretation
G55 X200 Y80
Setting the datum to the lower left corner of the work piece
Program Interpretation
G55 X200 Y80
Program 1
Program Identification Number
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N001 Sequence Number
M06 Tool Change (End Mill with
Diameter=12mm
T1 Tool Number
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
Start rotating the spindle clockwise with 400
rpm
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
Go to Safe Position with feed 150mm/min
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
Lower the end mill to determine the depth of
cut
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
Move from the lower left corner
of the work piece to the right
lower one cutting with
feed=75mm/min
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
Move from the lower left corner
of the work piece to the right
lower one cutting with
feed=75mm/min
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
Cutting the horizontally up to
X=30
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
Cutting to X=0 & Y=40
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
N009 G01 X0 Y0 Z-0.5 XYFeed 75
Complete the countering
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
N009 G01 X0 Y0 Z-0.5 XYFeed 75
N010 G81 R3 E9 N7 Z-0.5
Repeat 7 times blocks from N003 to N009
with incremental offset of Z=-0.5
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
N009 G01 X0 Y0 Z-0.5 XYFeed 75
N010 G81 R3 E9 N7 Z-0.5
N011 M05
Spindle Off
Program Interpretation
G55 X200 Y80
Program 1
N001 M06 T1
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X-8 Y0 Z-0.5 ZFeed 150
N005 G01 X70 Y0 Z-0.5 XYFeed 75
N006 G01 X70 Y60 Z-0.5 XYFeed 75
N007 G01 X30 Y60 Z-0.5 XYFeed 75
N008 G01 X0 Y40 Z-0.5 XYFeed 75
N009 G01 X0 Y0 Z-0.5 XYFeed 75
N010 G81 R3 E9 N7 Z-0.5
N011 M05
N012 M02
End Program
Program Interpretation
Tool Change
Changing the tool
Program Interpretation
Tool Change
G55 X200 Y80
Setting the datum to the lower left corner of the work piece
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
Program Identification Number
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N001 Sequence Number
M06 Tool Change (Drill with
Diameter=6mm
T2 Tool Number
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
Start rotating the spindle clockwise with 400
rpm
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
Go to Safe Position with feed 150mm/min
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
Stop above the center of the first hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
Start Drill the first hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
Retract to a position above the hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
Stop above the center of the second hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
Drill the second hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
Retract to a position above the second hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
Stop above the center of the third hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
Drill the third hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
N012 G01 X50 Y45 Z10 ZFeed 150
Retract to a position above the third hole
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
N012 G01 X50 Y45 Z10 ZFeed 150
N013 M05
Spindle off
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
N012 G01 X50 Y45 Z10 ZFeed 150
N013 M05
N014 M02
End Program
Program Interpretation
Tool Change
G55 X200 Y80
Program 2
N001 M06 T2
N002 M03 rpm 400
N003 G01 X-8 Y0 Z0 XYFeed 150
N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150
N005 G01 X20 Y15 Z-10 ZFeed 75
N006 G01 X20 Y15 Z10 ZFeed 150
N007 G01 X50 Y15 Z10 ZFeed 150
N008 G01 X50 Y15 Z-10 ZFeed 75
N009 G01 X50 Y15 Z10 ZFeed 150
N010 G01 X50 Y45 Z10 ZFeed 150
N011 G01 X50 Y45 Z-10 ZFeed 75
N012 G01 X50 Y45 Z10 ZFeed 150
N013 M05
N014 M02
End Program

More Related Content

What's hot

Cnc technology
Cnc technology Cnc technology
Cnc technology
ahirehemant
 
cnc machining
cnc machiningcnc machining
cnc machining
Nikhlesh Ranjan
 
Cnc programming basics.doc
Cnc programming basics.docCnc programming basics.doc
Cnc programming basics.doc
Soekarno Revolusi
 
Cnc part programming 4 unit
Cnc part programming 4 unitCnc part programming 4 unit
Cnc part programming 4 unit
palanivendhan
 
Cnc technology yani punye
Cnc technology yani punyeCnc technology yani punye
Cnc technology yani punyemohdyanie
 
nc and cnc dp
nc and cnc dpnc and cnc dp
nc and cnc dp
Dpulast
 
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASHCNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
Ved Prakash
 
Universal CNC Milling Machine
Universal CNC Milling MachineUniversal CNC Milling Machine
Universal CNC Milling Machine
RTK Industries
 
Manual part programming
Manual part programmingManual part programming
Manual part programming
jntuhcej
 
3 numerical control
3 numerical control3 numerical control
3 numerical control
shaikusmanshag
 
Computer numerical control (CNC)
Computer numerical control (CNC)Computer numerical control (CNC)
Computer numerical control (CNC)
Sudip Phuyal
 
Cnc machine training
Cnc machine trainingCnc machine training
Cnc machine training
Working as a Lecturer
 
CNC Part Program
CNC Part ProgramCNC Part Program
CNC Part Program
PraveenManickam2
 
Cnc 2 unit palanivendhan cnc elements
Cnc 2 unit palanivendhan cnc elementsCnc 2 unit palanivendhan cnc elements
Cnc 2 unit palanivendhan cnc elements
palanivendhan
 
Nc Technology
Nc TechnologyNc Technology
Nc Technology
hariskhan86
 
Introduction to 5 axis cnc machine
Introduction to 5 axis cnc machineIntroduction to 5 axis cnc machine
Introduction to 5 axis cnc machineDeepak Kumar
 

What's hot (20)

Cnc technology
Cnc technology Cnc technology
Cnc technology
 
cnc machining
cnc machiningcnc machining
cnc machining
 
Cnc programming basics.doc
Cnc programming basics.docCnc programming basics.doc
Cnc programming basics.doc
 
Cnc1
Cnc1Cnc1
Cnc1
 
Cnc notes (1)
Cnc notes (1)Cnc notes (1)
Cnc notes (1)
 
Cnc part programming 4 unit
Cnc part programming 4 unitCnc part programming 4 unit
Cnc part programming 4 unit
 
Cnc
CncCnc
Cnc
 
Cnc technology yani punye
Cnc technology yani punyeCnc technology yani punye
Cnc technology yani punye
 
Ncmachine (1)
Ncmachine (1)Ncmachine (1)
Ncmachine (1)
 
nc and cnc dp
nc and cnc dpnc and cnc dp
nc and cnc dp
 
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASHCNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
CNC(COMPUTER NUMERICAL CONTROL MACHINE) By-Er. VED PRAKASH
 
Universal CNC Milling Machine
Universal CNC Milling MachineUniversal CNC Milling Machine
Universal CNC Milling Machine
 
Manual part programming
Manual part programmingManual part programming
Manual part programming
 
3 numerical control
3 numerical control3 numerical control
3 numerical control
 
Computer numerical control (CNC)
Computer numerical control (CNC)Computer numerical control (CNC)
Computer numerical control (CNC)
 
Cnc machine training
Cnc machine trainingCnc machine training
Cnc machine training
 
CNC Part Program
CNC Part ProgramCNC Part Program
CNC Part Program
 
Cnc 2 unit palanivendhan cnc elements
Cnc 2 unit palanivendhan cnc elementsCnc 2 unit palanivendhan cnc elements
Cnc 2 unit palanivendhan cnc elements
 
Nc Technology
Nc TechnologyNc Technology
Nc Technology
 
Introduction to 5 axis cnc machine
Introduction to 5 axis cnc machineIntroduction to 5 axis cnc machine
Introduction to 5 axis cnc machine
 

Similar to Computer Numerical Control (CNC) & Manufacturing Automation

CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptxCAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
sahils237192101
 
CNC.ppt
CNC.pptCNC.ppt
CNC Turning and Milling centres
CNC Turning and Milling centresCNC Turning and Milling centres
CNC Turning and Milling centres
Achyuth Padmanabh
 
Manufacturing
ManufacturingManufacturing
Manufacturing
Smeet Gala
 
Numerical control and CNC
Numerical control and CNCNumerical control and CNC
Numerical control and CNC
nmahi96
 
Cam presentation..
Cam presentation..Cam presentation..
Cam presentation..
Akash Maurya
 
CNC Maching.pptx
CNC Maching.pptxCNC Maching.pptx
CNC Maching.pptx
studyall1
 
CNC PART PROGRAMMING.pptx
CNC PART PROGRAMMING.pptxCNC PART PROGRAMMING.pptx
CNC PART PROGRAMMING.pptx
AtharvaJagtap15
 
Introduction to CNC machining processes-
Introduction to CNC machining processes-Introduction to CNC machining processes-
Introduction to CNC machining processes-
Rukminisrikant Revuru
 
Cnc lab manual
Cnc lab manualCnc lab manual
Cnc lab manual
SubhasgoudPatil
 
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdfCh-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
JAYANTKUMAR469151
 
CNC
CNCCNC
CNC
illpa
 
CNC part programming
CNC part programmingCNC part programming
CNC part programming
jntuhcej
 
CNC-LATHE MPP1.ppt
CNC-LATHE MPP1.pptCNC-LATHE MPP1.ppt
CNC-LATHE MPP1.ppt
dharma raja`
 
Recent Advancement of CNC Technology
Recent Advancement of CNC TechnologyRecent Advancement of CNC Technology
Recent Advancement of CNC Technology
Debiprasad Sena
 

Similar to Computer Numerical Control (CNC) & Manufacturing Automation (20)

CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptxCAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
CAD-CAM-Module-4-Subtractive-Manufacturing-1-print.pptx
 
CNC.ppt
CNC.pptCNC.ppt
CNC.ppt
 
CNC Turning and Milling centres
CNC Turning and Milling centresCNC Turning and Milling centres
CNC Turning and Milling centres
 
Manufacturing
ManufacturingManufacturing
Manufacturing
 
Numerical control and CNC
Numerical control and CNCNumerical control and CNC
Numerical control and CNC
 
Cnc programming
Cnc programmingCnc programming
Cnc programming
 
Cncprogramming
CncprogrammingCncprogramming
Cncprogramming
 
9.pmat m 01
9.pmat m 019.pmat m 01
9.pmat m 01
 
Cam presentation..
Cam presentation..Cam presentation..
Cam presentation..
 
CNC Maching.pptx
CNC Maching.pptxCNC Maching.pptx
CNC Maching.pptx
 
CNC PART PROGRAMMING.pptx
CNC PART PROGRAMMING.pptxCNC PART PROGRAMMING.pptx
CNC PART PROGRAMMING.pptx
 
Introduction to CNC machining processes-
Introduction to CNC machining processes-Introduction to CNC machining processes-
Introduction to CNC machining processes-
 
Cnc lab manual
Cnc lab manualCnc lab manual
Cnc lab manual
 
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdfCh-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
 
CNC1.ppt
CNC1.pptCNC1.ppt
CNC1.ppt
 
CNC
CNCCNC
CNC
 
CNC part programming
CNC part programmingCNC part programming
CNC part programming
 
Dv03 pub9 study_guide
Dv03 pub9 study_guideDv03 pub9 study_guide
Dv03 pub9 study_guide
 
CNC-LATHE MPP1.ppt
CNC-LATHE MPP1.pptCNC-LATHE MPP1.ppt
CNC-LATHE MPP1.ppt
 
Recent Advancement of CNC Technology
Recent Advancement of CNC TechnologyRecent Advancement of CNC Technology
Recent Advancement of CNC Technology
 

More from STAY CURIOUS

Polymer Identification.pdf
Polymer Identification.pdfPolymer Identification.pdf
Polymer Identification.pdf
STAY CURIOUS
 
Materials for Laser Cutter Machines
Materials for Laser Cutter MachinesMaterials for Laser Cutter Machines
Materials for Laser Cutter Machines
STAY CURIOUS
 
Laser_Safe_Materials1.pdf
Laser_Safe_Materials1.pdfLaser_Safe_Materials1.pdf
Laser_Safe_Materials1.pdf
STAY CURIOUS
 
NX training Report
NX training ReportNX training Report
NX training Report
STAY CURIOUS
 
NX training Report
NX training ReportNX training Report
NX training Report
STAY CURIOUS
 
Manufacturing cost
Manufacturing costManufacturing cost
Manufacturing cost
STAY CURIOUS
 
Additve manufacturing key point
Additve manufacturing key pointAdditve manufacturing key point
Additve manufacturing key point
STAY CURIOUS
 
Additive manufacturing 3D Printing technology
Additive manufacturing 3D Printing technologyAdditive manufacturing 3D Printing technology
Additive manufacturing 3D Printing technology
STAY CURIOUS
 
Design of Stage Progressive Die for a Sheet Metal Component
Design of Stage Progressive Die for a Sheet Metal Component Design of Stage Progressive Die for a Sheet Metal Component
Design of Stage Progressive Die for a Sheet Metal Component
STAY CURIOUS
 
Non-traditional machining, QUS. & ANS.
Non-traditional machining, QUS. & ANS.Non-traditional machining, QUS. & ANS.
Non-traditional machining, QUS. & ANS.
STAY CURIOUS
 
AutoCAD 2D training report
AutoCAD 2D training reportAutoCAD 2D training report
AutoCAD 2D training report
STAY CURIOUS
 
Types of gears - bearings
Types of gears - bearingsTypes of gears - bearings
Types of gears - bearings
STAY CURIOUS
 
Suspension system
Suspension system Suspension system
Suspension system
STAY CURIOUS
 
Braking System in Vehicles
Braking System in VehiclesBraking System in Vehicles
Braking System in Vehicles
STAY CURIOUS
 
2 stroke and 4 stroke petrol
2 stroke and 4 stroke petrol2 stroke and 4 stroke petrol
2 stroke and 4 stroke petrol
STAY CURIOUS
 
Automobiles dashboard symbols
Automobiles dashboard symbols Automobiles dashboard symbols
Automobiles dashboard symbols
STAY CURIOUS
 
Turbojet engines
Turbojet enginesTurbojet engines
Turbojet engines
STAY CURIOUS
 
Suspenion system
Suspenion systemSuspenion system
Suspenion system
STAY CURIOUS
 
Welding of-metals
Welding of-metalsWelding of-metals
Welding of-metals
STAY CURIOUS
 
Automatic transmission
Automatic transmissionAutomatic transmission
Automatic transmission
STAY CURIOUS
 

More from STAY CURIOUS (20)

Polymer Identification.pdf
Polymer Identification.pdfPolymer Identification.pdf
Polymer Identification.pdf
 
Materials for Laser Cutter Machines
Materials for Laser Cutter MachinesMaterials for Laser Cutter Machines
Materials for Laser Cutter Machines
 
Laser_Safe_Materials1.pdf
Laser_Safe_Materials1.pdfLaser_Safe_Materials1.pdf
Laser_Safe_Materials1.pdf
 
NX training Report
NX training ReportNX training Report
NX training Report
 
NX training Report
NX training ReportNX training Report
NX training Report
 
Manufacturing cost
Manufacturing costManufacturing cost
Manufacturing cost
 
Additve manufacturing key point
Additve manufacturing key pointAdditve manufacturing key point
Additve manufacturing key point
 
Additive manufacturing 3D Printing technology
Additive manufacturing 3D Printing technologyAdditive manufacturing 3D Printing technology
Additive manufacturing 3D Printing technology
 
Design of Stage Progressive Die for a Sheet Metal Component
Design of Stage Progressive Die for a Sheet Metal Component Design of Stage Progressive Die for a Sheet Metal Component
Design of Stage Progressive Die for a Sheet Metal Component
 
Non-traditional machining, QUS. & ANS.
Non-traditional machining, QUS. & ANS.Non-traditional machining, QUS. & ANS.
Non-traditional machining, QUS. & ANS.
 
AutoCAD 2D training report
AutoCAD 2D training reportAutoCAD 2D training report
AutoCAD 2D training report
 
Types of gears - bearings
Types of gears - bearingsTypes of gears - bearings
Types of gears - bearings
 
Suspension system
Suspension system Suspension system
Suspension system
 
Braking System in Vehicles
Braking System in VehiclesBraking System in Vehicles
Braking System in Vehicles
 
2 stroke and 4 stroke petrol
2 stroke and 4 stroke petrol2 stroke and 4 stroke petrol
2 stroke and 4 stroke petrol
 
Automobiles dashboard symbols
Automobiles dashboard symbols Automobiles dashboard symbols
Automobiles dashboard symbols
 
Turbojet engines
Turbojet enginesTurbojet engines
Turbojet engines
 
Suspenion system
Suspenion systemSuspenion system
Suspenion system
 
Welding of-metals
Welding of-metalsWelding of-metals
Welding of-metals
 
Automatic transmission
Automatic transmissionAutomatic transmission
Automatic transmission
 

Recently uploaded

AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 

Recently uploaded (20)

AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 

Computer Numerical Control (CNC) & Manufacturing Automation

  • 2. Overview A numerical control, or “NC”, system controls many machine functions and movements which were traditionally performed by skilled machinists. Numerical control developed out of the need to meet the requirements of high production rates, uniformity and consistent part quality. Programmed instructions are converted into output signals which in turn control machine operations such as spindle speeds, tool selection, tool movement, and cutting fluid flow.
  • 3. Overview By integrating a computer processor, computer numerical control, or “CNC” as it is now known, allows part machining programs to be edited and stored in the computer memory as well as permitting diagnostics and quality control functions during the actual machining. All CNC machining begins with a part program, which is a sequential instructions or coded commands that direct the specific machine functions. The part program may be manually generated or, more commonly, generated by computer aided part programming systems.
  • 4. Basic CNC Principles All computer controlled machines are able to accurately and repeatedly control motion in various directions. Each of these directions of motion is called an axis. Depending on the machine type there are commonly two to five axes. Additionally, a CNC axis may be either a linear axis in which movement is in a straight line, or a rotary axis with motion following a circular path.
  • 5. Basic CNC Principles Each axis consists of a mechanical component, such as a slide that moves, a servo drive motor that powers the mechanical movement, and a ball screw to transfer the power from the servo drive motor to the mechanical component. These components, along with the computer controls that govern them, are referred to as an axis drive system.
  • 6. Basic CNC Principles Using a vertical mill machining center as an example, there are typically three linear axes of motion. Each is given an alphabetic designation or address. The machine table motion side to side is called the “X” axis. Table movement in and out is the “Y” axis, while head movement up and down the column is the “Z” axis.
  • 7. Basic CNC Principles If a rotary table is added to the machine table, then the fourth axis is designated the “b” axis.
  • 8. The method of accurate work positioning in relation to the cutting tool is called the “rectangular coordinate system.” On the vertical mill, the horizontal base line is designated the “X” axis, while the vertical base line is designated the “Y” axis. The “Z” axis is at a right angle, perpendicular to both the “X” and “Y” axes. Increments for all base lines are specified in linear measurements, for most machines the smallest increment is one ten-thousandth of an inch (.0001). If the machine is graduated in metric the smallest increment is usually one thousandth of a millimeter (.001mm). The rectangular coordinate system allows the mathematical plotting of points in space. These points or locations are called “coordinates.” The coordinates in turn relate to the tool center and dictate the “tool path” through the work. Work Positioning
  • 10. CNC instructions are called part program commands. When running, a part program is interpreted one command line at a time until all lines are completed. Commands, which are also referred to as blocks, are made up of words which each begin with a letter address and end with a numerical value. Each letter address relates to a specific machine function. “G” and “M” letter addresses are two of the most common. A “G” letter specifies certain machine preparations such as inch or metric modes, or absolutes versus incremental modes. A “M” letter specifies miscellaneous machine functions and work like on/off switches for coolant flow, tool changing, or spindle rotation. Other letter addresses are used to direct a wide variety of other machine commands. CNC Programming Basics
  • 11. Optimum machine programming requires consideration of certain machine operating parameters including: • Positioning control • Compensations • Special machine features Positioning control is the ability to program tool and machine slide movement simultaneously along two or more axes. Positioning may be for point-to-point movement or for contouring movement along a continuous path. Contouring requires tool movement along multiple axes simultaneously. This movement is referred to as “Interpolation” which is the process of calculating intermediate values between specific points along a programmed path and outputting those values as a precise motion. Interpolation may be linear having just a start and end point along a straight line, or circular which requires an end point, a center and a direction around the arc. Program Command Parameters
  • 12. Two computer-based systems which impact the use of CNC technology are computer aided design and computer aided manufacturing. A computer aided design, or CAD, system uses computers to graphically create product designs and models. These designs can be reviewed, revised, and refined for optimum end use and application. Once finalized, the CAD design is then exported to a computer aided manufacturing, or CAM, system. CAM systems assist in all phases of manufacturing a product, including process planning, production planning, machining, scheduling, management and quality control. CAD/CAM
  • 13. APT Programming Example Cylindrical Part F25 F22.5 F17.5 20 Raw Material Finished Part 70 30
  • 14. APT Programming Example Cylindrical Part O0013 N0005 G53 N0010 T0303 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X22.50 Z2.0 S500 N0080 G01 Z-30.0 F100 N0090 G00 X23.0 Z2.0 S500 N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650 N0110 G00 Z2.0 N0120 X50.0 Z50.0 N0130 M30 Please sign up to the lab demo and watch this program running
  • 16. APT Program Interpretation O0013 N0005 G53 To cancel any previous working zero point
  • 17. APT Program Interpretation O0013 N0005 G53 N0010 T0303 N0010 Sequence number T0303 Select tool number 303
  • 18. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.0 Z0.0 S500 M04 G57 To set the working zero point as saved G00 Rapid movement (no cutting) X26.0 X location (as a diameter; 13 form zero) Z0.0 Z location S500 Spindle speed is 500 rpm M04 Rotate spindle counterclockwise APT Program Interpretation x z (0,0) +ve +ve
  • 19. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 G01 Linear interpolation (cutting) X-0.20 Move only in x direction until you pass the center by 0.1 mm (facing) F100 Set feed rate to 100 mm/min. APT Program Interpretation
  • 20. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 G00 Move rapidly away from workpiece (no cutting) Z2.0 the movement is 2 mm away from the face. APT Program Interpretation
  • 21. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 Go to a safe location away from the workpiece [x = 50 (25 from zero), z = 50] to change the tool. APT Program Interpretation
  • 22. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 T0404 Select tool number 404 APT Program Interpretation
  • 23. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X22.50 Z2.0 S500 G57 PS0 G00 Rapid movement (no cutting) X22.50 X location (as a diameter; 11.25 form zero) Z2.0 Z location S500 Spindle speed is 500 rpm APT Program Interpretation
  • 24. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 Z-30.0 F100 G01 Linear interpolation (cutting) Z-30 Move only in z direction (external turning) F100 Set feed rate to 100 mm/min. APT Program Interpretation
  • 25. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 X22.5 Z-70.0 F100 N0090 G00 X23.0 Z2.0 S500 G00 Move rapidly away from workpiece (no cutting) to location x= 23.0 (11.50 from zero) and z = 2.0. APT Program Interpretation
  • 26. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 X22.5 Z-70.0 F100 N0090 G00 X26.0 Z2.0 S500 N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650 G84 Turning cycle for machining the step X17.5 final diameter Z-20 length of step is 20 mm D0=200 Finish allowance in X direction (0.2 mm) D2=200 Finish allowance in Z direction (0.2 mm) D3=650 Depth of cut in each pass (0.65 mm) APT Program Interpretation
  • 27. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 X22.5 Z-70.0 F100 N0090 G00 X26.0 Z2.0 S500 N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650 N0110 G00 Z2.0 G00 Move rapidly away from workpiece (no cutting) Z2.0 the movement is 2 mm away from the face. APT Program Interpretation
  • 28. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 X22.5 Z-70.0 F100 N0090 G00 X26.0 Z2.0 S500 N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650 N0110 G00 Z2.0 N0120 X50.0 Z50.0 X50.0 Z50.0 Move to the tool changing location APT Program Interpretation
  • 29. O0013 N0005 G53 N0010 T0404 N0020 G57 G00 X26.00 Z0.0 S500 M04 N0030 G01 X-0.20 F100 N0040 G00 Z2.0 N0050 X50.0 Z50.0 N0060 T0404 N0070 G57 G00 X25.00 Z2.0 S500 M04 N0080 G01 X22.5 Z-70.0 F100 N0090 G00 X26.0 Z2.0 S500 N0100 G84 X17.5 Z-20.0 D0=200 D2=200 D3=650 N0110 G00 Z2.0 N0120 X50.0 Z50.0 T00 N0130 M30 M30 Program End APT Program Interpretation
  • 31. Programming Example G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 N009 G01 X0 Y0 Z-0.5 XYFeed 75 N010 G81 R3 E9 N7 Z-0.5 N011 M05 N012 M02 x y
  • 32. Programming Example Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 N012 G01 X50 Y45 Z10 ZFeed 150 N013 M05 N014 M02 x y
  • 33. Program Interpretation G55 X200 Y80 Setting the datum to the lower left corner of the work piece
  • 34. Program Interpretation G55 X200 Y80 Program 1 Program Identification Number
  • 35. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N001 Sequence Number M06 Tool Change (End Mill with Diameter=12mm T1 Tool Number
  • 36. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 Start rotating the spindle clockwise with 400 rpm
  • 37. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 Go to Safe Position with feed 150mm/min
  • 38. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 Lower the end mill to determine the depth of cut
  • 39. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 Move from the lower left corner of the work piece to the right lower one cutting with feed=75mm/min
  • 40. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 Move from the lower left corner of the work piece to the right lower one cutting with feed=75mm/min
  • 41. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 Cutting the horizontally up to X=30
  • 42. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 Cutting to X=0 & Y=40
  • 43. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 N009 G01 X0 Y0 Z-0.5 XYFeed 75 Complete the countering
  • 44. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 N009 G01 X0 Y0 Z-0.5 XYFeed 75 N010 G81 R3 E9 N7 Z-0.5 Repeat 7 times blocks from N003 to N009 with incremental offset of Z=-0.5
  • 45. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 N009 G01 X0 Y0 Z-0.5 XYFeed 75 N010 G81 R3 E9 N7 Z-0.5 N011 M05 Spindle Off
  • 46. Program Interpretation G55 X200 Y80 Program 1 N001 M06 T1 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X-8 Y0 Z-0.5 ZFeed 150 N005 G01 X70 Y0 Z-0.5 XYFeed 75 N006 G01 X70 Y60 Z-0.5 XYFeed 75 N007 G01 X30 Y60 Z-0.5 XYFeed 75 N008 G01 X0 Y40 Z-0.5 XYFeed 75 N009 G01 X0 Y0 Z-0.5 XYFeed 75 N010 G81 R3 E9 N7 Z-0.5 N011 M05 N012 M02 End Program
  • 48. Program Interpretation Tool Change G55 X200 Y80 Setting the datum to the lower left corner of the work piece
  • 49. Program Interpretation Tool Change G55 X200 Y80 Program 2 Program Identification Number
  • 50. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N001 Sequence Number M06 Tool Change (Drill with Diameter=6mm T2 Tool Number
  • 51. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 Start rotating the spindle clockwise with 400 rpm
  • 52. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 Go to Safe Position with feed 150mm/min
  • 53. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 Stop above the center of the first hole
  • 54. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 Start Drill the first hole
  • 55. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 Retract to a position above the hole
  • 56. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 Stop above the center of the second hole
  • 57. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 Drill the second hole
  • 58. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 Retract to a position above the second hole
  • 59. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 Stop above the center of the third hole
  • 60. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 Drill the third hole
  • 61. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 N012 G01 X50 Y45 Z10 ZFeed 150 Retract to a position above the third hole
  • 62. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 N012 G01 X50 Y45 Z10 ZFeed 150 N013 M05 Spindle off
  • 63. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 N012 G01 X50 Y45 Z10 ZFeed 150 N013 M05 N014 M02 End Program
  • 64. Program Interpretation Tool Change G55 X200 Y80 Program 2 N001 M06 T2 N002 M03 rpm 400 N003 G01 X-8 Y0 Z0 XYFeed 150 N004 G01 X20 Y15 Z10 XYFeed 150 ZFeed 150 N005 G01 X20 Y15 Z-10 ZFeed 75 N006 G01 X20 Y15 Z10 ZFeed 150 N007 G01 X50 Y15 Z10 ZFeed 150 N008 G01 X50 Y15 Z-10 ZFeed 75 N009 G01 X50 Y15 Z10 ZFeed 150 N010 G01 X50 Y45 Z10 ZFeed 150 N011 G01 X50 Y45 Z-10 ZFeed 75 N012 G01 X50 Y45 Z10 ZFeed 150 N013 M05 N014 M02 End Program