SlideShare a Scribd company logo
TITRIMETRIC ANALYSIS OF CHLORIDE
Introduction
The purpose of this experiment is to compare two titrimetric methods for the analysis of chloride in a
water-soluble solid. The two methods are:
• a weight titration method using a chemical indicator;
• a volumetric titration method using potentiometric detection.
The most important difference between the methods is how the endpoint is determined. In the first
case, the color change of the indicator signifies that the titration is complete, while the second method
generates a titration curve from which the endpoint is determined. For the potentiometric method, an
automatic titrator will be used to perform the titration, and to obtain the titration curve.
Background
Argentometric Titrations
In order for a titrimetric method to be viable, the titration reaction (1) must be complete (i.e., Ktitration is
large) and (2) should be rapid. There are many precipitation reactions that can satisfy the first
requirement, but far fewer that satisfy the second. Precipitation reactions of silver salts are usually quite
rapid, and so argentometric titrations, which use AgNO3 as the titrant, are the most common
precipitation titrations. Argentometric titrations can be used to analyze samples for the presence of a
number of anions that form precipitates with Ag+
; table 7-1 in Harris lists some of these.
Weight Titrations
The goal of any titrimetric method is to determine the number of moles of titrant needed to reach the
equivalence point of the titration reaction:
titration reaction aA + tT → product(s)
where a and t are the stoichiometric coefficients in the reaction between titrant and analyte. In a
titrimetric analysis, solution of titrant is added until the equivalence point of the titration reaction is
reached. At the equivalence point, neither analyte nor titrant is present in excess. By definition, the
equivalence point is the point during the titration at which the following relationship is true:
equivalence point
nA
a =
nT
t
where nA is the number of moles of analyte originally present in the sample solution, and nT is the
number of moles of titrant that must be added to the sample to reach the equivalence point.
From this last expression, we see that, in order to determine the number of moles of analyte originally
present in the sample solution, we must (a) know the stoichiometry of the reaction, and (b) determine
how many moles of titrant are needed to reach the endpoint. In order to meet this last requirement, we
must somehow keep track of the quantity of titrant solution that is added to the sample solution.
Page 1
In volumetric titrations, the volume of the titrant solution is used to calculate nT. By simple
dimensional analysis,
nT = mol T
vol soln
! vol added soln = CT ! VT
where CT is the concentration of the titrant solution in M, and VT is the volume of titrant solution
needed to reach the equivalence point.
By contrast, in weight titrations, the mass of the titrant solution is used to determine the value of nT:
nT = mol T
mass soln
! mass added soln = CT ! mT
where mT is the mass of titrant solution delivered to reach the equivalence point, and CT is the
concentration of the titrant solution in units of mol/kg. A concentration that is expressed in these units
is sometimes called the weight molarity of the solution1
, and is abbreviated MW. Note that, since for
most solutions 1 L ≈ 1 kg, the numeric values for molarity and weight molarity are similar.
In order to calculate the number of moles of analyte, nA, in the dissolved sample, the titration procedure
must consist of the following two steps:
1. Standardization, in which concentration of the titrant solution is determined. In weight titrimetry,
the concentration of titrant is determined in units of mol/kg.
2. Titration of sample(s), where the quantity of titrant solution that must be delivered to the sample
solution to reach the equivalence point is measured. In weight titrimetry, the mass of delivered
titrant solution is measured.
Endpoint Detection for Argentometric Titration
Another requirement of titrimetric analysis is that there must be some method of determining when the
titration reaction has reached its equivalence point. In this experiment, you will compare two methods
of endpoint detection, one using a chemical indicator and another using potentiometric detection. We
will now describe the common methods of endpoint detection for argentometric titrations.
Chemical Indicators
There are three common chemical indicators that are associated with argentometric titrations:
1. The chromate ion, CrO4
2−
(the Mohr method);
2. The ferric ion, Fe3+
(the Volhard method);
3. Adsorption indicators such as fluorescein (the Fajans method).
In this experiment, we will be using dichlorofluorescein, a Fajans (adsorption) indicator, to detect the
endpoint chemically; however, it is useful to briefly describe all three methods of endpoint detection.
Titrimetric Analysis Background
Page 2
1
the weight molarity is easy to confuse with another measure of concentration, the molality of the solution. Molality is
mass solute per mass solvent, while weight molarity is mass solute per mass solution. Both, however, have units of
mol/kg.
The Mohr Method
The Mohr method is based on the following reaction between the titrant and the indicator:
Mohr indicator reaction 2Ag+
+ CrO4
2−
! Ag2CrO4(s)
titrant indicator red precipitate
The concentration of titrant rises sharply near the equivalence point, and the solubility of Ag2CrO4 is
exceeded. The appearance of red precipitate marks the endpoint. The applicability of the Mohr method
is limited compared to either of the other chemical indicator methods: it can be used to analyze for Cl−
or Br−
anions.
The Volhard Method
The Volhard method of Ag+
determination is associated with argentometric titrations even though the
titrating agent is actually SCN−
:
Volhard titration rxn Ag+
+ SCN−
! AgSCN(s)
analyte titrant
The indicator in Volhard titrations is Fe3+
, which reacts with titrant to form a red colored complex:
Volhard indicator rxn Fe3+
+ SCN−
! Fe(SCN)2+
(aq)
indicator titrant red complex
This is a good method for the analysis of Ag+
in solution. We can extend the applicability of this
method to anions such as I−
through the procedure known as back-titration. A measured excess of Ag+
is added to the dissolved sample:
Ag+
+ I−
"""""! AgI(s)
excess analyte
reagent
After the precipitation of AgI is complete, the concentration of excess Ag+
titrant is determined by a
Volhard titration. The number of moles of I−
analyte originally present in the solution is easily
calculated:
# mol I−
= # mol Ag+
originally added to solution − # mol Ag+
as determined by Volhard titration
In a similar manner, the Volhard titration method can be used to analyze for a number of anions.
The Fajans Method
Adsorption indicators function in an entirely different manner than the chemical indicators described
thus far, and they can be used in many precipitation titrations, not just argentometric methods. Let’s
imagine that we wish to analyte Cl−
in a sample solution by titrating with Ag+
; the titration reaction
would be
Ag+
+ Cl−
! AgCl(s)
Silver chloride forms colloidal particles. Before the equivalence point, the surface of the precipitant
particles will be negatively charged due to the adsorption of excess Cl−
to the surface of the particles. A
Titrimetric Analysis Background
Page 3
diffuse positive counter-ion layer will surround the particles. When the equivalence point is reached,
there is no longer an excess of analyte Cl−
, and the surface of the colloidal particles are largely neutral.
After the equivalence point, there will be an excess of titrant Ag+
, some of these will adsorb to the solid
AgCl particles, which will now be surrounded by a diffuse negative counterion layer. The next figure
illustrates this concept.
before equiv. point after equiv. point
excess Cl analyte excess Ag titrant
surface charge: negative positive
titration
Adsorption indicators are dyes, such as dichlorofluorescein (shown below), that usually exist as anions
in the titration solution.
O O
Cl
O
Cl
COO-
dichlorofluoroscein
The doubly charged dichlorofluoroscein anion is attracted into the counterion layer immediately
following the equivalence point, when the surface charge of the particles changes from negative to
positive. For reasons that are not fully understood, the closer proximity of the dye to the particles
changes the color of the molecule, providing a visual indication of the titration endpoint. In the case of
dichlorofluorescein, the indicator changes to a pinkish color (see Harris color plate #2).
Potentiometric Endpoint Detection
The progress of the reaction as the titrant is added to the analyte solution can be followed
potentiometrically using an indicator electrode. A schematic for the general setup is shown in the next
figure.
Titrimetric Analysis Background
Page 4
Ecell
titrant added
to analyte
stir bar
indicator electrode
reference
electrode
The analyte solution is part of an electrochemical cell that can be represented by
reference electrode || analyte solution | indicator electrode
The reference electrode usually contains a liquid junction that completes the electrical circuit. The
potential of this cell can be written as
Ecell = Eind − Eref
where Eind is the half-cell potential at the indicator electrode due to species in the analyte solution and
Eref is the half-cell potential of the reference electrode. The reference electrode is chosen to be stable:
Eref is assumed to be constant during the titration. Any changes in measured cell potential are due to
changing species concentrations in the analyte solution.
Let’s imagine that we wish to monitor the course of the argentometric determination of Cl−
. The
titration curve in argentometric titrations is sometimes represented by a plot of p[Ag] vs added titrant,
and the curve should be sigmoidal in shape.
mass added titrant, g
pAg
Titrimetric Analysis Background
Page 5
We will now show that we observe the same sigmoidal shape if we plot Ecell instead of p[Ag] as the
x-axis, so long as we use the proper indicator electrode to measure Ecell. If we use a bare silver wire as
our indicator electrode, our electrochemical cell can be represented as
reference || Ag+
, Cl−
, AgCl(s) | Ag(s)
At the indicator electrode, the dissolved Ag+
will have a certain tendency towards reduction to the
silver metal:
Ag+
+ e−
! Ag(s) Eind
The potential of this half-reaction will depend on the concentration [Ag+
] in the analyte solution,
according to the Nernst equation:
Eind = Eind
0
− 0.0592
n logQ
Since n = 1 and Q = [Ag+
]−1
, we may write for this cell
Ecell = K + 0.0592 " log[Ag+
] = K − 0.0592 "p[Ag+
]
where K is a constant that accounts for various constant contributions to the cell potential, such as the
reference half-cell potential. Thus, as we see, the measured cell potential is directly related to p[Ag+
],
and can be used to follow the course of the titration reaction. A plot of Ecell vs added titrant will yield a
sigmoidal titration curve similar in appearance to the one in the previous figure. The endpoint, which is
usually taken as the inflection point of this curve, can be estimated from a plot of the first or second
derivative of the titration curve.
References
Titrimetry (general): Harris 7
Precipitation titrations: Harris 7.4-7.7
Titrimetric Analysis Background
Page 6
TITRIMETRIC ANALYSIS: Procedure
General
There is one titrator that is to be shared by everyone. You will use the titrator in order of your unknown
numbers (i.e., alphabetical order). While waiting for the titrator, you should proceed with the Fajans
titration described below.
By the time it is your turn to use the titrator, you should have your three titrator samples prepared and
ready to go (steps 1-3 on the next page). Each person will take 10-15 minutes to analyze their samples
with the titrator. If your samples are not ready when it is your turn, you will lose your place in “line!”
The first few people should prepare their titrator samples immediately, before beginning the Fajans
titration.
Handling of Titrant (AgNO3) Solution
Aqueous silver nitrate is photosensitive and should not be exposed to light any more than is necessary
during this procedure. It should be stored in darkened storage bottles, and be kept in your drawer
except when being used.
Fajans Method of Endpoint Detection
Chemicals and materials:
Silver Nitrate, 0.07 - 0.10 MW
Dextrin, 2%
Dichlorofluorescein, 0.1%
1. Dry the sample and NaCl primary standard for at least one hour at 110 °C. Cool in a desiccator.
2. Weigh by difference three 0.1 g samples of the pure NaCl (to the nearest 0.1 mg) into three separate
250 mL Erlenmeyer flasks. Weigh by difference three 0.1 g samples of the unknown sample into
another three 250 mL Erlenmeyer flasks. Add approximately 100 mL of deionized water to each of
the six beakers to dissolve the solid.
3. Add 5 mL of 2% dextrin solution and 10 drops of 0.1% dichlorofluorescein solution to the first
flask. The purpose of the dextrin solution is to stabilize the colloidal suspension of AgCl(s) formed
once the titration begins, and the dichlorofluorescein is the adsorption indicator.
4. Titrate with AgNO3 solution at a fairly rapid rate, using continuous swirling. When the rate of
fading of the pink color becomes slow, reduce the rate of addition to a drop-wise rate, swirl
constantly, and continuously observe the color of the suspension to detect the endpoint, which is a
change from a light peach color to a darker “Pepto Bismol” pink. Color plate 2 in Harris shows the
expected endpoint.
5. Repeat steps 3 and 4 for the other five flasks.
After completing your titrations, dispose of the AgCl(s) and titrating solutions by pouring them into the
waste bottles in the hood that are marked “AgCl(s)Waste.” Also return any unused titrant solution to
the instructor. Anything that contained AgNO3 should be rinsed thoroughly before being put away.
Page 7
Potentiometric Method of Endpoint Detection
Chemicals and materials:
Silver Nitrate, approximately 0.3 M
Nitric acid, 6 M
solid KNO3
1. Dry the sample for at least one hour at 110 °C. Cool in a desiccator.
2. Weigh three approximately 0.1 g samples of the “unknown” into your plastic titrator sample
beakers. The sample masses should be recorded to the nearest 0.0001g using the analytical
balances. Add 0.5 g potassium nitrate; this can be massed using the top-loader balances on the lab
benches.
3. Add about 40 mL of deionized water to each beaker and stir until dissolved. Rinse your stir rod into
the sample solution (i.e., you do not want any analyte chloride to leave the solution). Also add a
few drops of 6M nitric acid into each beaker.
4. You will titrate your sample solutions with the Mettler-Toledo DL58 titrator using a silver ring
indicator electrode to follow the progress of the titration. For your first sample, your instructor or a
TA will show you how to use the titrator.
5. Repeat the titration for your other samples. Be sure to wash the titrator thoroughly after each
titration. Dispose of the silver chloride waste in the appropriate container (found in the HOOD).
When you are finished, wash your titrator sample beakers thoroughly and rinse with deionized
water.
6. You will be provided with data from three titrations that were used to standardize the titrant
solution just prior to the experiment.
For each of your samples, the titrator will print out its estimate of the endpoint volume, as well as the
raw data (potential as a function of added titrant solution volume). Plot your titration curves and
include at least one of them as a figure in your lab report. Please turn in copies of your data and your
titration curves with your data sheet - this material is supplemental to your lab report.
Page 8
DATA SHEET: Fajans Method
Directions: fill in this sheet and turn it in with your lab report.
Name: Unknown #:
estimated analyte conc
(as a confidence interval)
1: g
2: g
1: g
2: g
1: g
2: g
Titration of sample
(1) initial mass titrant soln
(2) endpoint mass titrant soln
1: g
2: g
1: g
2: g
1: g
2: g
Titration of NaCl
(1) initial mass titrant soln
(2) endpoint mass titrant soln
1: g
2: g
1: g
2: g
1: g
2: g
dry sample mass
(by difference)
1: g
2: g
1: g
2: g
1: g
2: g
dry NaCl mass
(by difference)
CBA
DATA SHEET: Potentiometric Method
Directions: fill in this sheet and turn it in with your lab report. You should also turn in your titration
curves and your raw data (you can xerox the titrator printout). I do not need the standardization data - I
already have a copy. Also turn in plots of your titration curves with your data.
Name: Unknown #:
estimated analyte conc
(as a confidence interval)
Endpoint: Titration of sample, mL
Endpoint: Titration of NaCl, mL
(from handout)
1: g
2: g
1: g
2: g
1: g
2: g
dry sample mass
(by difference)
dry NaCl mass
(from handout)
CBA
Results from Hypothesis Testing
Conclusion
Observed value for F
Comparison of Precision of Methods
Conclusion
95% CI for d
Comparison of Accuracy of Methods
TITRIMETRIC ANALYSIS: Data Treatment
Effect of Standardization Measurement Error
A requirement for quantitative analysis by titration is that the titrant concentration is known. In many
cases, including this experiment, titrant solution concentration is itself determined (standardized) in a
separate set of titrations. The titrant concentration is thus subject to random measurement error
comparable in magnitude to that of the sample titration.
When calculating a confidence interval for the analyte concentration in your “unknown” sample, you
will have to use the titrant concentration. A propagation of error approach can be used to account for
the effect of standardization error on the final, calculated value for analyte concentration in the sample.
Let’s assume that you have one set of standardization titrations and another set of titrations of the
sample solution:
• from the standardization titrations, you calculate the mean titrant concentration, CT, and its standard
deviation (i.e., the standard error of the mean)
• from the endpoints of the sample solution titrations, you can calculate the mean analyte concentration,
, and its observed standard deviation, . This standard deviation does not include the effectCA sobs(CA)
of uncertainty in CT; it is calculated directly from the endpoint volumes of the sample titrations.
A propagation of error approach yields a value for RSDA, the true relative standard deviation of the
point estimate ( ) of analyte concentration.CA
RSDA
2
= RSDT
2
+ RSDobs
2
where andRSDT =
s(CT)
CT
RSDobs =
sobs(CA)
CA
Note: assume that the value you calculate from this procedure contains 2 degrees of freedom. Although
this is not strictly true, it is a conservative estimate of the true degrees of freedom contained in the
estimate of standard error.
Comparison of the Accuracy and Precision of Titration Methods
One of the primary goals of this experiment is to compare the ability of two titrimetric methods –
weight titration with chemical indicator, and volumetric titration with potentiometric detection – to
measure the chloride content of a soluble, solid sample. In particular, it would be meaningful to
compare the relative accuracy and precision of the two methods.
For each method in this experiment, you essentially obtain two results (which you combine into a
confidence interval):
• a point estimate of the analyte concentration, which represents your best estimate of the true analyte
concentration. In this case, the point estimate will be the mean of three independent measurements.
The difference between the point estimate and the true analyte concentration is a measure of the
accuracy of the method.
Page 11
• the standard error of your point estimate: the standard deviation of the mean of three independent
measurements (corrected for standardization error, as explained above). The magnitude of the
standard error indicates the precision of the method.
Statistical theory provides a procedure, called hypothesis testing, that can be used to objectively
compare the accuracy and precision of the two methods in this experiment. You will need to apply this
procedure to your results. Hypothesis testing is discussed at length in Chemistry 300, but a very brief
summary will be given here of procedures that you may use (since the Full Report for this experiment
may be due before the subject is covered!). More detail on hypothesis testing is given in the lecture
notes for Chemistry 300.
Comparison of Accuracy
Concerning the accuracy of the two titrimetric methods, there are three general possibilities:
1. Neither method gives biased estimates of analyte concentration;
2. One method is biased but the other is not;
3. Both methods are biased.
In order to determine if bias exists, the true analyte concentration must be known. Since it isn’t (to you,
anyway!), all you can do is compare the bias of the two methods. A relatively simple procedure for
doing this is as follows.
Let’s define a random variable d, as the difference between the point estimates for the analyte
concentration obtained from the indicator and potentiometric methods:
d = Cind − Cpot
This value is the difference between two random variables, and so it too must be a random variable.
Use error propagation to calculate the standard deviation of the difference, sd, and then calculate a 95%
confidence interval for µd (assume d is normally distributed, and 2 degrees of freedom in sd). If the
confidence interval does not contain zero, then there is at least a 95% probability that there is a
statistically significant difference in the bias of the two methods. That means that either possibility #1
(only one of the methods has bias) or #3 (both methods have bias, but of different magnitude) must be
true.
Comparison of Precision
Let’s define a random variable F as follows:
F =
seA
2
seB
2
where seA and seB are the standard errors of the point estimates obtained using titrimetric method A and
method B. Which method is A and which B? You should choose them so that the ratio of the squared
standard errors is a value greater than one (F > 1). In other words, method A is the one with the larger
standard error.
Page 12
Titrimetric Analysis Data Treatment
The value F is the ratio of two sample statistics, so it is a random variable. If the measurement
precision of the two methods is the same, then the population mean of this variable should be equal to
one (i.e., µF = 1 if σA = σB). Values of F that are much larger than one suggest that perhaps method A is
less precise than method B.
Hypothesis testing allows us to determine what the “cutoff point” (the critical value) should be before
we can consider one method to be definitely less precise than the other. For this experiment, the critical
value for this hypothesis test is 39.0. If F > 39.0, then there is at least a 95% probability that the
precision of method A is worse than that of method B.
Why is the critical value so large? The reason is that there are only two degrees of freedom in our
standard error values, so that there is a lot of uncertainty in both seA and seB (and even more in their
ratio). So it will be very hard to “prove” a difference in precision for this experiment. If you wanted to
get a smaller value for the critical value, more degrees of freedom (i.e., more measurements) are
needed. For example, with six measurements for each method, the critical value would be 7.15.
“Within-Student” and “Between-Student” Variability
When comparing precision, you should be aware of the difference between what we can call
“within-student” and “between-student” sources of random error. We can illustrate the difference
between these sources by considering a titration using a chemical indicator (like the Fajans method):
• within-student variability will be due to the uncertainty a single student experiences in determining
the color change from sample to sample. This source of variability is reflected in the spread of each
student’s measurements about the mean.
• between-student variability is due to the fact that different students will interpret the endpoint color
slightly differently. This source of variability is reflected in the spread of the measurement errors of
all the students in the class.
The difference between these sources of variability is almost certainly quite significant for the Fajans
method – there will be much more between-student variabilty than within-student variability. There is
probably not too great a difference in the case of the potentiometric method, though.
Since you won’t have access to the data of your classmates when you write this laboratory report, there
is not much you can do to assess the true variability of the Fajans method. You should be aware the you
are actually comparing “between-student” variability when you compare the precision of your point
estimates.
Page 13
Titrimetric Analysis Data Treatment

More Related Content

What's hot

Argentometric Titration
Argentometric TitrationArgentometric Titration
Argentometric Titration
Nabilah Kinanti
 
Theory of Acid-base Indicators and Acid-base Titration Curves
Theory of Acid-base Indicators and Acid-base Titration CurvesTheory of Acid-base Indicators and Acid-base Titration Curves
Theory of Acid-base Indicators and Acid-base Titration Curves
Sajjad Ullah
 
LU7: Acid-Base Titrations
LU7: Acid-Base Titrations LU7: Acid-Base Titrations
LU7: Acid-Base Titrations Fizan Chee
 
Precipitation titrations
Precipitation titrationsPrecipitation titrations
Precipitation titrations
Suresh Selvaraj
 
Volhard Method
Volhard  MethodVolhard  Method
Volhard Method
rawaabdullah
 
Titrimetric analysis
Titrimetric analysisTitrimetric analysis
Titrimetric analysis
Dhanashree Kad
 
Conductometric titration
Conductometric titrationConductometric titration
Conductometric titration
Rabia Aziz
 
Precipitation Titration
Precipitation TitrationPrecipitation Titration
Precipitation TitrationAshikur Rahman
 
Iodometry & Iodimetry
Iodometry & IodimetryIodometry & Iodimetry
Iodometry & Iodimetry
Joyshankar Baidya
 
Volumetric Analysis ( Titrimetric analysis) or Titration
Volumetric Analysis ( Titrimetric analysis) or TitrationVolumetric Analysis ( Titrimetric analysis) or Titration
Volumetric Analysis ( Titrimetric analysis) or Titration
Aman Kakne
 
Error in chemical analysis
Error in chemical analysisError in chemical analysis
Error in chemical analysis
Suresh Selvaraj
 
limit test for lead
limit test for leadlimit test for lead
limit test for lead
TAUFIK MULLA
 
Argentometric titration
Argentometric titrationArgentometric titration
Argentometric titration
Zainab&Sons
 
Types of titrations
Types of titrationsTypes of titrations
Types of titrations
Suresh Selvaraj
 
Oxidation and reduction titration
Oxidation and reduction titrationOxidation and reduction titration
Oxidation and reduction titration
Sai Datri Arige
 
Errors - pharmaceutical analysis -1
Errors -  pharmaceutical analysis -1Errors -  pharmaceutical analysis -1
Errors - pharmaceutical analysis -1
Kumaran Rx
 
Diazotization titrations
Diazotization titrationsDiazotization titrations
Diazotization titrations
rdeepthi1
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
meraj khan
 
Volumetric analysis ppt
Volumetric analysis pptVolumetric analysis ppt
Volumetric analysis ppt
ShivshankarMore1
 
2. volumetric analysis
2. volumetric analysis2. volumetric analysis
2. volumetric analysis
NikithaGopalpet
 

What's hot (20)

Argentometric Titration
Argentometric TitrationArgentometric Titration
Argentometric Titration
 
Theory of Acid-base Indicators and Acid-base Titration Curves
Theory of Acid-base Indicators and Acid-base Titration CurvesTheory of Acid-base Indicators and Acid-base Titration Curves
Theory of Acid-base Indicators and Acid-base Titration Curves
 
LU7: Acid-Base Titrations
LU7: Acid-Base Titrations LU7: Acid-Base Titrations
LU7: Acid-Base Titrations
 
Precipitation titrations
Precipitation titrationsPrecipitation titrations
Precipitation titrations
 
Volhard Method
Volhard  MethodVolhard  Method
Volhard Method
 
Titrimetric analysis
Titrimetric analysisTitrimetric analysis
Titrimetric analysis
 
Conductometric titration
Conductometric titrationConductometric titration
Conductometric titration
 
Precipitation Titration
Precipitation TitrationPrecipitation Titration
Precipitation Titration
 
Iodometry & Iodimetry
Iodometry & IodimetryIodometry & Iodimetry
Iodometry & Iodimetry
 
Volumetric Analysis ( Titrimetric analysis) or Titration
Volumetric Analysis ( Titrimetric analysis) or TitrationVolumetric Analysis ( Titrimetric analysis) or Titration
Volumetric Analysis ( Titrimetric analysis) or Titration
 
Error in chemical analysis
Error in chemical analysisError in chemical analysis
Error in chemical analysis
 
limit test for lead
limit test for leadlimit test for lead
limit test for lead
 
Argentometric titration
Argentometric titrationArgentometric titration
Argentometric titration
 
Types of titrations
Types of titrationsTypes of titrations
Types of titrations
 
Oxidation and reduction titration
Oxidation and reduction titrationOxidation and reduction titration
Oxidation and reduction titration
 
Errors - pharmaceutical analysis -1
Errors -  pharmaceutical analysis -1Errors -  pharmaceutical analysis -1
Errors - pharmaceutical analysis -1
 
Diazotization titrations
Diazotization titrationsDiazotization titrations
Diazotization titrations
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
 
Volumetric analysis ppt
Volumetric analysis pptVolumetric analysis ppt
Volumetric analysis ppt
 
2. volumetric analysis
2. volumetric analysis2. volumetric analysis
2. volumetric analysis
 

Viewers also liked

Volhard`s Method
Volhard`s MethodVolhard`s Method
Volhard`s MethodAimun Altaf
 
Mohr method
Mohr methodMohr method
Mohr method
Mehedi Hassan Jahid
 
Complexometric titrations
Complexometric titrationsComplexometric titrations
Complexometric titrations
Obydulla (Al Mamun)
 
Complexomety in analytical study
Complexomety  in analytical studyComplexomety  in analytical study
Complexomety in analytical study
P.K. Mani
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
Azhar_Ansari
 
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor NetworksPairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
IDES Editor
 
How to find out whether a given number is Prime or not
How to find out whether a given number is Prime or notHow to find out whether a given number is Prime or not
How to find out whether a given number is Prime or not
burgess87
 
Argentometri 110829173557
Argentometri 110829173557Argentometri 110829173557
Argentometri 110829173557Indriati Dewi
 
Argentometri
ArgentometriArgentometri
Argentometri
Dhanti Utari
 
Prime Number
Prime NumberPrime Number
Prime Number
Arddhendu Dash
 
titrasi pengendapan Argentometri
titrasi pengendapan Argentometri titrasi pengendapan Argentometri
titrasi pengendapan Argentometri
Afif Randika
 
Non-aqueous Titration
Non-aqueous TitrationNon-aqueous Titration
Non-aqueous Titrationshubhambossu
 
Functions of fatty acids
Functions of fatty acidsFunctions of fatty acids
Functions of fatty acids
Dr. Waqas Nawaz
 
Volhard method
Volhard methodVolhard method
Volhard method
Mehedi Hassan Jahid
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
Wolkite University
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFTSANTHANAM V
 
Rate Of Reaction
Rate Of ReactionRate Of Reaction
Rate Of Reaction
Andromendas Rizal
 
2 Redox Titrations
2 Redox Titrations2 Redox Titrations
2 Redox Titrationsjanetra
 

Viewers also liked (20)

Volhard`s Method
Volhard`s MethodVolhard`s Method
Volhard`s Method
 
Mohr method
Mohr methodMohr method
Mohr method
 
Complexometric titrations
Complexometric titrationsComplexometric titrations
Complexometric titrations
 
Complexomety in analytical study
Complexomety  in analytical studyComplexomety  in analytical study
Complexomety in analytical study
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor NetworksPairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
Pairwise Keys Generation Using Prime Number Function in Wireless Sensor Networks
 
How to find out whether a given number is Prime or not
How to find out whether a given number is Prime or notHow to find out whether a given number is Prime or not
How to find out whether a given number is Prime or not
 
Argentometri 110829173557
Argentometri 110829173557Argentometri 110829173557
Argentometri 110829173557
 
Chapter13
Chapter13Chapter13
Chapter13
 
Argentometri
ArgentometriArgentometri
Argentometri
 
Prime Number
Prime NumberPrime Number
Prime Number
 
titrasi pengendapan Argentometri
titrasi pengendapan Argentometri titrasi pengendapan Argentometri
titrasi pengendapan Argentometri
 
Non-aqueous Titration
Non-aqueous TitrationNon-aqueous Titration
Non-aqueous Titration
 
Functions of fatty acids
Functions of fatty acidsFunctions of fatty acids
Functions of fatty acids
 
Volhard method
Volhard methodVolhard method
Volhard method
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
 
Rate Of Reaction
Rate Of ReactionRate Of Reaction
Rate Of Reaction
 
2 Redox Titrations
2 Redox Titrations2 Redox Titrations
2 Redox Titrations
 

Similar to Argentometric titration

Titrimetric Methods
Titrimetric Methods Titrimetric Methods
Titrimetric Methods
Shoshi Prasad Shil
 
CH13.ppt
CH13.pptCH13.ppt
Which titration technique is best fit to detect what type of analyte?
Which titration technique is best fit to detect what type of analyte?Which titration technique is best fit to detect what type of analyte?
Which titration technique is best fit to detect what type of analyte?
Zubayar Rahman
 
Titration analysis Introduction and calculation
Titration analysis Introduction and calculationTitration analysis Introduction and calculation
Titration analysis Introduction and calculation
Mhelvene1
 
Scanned with CamScanner1 STANDARIZATION OF A B.docx
Scanned with CamScanner1 STANDARIZATION OF A B.docxScanned with CamScanner1 STANDARIZATION OF A B.docx
Scanned with CamScanner1 STANDARIZATION OF A B.docx
todd331
 
Volumetric Analysis.pptx
Volumetric Analysis.pptxVolumetric Analysis.pptx
Volumetric Analysis.pptx
NoorulAin480005
 
Titrimetric analysis of drugs based on 1) neutralization 2)Hydrolysis 3)Oxid...
Titrimetric analysis of drugs based on  1) neutralization 2)Hydrolysis 3)Oxid...Titrimetric analysis of drugs based on  1) neutralization 2)Hydrolysis 3)Oxid...
Titrimetric analysis of drugs based on 1) neutralization 2)Hydrolysis 3)Oxid...
KomalYaqoob4
 
Basic of titration
Basic of titrationBasic of titration
Basic of titration
Chia Siew Lian
 
Volumetric analysis
Volumetric analysisVolumetric analysis
Volumetric analysis
ShaliniBarad
 
Acidimetry And Alkalimetry
Acidimetry And AlkalimetryAcidimetry And Alkalimetry
Acidimetry And Alkalimetry
Amanda Summers
 
What is the Rate Law for the Crystal Violet Reaction327-43.docx
What is the Rate Law for the Crystal Violet Reaction327-43.docxWhat is the Rate Law for the Crystal Violet Reaction327-43.docx
What is the Rate Law for the Crystal Violet Reaction327-43.docx
alanfhall8953
 
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
lyrabucayo861
 
NCHE 211 UNIT 2 VOLUMETRY and Complexometry titration.pdf
NCHE 211  UNIT 2 VOLUMETRY and Complexometry titration.pdfNCHE 211  UNIT 2 VOLUMETRY and Complexometry titration.pdf
NCHE 211 UNIT 2 VOLUMETRY and Complexometry titration.pdf
KagisoEagle
 
Volumetric analysis
Volumetric analysisVolumetric analysis
Volumetric analysis
Md Altamash Ahmad
 
DONDUCTOMETRIC TITRATION.
DONDUCTOMETRIC TITRATION.DONDUCTOMETRIC TITRATION.
DONDUCTOMETRIC TITRATION.
PallaviKadam
 
Qc pharmceutical
Qc pharmceuticalQc pharmceutical
Qc pharmceutical
Ahmed Mahmoud (LSSGB,TQM)
 
Titration
TitrationTitration
Titration
SHRUTHISHETTY57
 
Analytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurementsAnalytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurements
Sa'ib J. Khouri
 
slow reaction
slow reactionslow reaction
slow reaction
MD MITHU MIA
 

Similar to Argentometric titration (20)

Titrimetric Methods
Titrimetric Methods Titrimetric Methods
Titrimetric Methods
 
CH13.ppt
CH13.pptCH13.ppt
CH13.ppt
 
Which titration technique is best fit to detect what type of analyte?
Which titration technique is best fit to detect what type of analyte?Which titration technique is best fit to detect what type of analyte?
Which titration technique is best fit to detect what type of analyte?
 
Titration analysis Introduction and calculation
Titration analysis Introduction and calculationTitration analysis Introduction and calculation
Titration analysis Introduction and calculation
 
Scanned with CamScanner1 STANDARIZATION OF A B.docx
Scanned with CamScanner1 STANDARIZATION OF A B.docxScanned with CamScanner1 STANDARIZATION OF A B.docx
Scanned with CamScanner1 STANDARIZATION OF A B.docx
 
Volumetric Analysis.pptx
Volumetric Analysis.pptxVolumetric Analysis.pptx
Volumetric Analysis.pptx
 
Titrimetric analysis of drugs based on 1) neutralization 2)Hydrolysis 3)Oxid...
Titrimetric analysis of drugs based on  1) neutralization 2)Hydrolysis 3)Oxid...Titrimetric analysis of drugs based on  1) neutralization 2)Hydrolysis 3)Oxid...
Titrimetric analysis of drugs based on 1) neutralization 2)Hydrolysis 3)Oxid...
 
Basic of titration
Basic of titrationBasic of titration
Basic of titration
 
Volumetric analysis
Volumetric analysisVolumetric analysis
Volumetric analysis
 
Acidimetry And Alkalimetry
Acidimetry And AlkalimetryAcidimetry And Alkalimetry
Acidimetry And Alkalimetry
 
What is the Rate Law for the Crystal Violet Reaction327-43.docx
What is the Rate Law for the Crystal Violet Reaction327-43.docxWhat is the Rate Law for the Crystal Violet Reaction327-43.docx
What is the Rate Law for the Crystal Violet Reaction327-43.docx
 
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
7-VOLUMETRIC-ANALYSIS POWERPOINT PRESENTATION
 
NCHE 211 UNIT 2 VOLUMETRY and Complexometry titration.pdf
NCHE 211  UNIT 2 VOLUMETRY and Complexometry titration.pdfNCHE 211  UNIT 2 VOLUMETRY and Complexometry titration.pdf
NCHE 211 UNIT 2 VOLUMETRY and Complexometry titration.pdf
 
Volumetric analysis
Volumetric analysisVolumetric analysis
Volumetric analysis
 
Experiment5 chem210
Experiment5 chem210Experiment5 chem210
Experiment5 chem210
 
DONDUCTOMETRIC TITRATION.
DONDUCTOMETRIC TITRATION.DONDUCTOMETRIC TITRATION.
DONDUCTOMETRIC TITRATION.
 
Qc pharmceutical
Qc pharmceuticalQc pharmceutical
Qc pharmceutical
 
Titration
TitrationTitration
Titration
 
Analytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurementsAnalytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurements
 
slow reaction
slow reactionslow reaction
slow reaction
 

More from XINYOUWANZ

2 rancang bangun ekonomi islam
2 rancang bangun ekonomi islam2 rancang bangun ekonomi islam
2 rancang bangun ekonomi islamXINYOUWANZ
 
Tugas akuntansi internasional
Tugas akuntansi internasionalTugas akuntansi internasional
Tugas akuntansi internasionalXINYOUWANZ
 
Laporan keuangan neraca
Laporan keuangan neracaLaporan keuangan neraca
Laporan keuangan neracaXINYOUWANZ
 
Performance assessment
Performance assessmentPerformance assessment
Performance assessmentXINYOUWANZ
 
Motivation and job satisfaction
Motivation and job satisfactionMotivation and job satisfaction
Motivation and job satisfactionXINYOUWANZ
 
052173276 x insect species conservation 2
052173276 x insect species conservation 2052173276 x insect species conservation 2
052173276 x insect species conservation 2XINYOUWANZ
 
Bio chemistrytheory
Bio chemistrytheoryBio chemistrytheory
Bio chemistrytheoryXINYOUWANZ
 
Laporan praktikum fisiologi hewan
Laporan praktikum fisiologi hewanLaporan praktikum fisiologi hewan
Laporan praktikum fisiologi hewanXINYOUWANZ
 
Klasifikasi hewan
Klasifikasi hewanKlasifikasi hewan
Klasifikasi hewanXINYOUWANZ
 
Sistem ekskresi
Sistem ekskresiSistem ekskresi
Sistem ekskresiXINYOUWANZ
 
2 mitosis & meiosis
2 mitosis & meiosis2 mitosis & meiosis
2 mitosis & meiosis
XINYOUWANZ
 
Percobaan magnet
Percobaan magnetPercobaan magnet
Percobaan magnetXINYOUWANZ
 
Skripsi ata
Skripsi ataSkripsi ata
Skripsi ata
XINYOUWANZ
 
Makalah nata _pdf
Makalah nata _pdfMakalah nata _pdf
Makalah nata _pdfXINYOUWANZ
 
English article-gopalakrishna-cftri
English article-gopalakrishna-cftriEnglish article-gopalakrishna-cftri
English article-gopalakrishna-cftriXINYOUWANZ
 
Formulasi virgin coconut oil dalam bentuk
Formulasi virgin coconut oil dalam bentukFormulasi virgin coconut oil dalam bentuk
Formulasi virgin coconut oil dalam bentukXINYOUWANZ
 

More from XINYOUWANZ (20)

2 rancang bangun ekonomi islam
2 rancang bangun ekonomi islam2 rancang bangun ekonomi islam
2 rancang bangun ekonomi islam
 
Tugas akuntansi internasional
Tugas akuntansi internasionalTugas akuntansi internasional
Tugas akuntansi internasional
 
Laporan keuangan neraca
Laporan keuangan neracaLaporan keuangan neraca
Laporan keuangan neraca
 
Revisi bab iv
Revisi bab ivRevisi bab iv
Revisi bab iv
 
Performance assessment
Performance assessmentPerformance assessment
Performance assessment
 
Si pemasaran
Si pemasaranSi pemasaran
Si pemasaran
 
Motivation and job satisfaction
Motivation and job satisfactionMotivation and job satisfaction
Motivation and job satisfaction
 
052173276 x insect species conservation 2
052173276 x insect species conservation 2052173276 x insect species conservation 2
052173276 x insect species conservation 2
 
Bio chemistrytheory
Bio chemistrytheoryBio chemistrytheory
Bio chemistrytheory
 
Konsep dasar
Konsep dasarKonsep dasar
Konsep dasar
 
Laporan praktikum fisiologi hewan
Laporan praktikum fisiologi hewanLaporan praktikum fisiologi hewan
Laporan praktikum fisiologi hewan
 
Klasifikasi hewan
Klasifikasi hewanKlasifikasi hewan
Klasifikasi hewan
 
Sistem ekskresi
Sistem ekskresiSistem ekskresi
Sistem ekskresi
 
2 mitosis & meiosis
2 mitosis & meiosis2 mitosis & meiosis
2 mitosis & meiosis
 
Percobaan magnet
Percobaan magnetPercobaan magnet
Percobaan magnet
 
Skripsi ata
Skripsi ataSkripsi ata
Skripsi ata
 
Makalah nata _pdf
Makalah nata _pdfMakalah nata _pdf
Makalah nata _pdf
 
English article-gopalakrishna-cftri
English article-gopalakrishna-cftriEnglish article-gopalakrishna-cftri
English article-gopalakrishna-cftri
 
Coconut oil
Coconut oilCoconut oil
Coconut oil
 
Formulasi virgin coconut oil dalam bentuk
Formulasi virgin coconut oil dalam bentukFormulasi virgin coconut oil dalam bentuk
Formulasi virgin coconut oil dalam bentuk
 

Recently uploaded

From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 

Recently uploaded (20)

From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 

Argentometric titration

  • 1. TITRIMETRIC ANALYSIS OF CHLORIDE Introduction The purpose of this experiment is to compare two titrimetric methods for the analysis of chloride in a water-soluble solid. The two methods are: • a weight titration method using a chemical indicator; • a volumetric titration method using potentiometric detection. The most important difference between the methods is how the endpoint is determined. In the first case, the color change of the indicator signifies that the titration is complete, while the second method generates a titration curve from which the endpoint is determined. For the potentiometric method, an automatic titrator will be used to perform the titration, and to obtain the titration curve. Background Argentometric Titrations In order for a titrimetric method to be viable, the titration reaction (1) must be complete (i.e., Ktitration is large) and (2) should be rapid. There are many precipitation reactions that can satisfy the first requirement, but far fewer that satisfy the second. Precipitation reactions of silver salts are usually quite rapid, and so argentometric titrations, which use AgNO3 as the titrant, are the most common precipitation titrations. Argentometric titrations can be used to analyze samples for the presence of a number of anions that form precipitates with Ag+ ; table 7-1 in Harris lists some of these. Weight Titrations The goal of any titrimetric method is to determine the number of moles of titrant needed to reach the equivalence point of the titration reaction: titration reaction aA + tT → product(s) where a and t are the stoichiometric coefficients in the reaction between titrant and analyte. In a titrimetric analysis, solution of titrant is added until the equivalence point of the titration reaction is reached. At the equivalence point, neither analyte nor titrant is present in excess. By definition, the equivalence point is the point during the titration at which the following relationship is true: equivalence point nA a = nT t where nA is the number of moles of analyte originally present in the sample solution, and nT is the number of moles of titrant that must be added to the sample to reach the equivalence point. From this last expression, we see that, in order to determine the number of moles of analyte originally present in the sample solution, we must (a) know the stoichiometry of the reaction, and (b) determine how many moles of titrant are needed to reach the endpoint. In order to meet this last requirement, we must somehow keep track of the quantity of titrant solution that is added to the sample solution. Page 1
  • 2. In volumetric titrations, the volume of the titrant solution is used to calculate nT. By simple dimensional analysis, nT = mol T vol soln ! vol added soln = CT ! VT where CT is the concentration of the titrant solution in M, and VT is the volume of titrant solution needed to reach the equivalence point. By contrast, in weight titrations, the mass of the titrant solution is used to determine the value of nT: nT = mol T mass soln ! mass added soln = CT ! mT where mT is the mass of titrant solution delivered to reach the equivalence point, and CT is the concentration of the titrant solution in units of mol/kg. A concentration that is expressed in these units is sometimes called the weight molarity of the solution1 , and is abbreviated MW. Note that, since for most solutions 1 L ≈ 1 kg, the numeric values for molarity and weight molarity are similar. In order to calculate the number of moles of analyte, nA, in the dissolved sample, the titration procedure must consist of the following two steps: 1. Standardization, in which concentration of the titrant solution is determined. In weight titrimetry, the concentration of titrant is determined in units of mol/kg. 2. Titration of sample(s), where the quantity of titrant solution that must be delivered to the sample solution to reach the equivalence point is measured. In weight titrimetry, the mass of delivered titrant solution is measured. Endpoint Detection for Argentometric Titration Another requirement of titrimetric analysis is that there must be some method of determining when the titration reaction has reached its equivalence point. In this experiment, you will compare two methods of endpoint detection, one using a chemical indicator and another using potentiometric detection. We will now describe the common methods of endpoint detection for argentometric titrations. Chemical Indicators There are three common chemical indicators that are associated with argentometric titrations: 1. The chromate ion, CrO4 2− (the Mohr method); 2. The ferric ion, Fe3+ (the Volhard method); 3. Adsorption indicators such as fluorescein (the Fajans method). In this experiment, we will be using dichlorofluorescein, a Fajans (adsorption) indicator, to detect the endpoint chemically; however, it is useful to briefly describe all three methods of endpoint detection. Titrimetric Analysis Background Page 2 1 the weight molarity is easy to confuse with another measure of concentration, the molality of the solution. Molality is mass solute per mass solvent, while weight molarity is mass solute per mass solution. Both, however, have units of mol/kg.
  • 3. The Mohr Method The Mohr method is based on the following reaction between the titrant and the indicator: Mohr indicator reaction 2Ag+ + CrO4 2− ! Ag2CrO4(s) titrant indicator red precipitate The concentration of titrant rises sharply near the equivalence point, and the solubility of Ag2CrO4 is exceeded. The appearance of red precipitate marks the endpoint. The applicability of the Mohr method is limited compared to either of the other chemical indicator methods: it can be used to analyze for Cl− or Br− anions. The Volhard Method The Volhard method of Ag+ determination is associated with argentometric titrations even though the titrating agent is actually SCN− : Volhard titration rxn Ag+ + SCN− ! AgSCN(s) analyte titrant The indicator in Volhard titrations is Fe3+ , which reacts with titrant to form a red colored complex: Volhard indicator rxn Fe3+ + SCN− ! Fe(SCN)2+ (aq) indicator titrant red complex This is a good method for the analysis of Ag+ in solution. We can extend the applicability of this method to anions such as I− through the procedure known as back-titration. A measured excess of Ag+ is added to the dissolved sample: Ag+ + I− """""! AgI(s) excess analyte reagent After the precipitation of AgI is complete, the concentration of excess Ag+ titrant is determined by a Volhard titration. The number of moles of I− analyte originally present in the solution is easily calculated: # mol I− = # mol Ag+ originally added to solution − # mol Ag+ as determined by Volhard titration In a similar manner, the Volhard titration method can be used to analyze for a number of anions. The Fajans Method Adsorption indicators function in an entirely different manner than the chemical indicators described thus far, and they can be used in many precipitation titrations, not just argentometric methods. Let’s imagine that we wish to analyte Cl− in a sample solution by titrating with Ag+ ; the titration reaction would be Ag+ + Cl− ! AgCl(s) Silver chloride forms colloidal particles. Before the equivalence point, the surface of the precipitant particles will be negatively charged due to the adsorption of excess Cl− to the surface of the particles. A Titrimetric Analysis Background Page 3
  • 4. diffuse positive counter-ion layer will surround the particles. When the equivalence point is reached, there is no longer an excess of analyte Cl− , and the surface of the colloidal particles are largely neutral. After the equivalence point, there will be an excess of titrant Ag+ , some of these will adsorb to the solid AgCl particles, which will now be surrounded by a diffuse negative counterion layer. The next figure illustrates this concept. before equiv. point after equiv. point excess Cl analyte excess Ag titrant surface charge: negative positive titration Adsorption indicators are dyes, such as dichlorofluorescein (shown below), that usually exist as anions in the titration solution. O O Cl O Cl COO- dichlorofluoroscein The doubly charged dichlorofluoroscein anion is attracted into the counterion layer immediately following the equivalence point, when the surface charge of the particles changes from negative to positive. For reasons that are not fully understood, the closer proximity of the dye to the particles changes the color of the molecule, providing a visual indication of the titration endpoint. In the case of dichlorofluorescein, the indicator changes to a pinkish color (see Harris color plate #2). Potentiometric Endpoint Detection The progress of the reaction as the titrant is added to the analyte solution can be followed potentiometrically using an indicator electrode. A schematic for the general setup is shown in the next figure. Titrimetric Analysis Background Page 4
  • 5. Ecell titrant added to analyte stir bar indicator electrode reference electrode The analyte solution is part of an electrochemical cell that can be represented by reference electrode || analyte solution | indicator electrode The reference electrode usually contains a liquid junction that completes the electrical circuit. The potential of this cell can be written as Ecell = Eind − Eref where Eind is the half-cell potential at the indicator electrode due to species in the analyte solution and Eref is the half-cell potential of the reference electrode. The reference electrode is chosen to be stable: Eref is assumed to be constant during the titration. Any changes in measured cell potential are due to changing species concentrations in the analyte solution. Let’s imagine that we wish to monitor the course of the argentometric determination of Cl− . The titration curve in argentometric titrations is sometimes represented by a plot of p[Ag] vs added titrant, and the curve should be sigmoidal in shape. mass added titrant, g pAg Titrimetric Analysis Background Page 5
  • 6. We will now show that we observe the same sigmoidal shape if we plot Ecell instead of p[Ag] as the x-axis, so long as we use the proper indicator electrode to measure Ecell. If we use a bare silver wire as our indicator electrode, our electrochemical cell can be represented as reference || Ag+ , Cl− , AgCl(s) | Ag(s) At the indicator electrode, the dissolved Ag+ will have a certain tendency towards reduction to the silver metal: Ag+ + e− ! Ag(s) Eind The potential of this half-reaction will depend on the concentration [Ag+ ] in the analyte solution, according to the Nernst equation: Eind = Eind 0 − 0.0592 n logQ Since n = 1 and Q = [Ag+ ]−1 , we may write for this cell Ecell = K + 0.0592 " log[Ag+ ] = K − 0.0592 "p[Ag+ ] where K is a constant that accounts for various constant contributions to the cell potential, such as the reference half-cell potential. Thus, as we see, the measured cell potential is directly related to p[Ag+ ], and can be used to follow the course of the titration reaction. A plot of Ecell vs added titrant will yield a sigmoidal titration curve similar in appearance to the one in the previous figure. The endpoint, which is usually taken as the inflection point of this curve, can be estimated from a plot of the first or second derivative of the titration curve. References Titrimetry (general): Harris 7 Precipitation titrations: Harris 7.4-7.7 Titrimetric Analysis Background Page 6
  • 7. TITRIMETRIC ANALYSIS: Procedure General There is one titrator that is to be shared by everyone. You will use the titrator in order of your unknown numbers (i.e., alphabetical order). While waiting for the titrator, you should proceed with the Fajans titration described below. By the time it is your turn to use the titrator, you should have your three titrator samples prepared and ready to go (steps 1-3 on the next page). Each person will take 10-15 minutes to analyze their samples with the titrator. If your samples are not ready when it is your turn, you will lose your place in “line!” The first few people should prepare their titrator samples immediately, before beginning the Fajans titration. Handling of Titrant (AgNO3) Solution Aqueous silver nitrate is photosensitive and should not be exposed to light any more than is necessary during this procedure. It should be stored in darkened storage bottles, and be kept in your drawer except when being used. Fajans Method of Endpoint Detection Chemicals and materials: Silver Nitrate, 0.07 - 0.10 MW Dextrin, 2% Dichlorofluorescein, 0.1% 1. Dry the sample and NaCl primary standard for at least one hour at 110 °C. Cool in a desiccator. 2. Weigh by difference three 0.1 g samples of the pure NaCl (to the nearest 0.1 mg) into three separate 250 mL Erlenmeyer flasks. Weigh by difference three 0.1 g samples of the unknown sample into another three 250 mL Erlenmeyer flasks. Add approximately 100 mL of deionized water to each of the six beakers to dissolve the solid. 3. Add 5 mL of 2% dextrin solution and 10 drops of 0.1% dichlorofluorescein solution to the first flask. The purpose of the dextrin solution is to stabilize the colloidal suspension of AgCl(s) formed once the titration begins, and the dichlorofluorescein is the adsorption indicator. 4. Titrate with AgNO3 solution at a fairly rapid rate, using continuous swirling. When the rate of fading of the pink color becomes slow, reduce the rate of addition to a drop-wise rate, swirl constantly, and continuously observe the color of the suspension to detect the endpoint, which is a change from a light peach color to a darker “Pepto Bismol” pink. Color plate 2 in Harris shows the expected endpoint. 5. Repeat steps 3 and 4 for the other five flasks. After completing your titrations, dispose of the AgCl(s) and titrating solutions by pouring them into the waste bottles in the hood that are marked “AgCl(s)Waste.” Also return any unused titrant solution to the instructor. Anything that contained AgNO3 should be rinsed thoroughly before being put away. Page 7
  • 8. Potentiometric Method of Endpoint Detection Chemicals and materials: Silver Nitrate, approximately 0.3 M Nitric acid, 6 M solid KNO3 1. Dry the sample for at least one hour at 110 °C. Cool in a desiccator. 2. Weigh three approximately 0.1 g samples of the “unknown” into your plastic titrator sample beakers. The sample masses should be recorded to the nearest 0.0001g using the analytical balances. Add 0.5 g potassium nitrate; this can be massed using the top-loader balances on the lab benches. 3. Add about 40 mL of deionized water to each beaker and stir until dissolved. Rinse your stir rod into the sample solution (i.e., you do not want any analyte chloride to leave the solution). Also add a few drops of 6M nitric acid into each beaker. 4. You will titrate your sample solutions with the Mettler-Toledo DL58 titrator using a silver ring indicator electrode to follow the progress of the titration. For your first sample, your instructor or a TA will show you how to use the titrator. 5. Repeat the titration for your other samples. Be sure to wash the titrator thoroughly after each titration. Dispose of the silver chloride waste in the appropriate container (found in the HOOD). When you are finished, wash your titrator sample beakers thoroughly and rinse with deionized water. 6. You will be provided with data from three titrations that were used to standardize the titrant solution just prior to the experiment. For each of your samples, the titrator will print out its estimate of the endpoint volume, as well as the raw data (potential as a function of added titrant solution volume). Plot your titration curves and include at least one of them as a figure in your lab report. Please turn in copies of your data and your titration curves with your data sheet - this material is supplemental to your lab report. Page 8
  • 9. DATA SHEET: Fajans Method Directions: fill in this sheet and turn it in with your lab report. Name: Unknown #: estimated analyte conc (as a confidence interval) 1: g 2: g 1: g 2: g 1: g 2: g Titration of sample (1) initial mass titrant soln (2) endpoint mass titrant soln 1: g 2: g 1: g 2: g 1: g 2: g Titration of NaCl (1) initial mass titrant soln (2) endpoint mass titrant soln 1: g 2: g 1: g 2: g 1: g 2: g dry sample mass (by difference) 1: g 2: g 1: g 2: g 1: g 2: g dry NaCl mass (by difference) CBA
  • 10. DATA SHEET: Potentiometric Method Directions: fill in this sheet and turn it in with your lab report. You should also turn in your titration curves and your raw data (you can xerox the titrator printout). I do not need the standardization data - I already have a copy. Also turn in plots of your titration curves with your data. Name: Unknown #: estimated analyte conc (as a confidence interval) Endpoint: Titration of sample, mL Endpoint: Titration of NaCl, mL (from handout) 1: g 2: g 1: g 2: g 1: g 2: g dry sample mass (by difference) dry NaCl mass (from handout) CBA Results from Hypothesis Testing Conclusion Observed value for F Comparison of Precision of Methods Conclusion 95% CI for d Comparison of Accuracy of Methods
  • 11. TITRIMETRIC ANALYSIS: Data Treatment Effect of Standardization Measurement Error A requirement for quantitative analysis by titration is that the titrant concentration is known. In many cases, including this experiment, titrant solution concentration is itself determined (standardized) in a separate set of titrations. The titrant concentration is thus subject to random measurement error comparable in magnitude to that of the sample titration. When calculating a confidence interval for the analyte concentration in your “unknown” sample, you will have to use the titrant concentration. A propagation of error approach can be used to account for the effect of standardization error on the final, calculated value for analyte concentration in the sample. Let’s assume that you have one set of standardization titrations and another set of titrations of the sample solution: • from the standardization titrations, you calculate the mean titrant concentration, CT, and its standard deviation (i.e., the standard error of the mean) • from the endpoints of the sample solution titrations, you can calculate the mean analyte concentration, , and its observed standard deviation, . This standard deviation does not include the effectCA sobs(CA) of uncertainty in CT; it is calculated directly from the endpoint volumes of the sample titrations. A propagation of error approach yields a value for RSDA, the true relative standard deviation of the point estimate ( ) of analyte concentration.CA RSDA 2 = RSDT 2 + RSDobs 2 where andRSDT = s(CT) CT RSDobs = sobs(CA) CA Note: assume that the value you calculate from this procedure contains 2 degrees of freedom. Although this is not strictly true, it is a conservative estimate of the true degrees of freedom contained in the estimate of standard error. Comparison of the Accuracy and Precision of Titration Methods One of the primary goals of this experiment is to compare the ability of two titrimetric methods – weight titration with chemical indicator, and volumetric titration with potentiometric detection – to measure the chloride content of a soluble, solid sample. In particular, it would be meaningful to compare the relative accuracy and precision of the two methods. For each method in this experiment, you essentially obtain two results (which you combine into a confidence interval): • a point estimate of the analyte concentration, which represents your best estimate of the true analyte concentration. In this case, the point estimate will be the mean of three independent measurements. The difference between the point estimate and the true analyte concentration is a measure of the accuracy of the method. Page 11
  • 12. • the standard error of your point estimate: the standard deviation of the mean of three independent measurements (corrected for standardization error, as explained above). The magnitude of the standard error indicates the precision of the method. Statistical theory provides a procedure, called hypothesis testing, that can be used to objectively compare the accuracy and precision of the two methods in this experiment. You will need to apply this procedure to your results. Hypothesis testing is discussed at length in Chemistry 300, but a very brief summary will be given here of procedures that you may use (since the Full Report for this experiment may be due before the subject is covered!). More detail on hypothesis testing is given in the lecture notes for Chemistry 300. Comparison of Accuracy Concerning the accuracy of the two titrimetric methods, there are three general possibilities: 1. Neither method gives biased estimates of analyte concentration; 2. One method is biased but the other is not; 3. Both methods are biased. In order to determine if bias exists, the true analyte concentration must be known. Since it isn’t (to you, anyway!), all you can do is compare the bias of the two methods. A relatively simple procedure for doing this is as follows. Let’s define a random variable d, as the difference between the point estimates for the analyte concentration obtained from the indicator and potentiometric methods: d = Cind − Cpot This value is the difference between two random variables, and so it too must be a random variable. Use error propagation to calculate the standard deviation of the difference, sd, and then calculate a 95% confidence interval for µd (assume d is normally distributed, and 2 degrees of freedom in sd). If the confidence interval does not contain zero, then there is at least a 95% probability that there is a statistically significant difference in the bias of the two methods. That means that either possibility #1 (only one of the methods has bias) or #3 (both methods have bias, but of different magnitude) must be true. Comparison of Precision Let’s define a random variable F as follows: F = seA 2 seB 2 where seA and seB are the standard errors of the point estimates obtained using titrimetric method A and method B. Which method is A and which B? You should choose them so that the ratio of the squared standard errors is a value greater than one (F > 1). In other words, method A is the one with the larger standard error. Page 12 Titrimetric Analysis Data Treatment
  • 13. The value F is the ratio of two sample statistics, so it is a random variable. If the measurement precision of the two methods is the same, then the population mean of this variable should be equal to one (i.e., µF = 1 if σA = σB). Values of F that are much larger than one suggest that perhaps method A is less precise than method B. Hypothesis testing allows us to determine what the “cutoff point” (the critical value) should be before we can consider one method to be definitely less precise than the other. For this experiment, the critical value for this hypothesis test is 39.0. If F > 39.0, then there is at least a 95% probability that the precision of method A is worse than that of method B. Why is the critical value so large? The reason is that there are only two degrees of freedom in our standard error values, so that there is a lot of uncertainty in both seA and seB (and even more in their ratio). So it will be very hard to “prove” a difference in precision for this experiment. If you wanted to get a smaller value for the critical value, more degrees of freedom (i.e., more measurements) are needed. For example, with six measurements for each method, the critical value would be 7.15. “Within-Student” and “Between-Student” Variability When comparing precision, you should be aware of the difference between what we can call “within-student” and “between-student” sources of random error. We can illustrate the difference between these sources by considering a titration using a chemical indicator (like the Fajans method): • within-student variability will be due to the uncertainty a single student experiences in determining the color change from sample to sample. This source of variability is reflected in the spread of each student’s measurements about the mean. • between-student variability is due to the fact that different students will interpret the endpoint color slightly differently. This source of variability is reflected in the spread of the measurement errors of all the students in the class. The difference between these sources of variability is almost certainly quite significant for the Fajans method – there will be much more between-student variabilty than within-student variability. There is probably not too great a difference in the case of the potentiometric method, though. Since you won’t have access to the data of your classmates when you write this laboratory report, there is not much you can do to assess the true variability of the Fajans method. You should be aware the you are actually comparing “between-student” variability when you compare the precision of your point estimates. Page 13 Titrimetric Analysis Data Treatment