SlideShare a Scribd company logo
Slopes of Lines
Slopes of Lines
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Slopes of Lines
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Definition of Slope
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
then Δy = y2 – y1
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
then Δy = y2 – y1 = 5 – (–2) = 7
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
then Δy = y2 – y1 = 5 – (–2) = 7
Let x1 = 7, x2 = –4,
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
then Δy = y2 – y1 = 5 – (–2) = 7
Let x1 = 7, x2 = –4,
then Δ x = x2 – x1
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Slopes of Lines
Definition of Slope
Notation: The Greek capital letter Δ (delta) in general
means “the difference” in mathematics.
Δy means the difference in the values of y’s, Δx means the
difference the values of x’s.
Example A. Let y1 = –2, y2 = 5,
then Δy = y2 – y1 = 5 – (–2) = 7
Let x1 = 7, x2 = –4,
then Δ x = x2 – x1 = –4 – 7 = –11
The slope of a line is a number. The slope of a line
measures the amount of tilt, (inclination, steepness) of the
line against the x-axis.
Steep lines have slopes with large absolute value.
Gradual lines have slopes with small absolute value
Definition of Slope
Slopes of Lines
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
Slopes of Lines
(x1, y1)
(x2, y2)
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
m =
Slopes of Lines
(x1, y1)
(x2, y2)
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Slopes of Lines
(x1, y1)
(x2, y2)
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Slopes of Lines
Geometry of Slope
(x1, y1)
(x2, y2)
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
Slopes of Lines
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
geometric
meaning
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
(–2 , 8)
( 3 , –2)
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
(–2 , 8)
( 3 , –2)
–5 , 10
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
Δy
(–2 , 8)
( 3 , –2)
–5 , 10
Δx
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m =
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
(–2, 5)
( 3, 5)
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
Δy
(–2, 5)
( 3, 5)
–5, 0
Δx
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
Δy
(–2, 5)
( 3, 5)
–5, 0
Δx
So the slope is
Δx
Δy
m =
Δy
Δx
(–2 , 8)
( 3 , –2)
–5 , 10
Δy
Δx
Hence the slope is
10
–5
Example B. Find the slope of the line that passes through
(3, –2) and (–2, 8). Draw the line.
Slopes of Lines
It’s easier to find Δx and Δy vertically.
m = = = –2
Example C. Find the slope of the line
that passes through (3, 5) and (-2, 5).
Draw the line.
Δy
(–2, 5)
( 3, 5)
–5, 0
Δx
So the slope is
Δx
Δy 0
–5
m = = = 0
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
Δy
(3, 5)
(3, 2)
0, 3
Δx
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
Δy
(3, 5)
(3, 2)
0, 3
Δx
So the slope
Δx
Δy 3
0
m = =
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
Δy
(3, 5)
(3, 2)
0, 3
Δx
So the slope
Δx
Δy 3
0
m = =
is undefined!
As shown in example F, the slope of a horizontal line is 0,
i.e. it’s “tilt” is 0.
Slopes of Lines
Example D. Find the slope of the line that passes
through (3, 2) and (3, 5). Draw the line.
Δy
(3, 5)
(3, 2)
0, 3
Δx
So the slope
Δx
Δy 3
0
m = =
is undefined!
As shown in example G, the slope of a vertical line is
undefined.
More on Slopes
Definition of Slope
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
m =
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
Geometry of Slope
(x1, y1)
(x2, y2)
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
More on Slopes
Definition of Slope
Let (x1, y1) and (x2, y2) be two points on a line,
then the slope m of the line is
Δy
Δx
y2 – y1
x2 – x1
m = =
rise
run=
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1 = the difference
in the heights of the points.
Δx = x2 – x1 = the difference
in the runs of the points.
Δy
Δx
=Therefore m is the ratio of the “rise” to the “run”.
m =
Δy
Δx
y2 – y1
x2 – x1
=
easy to
memorize
the exact
formula
geometric
meaning
More on Slopes
Example A. Find the slope of each of the following lines.
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
m =
Δy
Δx
=
7
0
Horizontal line
Slope = 0
Tilted line
Slope = 0
= 0 (UDF)
Example A. Find the slope of each of the following lines.
Two points are
(–2, –4), (2, 3).
Δy = 3 – (–4) = 7
Δx = 2 – (–2) = 4
m =
Two points are
(–3, 1), (4, 1).
Δy = 1 – (1) = 0
Δx = 4 – (–3) = 7
Two points are
(–1, 3), (6, 3).
Δy = 3 – 3 = 0
Δx = 6 – (–1) = 7
More on Slopes
Δy
Δx
=
7
4
m =
Δy
Δx
=
0
7
m =
Δy
Δx
=
7
0
Horizontal line
Slope = 0
Vertical line
Slope is UDF
Tilted line
Slope = 0
= 0 (UDF)
Lines that go through the
quadrants I and III have
positive slopes.
More on Slopes
Lines that go through the
quadrants I and III have
positive slopes.
More on Slopes
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
III
III IV
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
The formula for slopes requires geometric information,
i.e. the positions of two points on the line.
III
III IV
III
III IV
Lines that go through the
quadrants I and III have
positive slopes.
Lines that go through the
quadrants II and IV have
negative slopes.
More on Slopes
The formula for slopes requires geometric information,
i.e. the positions of two points on the line.
However, if a line is given by its equation instead, we may
determine the slope from the equation directly.
III
III IV
III
III IV
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0).
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0). Use these points to draw
the line.
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
Given a linear equation in x and y, solve for the variable y if
possible, we get y = mx + b
the number m is the slope and b is the y-intercept.
This is called the slope intercept form and this can be done
only if the y-term is present.
More on Slopes
a. 3x = –2y + 6 solve for y
2y = –3x + 6
y =
2
–3 x + 3
Hence the slope m is –3/2
and the y-intercept is (0, 3).
Set y = 0, we get the x-intercept
(2, 0). Use these points to draw
the line.
Example B. Write the equations into the slope intercept form,
list the slopes, the y-intercepts and draw the lines.
b. 0 = –2y + 6
More on Slopes
b. 0 = –2y + 6 solve for y
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
This is the vertical line x = 2.
b. 0 = –2y + 6 solve for y
2y = 6
y = 3
y = 0x + 3
Hence the slope m is 0.
The y-intercept is (0, 3).
There is no x-intercept.
c. 3x = 6
More on Slopes
The variable y can’t be
isolated because there is no y.
Hence the slope is undefined
and this is a vertical line.
Solve for x
3x = 6  x = 2.
This is the vertical line x = 2.
Two Facts About Slopes
I. Parallel lines have the same slope.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y2
3
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y
Hence the slope of 3x = 2y + 4 is .
2
3
2
3
Two Facts About Slopes
I. Parallel lines have the same slope.
II. Slopes of perpendicular lines are the negative reciprocal of
each other.
Example C.
a. The line L is parallel to 4x – 2y = 5, what is the slope of L?
Solve for y for 4x – 2y = 5
4x – 5 = 2y
2x – 5/2 = y
So the slope of 4x – 2y = 5 is 2.
Since L is parallel to it , so L has slope 2 also.
More on Slopes
b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
Solve for y to find the slope of 3x – 4 = 2y
x – 2 = y
Hence the slope of 3x = 2y + 4 is .
So L has slope –2/3 since L is perpendicular to it.
2
3
2
3
Summary on Slopes
How to Find Slopes
I. If two points on the line are given, use the slope formula
II. If the equation of the line is given, solve for the y and get
slope intercept form y = mx + b, then the number m is
the slope.
Geometry of Slope
The slope of tilted lines are nonzero.
Lines with positive slopes connect quadrants I and III.
Lines with negative slopes connect quadrants II and IV.
Lines that have slopes with large absolute values are steep.
The slope of a horizontal line is 0.
A vertical lines does not have slope or that it’s UDF.
Parallel lines have the same slopes.
Perpendicular lines have the negative reciprocal slopes of
each other.
rise
run=m =
Δy
Δx
y2 – y1
x2 – x1
=
Exercise A. Identify the vertical and the horizontal lines by
inspection first. Find their slopes or if it’s undefined, state so.
Fine the slopes of the other ones by solving for the y.
1. x – y = 3 2. 2x = 6 3. –y – 7= 0
4. 0 = 8 – 2x 5. y = –x + 4 6. 2x/3 – 3 = 6/5
7. 2x = 6 – 2y 8. 4y/5 – 12 = 3x/4 9. 2x + 3y = 3
10. –6 = 3x – 2y 11. 3x + 2 = 4y + 3x 12. 5x/4 + 2y/3 = 2
Exercise B.
13–18. Select two points and estimate the slope of each line.
13. 14. 15.
More on Slopes
16. 17. 18.
Exercise C. Draw and find the slope of the line that passes
through the given two points. Identify the vertical line and the
horizontal lines by inspection first.
19. (0, –1), (–2, 1) 20. (1, –2), (–2, 0) 21. (1, –2), (–2, –1)
22. (3, –1), (3, 1) 23. (1, –2), (–2, 3) 24. (2, –1), (3, –1)
25. (4, –2), (–3, 1) 26. (4, –2), (4, 0) 27. (7, –2), (–2, –6)
28. (3/2, –1), (3/2, 1) 29. (3/2, –1), (1, –3/2)
30. (–5/2, –1/2), (1/2, 1) 31. (3/2, 1/3), (1/3, 1/3)
32. (–2/3, –1/4), (1/2, 2/3) 33. (3/4, –1/3), (1/3, 3/2)
More on Slopes
Exercise D.
34. Identify which lines are parallel and which one are
perpendicular.
A. The line that passes through (0, 1), (1, –2)
D. 2x – 4y = 1
B. C.
E. The line that’s perpendicular to 3y = x
F. The line with the x–intercept at 3 and y intercept at 6.
Find the slope, if possible of each of the following lines.
35. The line passes with the x intercept at x = 2,
and y–intercept at y = –5.
More on Slopes
36. The equation of the line is 3x = –5y+7
37. The equation of the line is 0 = –5y+7
38. The equation of the line is 3x = 7
39. The line is parallel to 2y = 5 – 6x
40. the line is perpendicular to 2y = 5 – 6x
41. The line is parallel to the line in problem 30.
42. the line is perpendicular to line in problem 31.
43. The line is parallel to the line in problem 33.
44. the line is perpendicular to line in problem 34.
More on Slopes
Find the slope, if possible of each of the following lines
Summary of Slope
The slope of the line that passes through (x1, y1) and (x2, y2) is
Horizontal line
Slope = 0
Vertical line
Slope is UDF.
Tilted line
Slope = –2  0
rise
run
=m =
Δy
Δx
y2 – y1
x2 – x1
=
Exercise A.
Select two points and estimate the slope of each line.
1. 2. 3. 4.
Slopes of Lines
5. 6. 7. 8.
Exercise B. Draw and find the slope of the line that passes
through the given two points. Identify the vertical line and the
horizontal lines by inspection first.
9. (0, –1), (–2, 1) 10. (1, –2), (–2, 0) 11. (1, –2), (–2, –1)
12. (3, –1), (3, 1) 13. (1, –2), (–2, 3) 14. (2, –1), (3, –1)
15. (4, –2), (–3, 1) 16. (4, –2), (4, 0) 17. (7, –2), (–2, –6)
18. (3/2, –1), (3/2, 1) 19. (3/2, –1), (1, –3/2)
20. (–5/2, –1/2), (1/2, 1) 21. (3/2, 1/3), (1/3, 1/3)
22. (–2/3, –1/4), (1/2, 2/3) 23. (3/4, –1/3), (1/3, 3/2)
Slopes of Lines

More Related Content

What's hot

Solving inequalities
Solving inequalitiesSolving inequalities
Solving inequalities
Ita Rodriguez
 
Zero and Negative Exponents
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative ExponentsPassy World
 
Graphing Linear Inequalities
Graphing Linear InequalitiesGraphing Linear Inequalities
Graphing Linear Inequalities
inderjyot
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
Free Math Powerpoints
 
Finding the slope of a line
Finding the slope of a lineFinding the slope of a line
Finding the slope of a lineAhmed Nar
 
Slope of a line
Slope of a lineSlope of a line
Slope of a line
Rhea Rose Almoguez
 
Slope
SlopeSlope
Adding and subtracting rational expressions
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
Dawn Adams2
 
Math 8 - Linear Functions
Math 8 - Linear FunctionsMath 8 - Linear Functions
Math 8 - Linear Functions
Carlo Luna
 
4.2 standard form of a quadratic function (Part 1)
4.2 standard form of a quadratic function (Part 1)4.2 standard form of a quadratic function (Part 1)
4.2 standard form of a quadratic function (Part 1)leblance
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
 
Triangle inequalities
Triangle inequalitiesTriangle inequalities
Triangle inequalities
Kim Alvin Giner
 
3 2 solving systems of equations (elimination method)
3 2 solving systems of equations (elimination method)3 2 solving systems of equations (elimination method)
3 2 solving systems of equations (elimination method)
Hazel Joy Chong
 
11.2 graphing linear equations in two variables
11.2 graphing linear equations in two variables11.2 graphing linear equations in two variables
11.2 graphing linear equations in two variables
GlenSchlee
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalitiesswartzje
 
7.2 Similar Polygons
7.2 Similar Polygons7.2 Similar Polygons
7.2 Similar Polygons
smiller5
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 
Slope of a Line
Slope of a LineSlope of a Line
Slope of a Line
karen wagoner
 
Math 8 Quiz Bee.pptx
Math 8 Quiz Bee.pptxMath 8 Quiz Bee.pptx
Math 8 Quiz Bee.pptx
KristineJoyGuting1
 
Line and its slope
Line and its slopeLine and its slope
Line and its slope
Diane Rizaldo
 

What's hot (20)

Solving inequalities
Solving inequalitiesSolving inequalities
Solving inequalities
 
Zero and Negative Exponents
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative Exponents
 
Graphing Linear Inequalities
Graphing Linear InequalitiesGraphing Linear Inequalities
Graphing Linear Inequalities
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
 
Finding the slope of a line
Finding the slope of a lineFinding the slope of a line
Finding the slope of a line
 
Slope of a line
Slope of a lineSlope of a line
Slope of a line
 
Slope
SlopeSlope
Slope
 
Adding and subtracting rational expressions
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
 
Math 8 - Linear Functions
Math 8 - Linear FunctionsMath 8 - Linear Functions
Math 8 - Linear Functions
 
4.2 standard form of a quadratic function (Part 1)
4.2 standard form of a quadratic function (Part 1)4.2 standard form of a quadratic function (Part 1)
4.2 standard form of a quadratic function (Part 1)
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
 
Triangle inequalities
Triangle inequalitiesTriangle inequalities
Triangle inequalities
 
3 2 solving systems of equations (elimination method)
3 2 solving systems of equations (elimination method)3 2 solving systems of equations (elimination method)
3 2 solving systems of equations (elimination method)
 
11.2 graphing linear equations in two variables
11.2 graphing linear equations in two variables11.2 graphing linear equations in two variables
11.2 graphing linear equations in two variables
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalities
 
7.2 Similar Polygons
7.2 Similar Polygons7.2 Similar Polygons
7.2 Similar Polygons
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 
Slope of a Line
Slope of a LineSlope of a Line
Slope of a Line
 
Math 8 Quiz Bee.pptx
Math 8 Quiz Bee.pptxMath 8 Quiz Bee.pptx
Math 8 Quiz Bee.pptx
 
Line and its slope
Line and its slopeLine and its slope
Line and its slope
 

Similar to 5 slopes of lines

3 slopes of lines x
3 slopes of lines x3 slopes of lines x
3 slopes of lines x
Tzenma
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
math123a
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
alg1testreview
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
math123a
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
Tzenma
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
HebaEng
 
Geo 3.6&7 slope
Geo 3.6&7 slopeGeo 3.6&7 slope
Geo 3.6&7 slope
ejfischer
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
KristenHathcock
 
Lesson 6 straight line
Lesson 6    straight lineLesson 6    straight line
Lesson 6 straight lineJean Leano
 
Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Carol Defreese
 
Chapter11
Chapter11Chapter11
Chapter11
Erica McLaurin
 
CST 504 Linear Equations
CST 504 Linear EquationsCST 504 Linear Equations
CST 504 Linear Equations
Neil MacIntosh
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1leefong2310
 
THREE DIMENSIONAL GEOMETRY
THREE DIMENSIONAL GEOMETRYTHREE DIMENSIONAL GEOMETRY
THREE DIMENSIONAL GEOMETRY
Urmila Bhardwaj
 
Lesson all about Derivatives PPT (with examples)
Lesson all about Derivatives PPT (with examples)Lesson all about Derivatives PPT (with examples)
Lesson all about Derivatives PPT (with examples)
DorothyJuliaDelaCruz
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.ppt
SnehSinha6
 

Similar to 5 slopes of lines (20)

3 slopes of lines x
3 slopes of lines x3 slopes of lines x
3 slopes of lines x
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
 
Geo 3.6&7 slope
Geo 3.6&7 slopeGeo 3.6&7 slope
Geo 3.6&7 slope
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
 
Dec 14
Dec 14Dec 14
Dec 14
 
Lesson 6 straight line
Lesson 6    straight lineLesson 6    straight line
Lesson 6 straight line
 
Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3
 
Chapter11
Chapter11Chapter11
Chapter11
 
Unit 5.5
Unit 5.5Unit 5.5
Unit 5.5
 
Unit 5.5
Unit 5.5Unit 5.5
Unit 5.5
 
Math project
Math projectMath project
Math project
 
CST 504 Linear Equations
CST 504 Linear EquationsCST 504 Linear Equations
CST 504 Linear Equations
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1
 
THREE DIMENSIONAL GEOMETRY
THREE DIMENSIONAL GEOMETRYTHREE DIMENSIONAL GEOMETRY
THREE DIMENSIONAL GEOMETRY
 
Lesson all about Derivatives PPT (with examples)
Lesson all about Derivatives PPT (with examples)Lesson all about Derivatives PPT (with examples)
Lesson all about Derivatives PPT (with examples)
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.ppt
 

More from elem-alg-sample

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
elem-alg-sample
 
4 linear equations and graphs of lines
4 linear equations and graphs of lines4 linear equations and graphs of lines
4 linear equations and graphs of lines
elem-alg-sample
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate system
elem-alg-sample
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
elem-alg-sample
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
elem-alg-sample
 
18 variations
18 variations18 variations
18 variations
elem-alg-sample
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
elem-alg-sample
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
elem-alg-sample
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
elem-alg-sample
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
elem-alg-sample
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
elem-alg-sample
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
elem-alg-sample
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
elem-alg-sample
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
elem-alg-sample
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
elem-alg-sample
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
elem-alg-sample
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
elem-alg-sample
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
elem-alg-sample
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
elem-alg-sample
 
4 literal equations
4 literal equations4 literal equations
4 literal equations
elem-alg-sample
 

More from elem-alg-sample (20)

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
 
4 linear equations and graphs of lines
4 linear equations and graphs of lines4 linear equations and graphs of lines
4 linear equations and graphs of lines
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate system
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
 
18 variations
18 variations18 variations
18 variations
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
 
4 literal equations
4 literal equations4 literal equations
4 literal equations
 

Recently uploaded

Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 

Recently uploaded (20)

Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 

5 slopes of lines

  • 2. Slopes of Lines The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis.
  • 3. Slopes of Lines The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 4. Slopes of Lines The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value Definition of Slope
  • 5. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 6. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 7. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 8. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, then Δy = y2 – y1 The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 9. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, then Δy = y2 – y1 = 5 – (–2) = 7 The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 10. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, then Δy = y2 – y1 = 5 – (–2) = 7 Let x1 = 7, x2 = –4, The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 11. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, then Δy = y2 – y1 = 5 – (–2) = 7 Let x1 = 7, x2 = –4, then Δ x = x2 – x1 The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 12. Slopes of Lines Definition of Slope Notation: The Greek capital letter Δ (delta) in general means “the difference” in mathematics. Δy means the difference in the values of y’s, Δx means the difference the values of x’s. Example A. Let y1 = –2, y2 = 5, then Δy = y2 – y1 = 5 – (–2) = 7 Let x1 = 7, x2 = –4, then Δ x = x2 – x1 = –4 – 7 = –11 The slope of a line is a number. The slope of a line measures the amount of tilt, (inclination, steepness) of the line against the x-axis. Steep lines have slopes with large absolute value. Gradual lines have slopes with small absolute value
  • 14. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, Slopes of Lines (x1, y1) (x2, y2)
  • 15. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx m = Slopes of Lines (x1, y1) (x2, y2)
  • 16. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Slopes of Lines (x1, y1) (x2, y2)
  • 17. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Slopes of Lines Geometry of Slope (x1, y1) (x2, y2)
  • 18. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points.
  • 19. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points.
  • 20. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”.
  • 21. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 =
  • 22. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize
  • 23. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula
  • 24. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= Slopes of Lines (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula geometric meaning
  • 25. Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines
  • 26. Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines
  • 27. Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically.
  • 28. (–2 , 8) ( 3 , –2) Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically.
  • 29. (–2 , 8) ( 3 , –2) –5 , 10 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically.
  • 30. Δy (–2 , 8) ( 3 , –2) –5 , 10 Δx Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically.
  • 31. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m =
  • 32. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2
  • 33. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line.
  • 34. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line.
  • 35. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line. (–2, 5) ( 3, 5)
  • 36. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line. Δy (–2, 5) ( 3, 5) –5, 0 Δx
  • 37. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line. Δy (–2, 5) ( 3, 5) –5, 0 Δx So the slope is Δx Δy m =
  • 38. Δy Δx (–2 , 8) ( 3 , –2) –5 , 10 Δy Δx Hence the slope is 10 –5 Example B. Find the slope of the line that passes through (3, –2) and (–2, 8). Draw the line. Slopes of Lines It’s easier to find Δx and Δy vertically. m = = = –2 Example C. Find the slope of the line that passes through (3, 5) and (-2, 5). Draw the line. Δy (–2, 5) ( 3, 5) –5, 0 Δx So the slope is Δx Δy 0 –5 m = = = 0
  • 39. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines
  • 40. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line.
  • 41. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line.
  • 42. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line. Δy (3, 5) (3, 2) 0, 3 Δx
  • 43. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line. Δy (3, 5) (3, 2) 0, 3 Δx So the slope Δx Δy 3 0 m = =
  • 44. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line. Δy (3, 5) (3, 2) 0, 3 Δx So the slope Δx Δy 3 0 m = = is undefined!
  • 45. As shown in example F, the slope of a horizontal line is 0, i.e. it’s “tilt” is 0. Slopes of Lines Example D. Find the slope of the line that passes through (3, 2) and (3, 5). Draw the line. Δy (3, 5) (3, 2) 0, 3 Δx So the slope Δx Δy 3 0 m = = is undefined! As shown in example G, the slope of a vertical line is undefined.
  • 48. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, (x1, y1) (x2, y2) More on Slopes
  • 49. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx m = (x1, y1) (x2, y2) More on Slopes
  • 50. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) More on Slopes
  • 51. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = Geometry of Slope (x1, y1) (x2, y2) More on Slopes
  • 52. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. More on Slopes
  • 53. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. More on Slopes
  • 54. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. More on Slopes
  • 55. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = More on Slopes
  • 56. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize More on Slopes
  • 57. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula More on Slopes
  • 58. Definition of Slope Let (x1, y1) and (x2, y2) be two points on a line, then the slope m of the line is Δy Δx y2 – y1 x2 – x1 m = = rise run= (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the runs of the points. Δy Δx =Therefore m is the ratio of the “rise” to the “run”. m = Δy Δx y2 – y1 x2 – x1 = easy to memorize the exact formula geometric meaning More on Slopes
  • 59. Example A. Find the slope of each of the following lines. More on Slopes
  • 60. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). More on Slopes
  • 61. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 More on Slopes
  • 62. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes
  • 63. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 = 0
  • 64. Example A. Find the slope of each of the following lines. Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 65. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 66. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 67. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 68. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 = 0
  • 69. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 70. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 71. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 72. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 Horizontal line Slope = 0 Tilted line Slope = 0 = 0
  • 73. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 m = Δy Δx = 7 0 Horizontal line Slope = 0 Tilted line Slope = 0 = 0 (UDF)
  • 74. Example A. Find the slope of each of the following lines. Two points are (–2, –4), (2, 3). Δy = 3 – (–4) = 7 Δx = 2 – (–2) = 4 m = Two points are (–3, 1), (4, 1). Δy = 1 – (1) = 0 Δx = 4 – (–3) = 7 Two points are (–1, 3), (6, 3). Δy = 3 – 3 = 0 Δx = 6 – (–1) = 7 More on Slopes Δy Δx = 7 4 m = Δy Δx = 0 7 m = Δy Δx = 7 0 Horizontal line Slope = 0 Vertical line Slope is UDF Tilted line Slope = 0 = 0 (UDF)
  • 75. Lines that go through the quadrants I and III have positive slopes. More on Slopes
  • 76. Lines that go through the quadrants I and III have positive slopes. More on Slopes III III IV
  • 77. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes III III IV
  • 78. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes III III IV III III IV
  • 79. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes The formula for slopes requires geometric information, i.e. the positions of two points on the line. III III IV III III IV
  • 80. Lines that go through the quadrants I and III have positive slopes. Lines that go through the quadrants II and IV have negative slopes. More on Slopes The formula for slopes requires geometric information, i.e. the positions of two points on the line. However, if a line is given by its equation instead, we may determine the slope from the equation directly. III III IV III III IV
  • 81. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b More on Slopes
  • 82. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. More on Slopes
  • 83. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes
  • 84. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 85. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 86. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 87. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 88. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 89. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 90. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines. a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0).
  • 91. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0). Use these points to draw the line. Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 92. Given a linear equation in x and y, solve for the variable y if possible, we get y = mx + b the number m is the slope and b is the y-intercept. This is called the slope intercept form and this can be done only if the y-term is present. More on Slopes a. 3x = –2y + 6 solve for y 2y = –3x + 6 y = 2 –3 x + 3 Hence the slope m is –3/2 and the y-intercept is (0, 3). Set y = 0, we get the x-intercept (2, 0). Use these points to draw the line. Example B. Write the equations into the slope intercept form, list the slopes, the y-intercepts and draw the lines.
  • 93. b. 0 = –2y + 6 More on Slopes
  • 94. b. 0 = –2y + 6 solve for y More on Slopes
  • 95. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 More on Slopes
  • 96. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 More on Slopes
  • 97. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. More on Slopes
  • 98. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). More on Slopes
  • 99. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. More on Slopes
  • 100. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. More on Slopes
  • 101. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes
  • 102. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y.
  • 103. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line.
  • 104. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2.
  • 105. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2. This is the vertical line x = 2.
  • 106. b. 0 = –2y + 6 solve for y 2y = 6 y = 3 y = 0x + 3 Hence the slope m is 0. The y-intercept is (0, 3). There is no x-intercept. c. 3x = 6 More on Slopes The variable y can’t be isolated because there is no y. Hence the slope is undefined and this is a vertical line. Solve for x 3x = 6  x = 2. This is the vertical line x = 2.
  • 107. Two Facts About Slopes I. Parallel lines have the same slope. More on Slopes
  • 108. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. More on Slopes
  • 109. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? More on Slopes
  • 110. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 More on Slopes
  • 111. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y More on Slopes
  • 112. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y More on Slopes
  • 113. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. More on Slopes
  • 114. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes
  • 115. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4?
  • 116. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y
  • 117. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y2 3
  • 118. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y Hence the slope of 3x = 2y + 4 is . 2 3 2 3
  • 119. Two Facts About Slopes I. Parallel lines have the same slope. II. Slopes of perpendicular lines are the negative reciprocal of each other. Example C. a. The line L is parallel to 4x – 2y = 5, what is the slope of L? Solve for y for 4x – 2y = 5 4x – 5 = 2y 2x – 5/2 = y So the slope of 4x – 2y = 5 is 2. Since L is parallel to it , so L has slope 2 also. More on Slopes b. What is the slope of L if L is perpendicular to 3x = 2y + 4? Solve for y to find the slope of 3x – 4 = 2y x – 2 = y Hence the slope of 3x = 2y + 4 is . So L has slope –2/3 since L is perpendicular to it. 2 3 2 3
  • 120. Summary on Slopes How to Find Slopes I. If two points on the line are given, use the slope formula II. If the equation of the line is given, solve for the y and get slope intercept form y = mx + b, then the number m is the slope. Geometry of Slope The slope of tilted lines are nonzero. Lines with positive slopes connect quadrants I and III. Lines with negative slopes connect quadrants II and IV. Lines that have slopes with large absolute values are steep. The slope of a horizontal line is 0. A vertical lines does not have slope or that it’s UDF. Parallel lines have the same slopes. Perpendicular lines have the negative reciprocal slopes of each other. rise run=m = Δy Δx y2 – y1 x2 – x1 =
  • 121. Exercise A. Identify the vertical and the horizontal lines by inspection first. Find their slopes or if it’s undefined, state so. Fine the slopes of the other ones by solving for the y. 1. x – y = 3 2. 2x = 6 3. –y – 7= 0 4. 0 = 8 – 2x 5. y = –x + 4 6. 2x/3 – 3 = 6/5 7. 2x = 6 – 2y 8. 4y/5 – 12 = 3x/4 9. 2x + 3y = 3 10. –6 = 3x – 2y 11. 3x + 2 = 4y + 3x 12. 5x/4 + 2y/3 = 2 Exercise B. 13–18. Select two points and estimate the slope of each line. 13. 14. 15. More on Slopes
  • 122. 16. 17. 18. Exercise C. Draw and find the slope of the line that passes through the given two points. Identify the vertical line and the horizontal lines by inspection first. 19. (0, –1), (–2, 1) 20. (1, –2), (–2, 0) 21. (1, –2), (–2, –1) 22. (3, –1), (3, 1) 23. (1, –2), (–2, 3) 24. (2, –1), (3, –1) 25. (4, –2), (–3, 1) 26. (4, –2), (4, 0) 27. (7, –2), (–2, –6) 28. (3/2, –1), (3/2, 1) 29. (3/2, –1), (1, –3/2) 30. (–5/2, –1/2), (1/2, 1) 31. (3/2, 1/3), (1/3, 1/3) 32. (–2/3, –1/4), (1/2, 2/3) 33. (3/4, –1/3), (1/3, 3/2) More on Slopes
  • 123. Exercise D. 34. Identify which lines are parallel and which one are perpendicular. A. The line that passes through (0, 1), (1, –2) D. 2x – 4y = 1 B. C. E. The line that’s perpendicular to 3y = x F. The line with the x–intercept at 3 and y intercept at 6. Find the slope, if possible of each of the following lines. 35. The line passes with the x intercept at x = 2, and y–intercept at y = –5. More on Slopes
  • 124. 36. The equation of the line is 3x = –5y+7 37. The equation of the line is 0 = –5y+7 38. The equation of the line is 3x = 7 39. The line is parallel to 2y = 5 – 6x 40. the line is perpendicular to 2y = 5 – 6x 41. The line is parallel to the line in problem 30. 42. the line is perpendicular to line in problem 31. 43. The line is parallel to the line in problem 33. 44. the line is perpendicular to line in problem 34. More on Slopes Find the slope, if possible of each of the following lines
  • 125. Summary of Slope The slope of the line that passes through (x1, y1) and (x2, y2) is Horizontal line Slope = 0 Vertical line Slope is UDF. Tilted line Slope = –2  0 rise run =m = Δy Δx y2 – y1 x2 – x1 =
  • 126. Exercise A. Select two points and estimate the slope of each line. 1. 2. 3. 4. Slopes of Lines 5. 6. 7. 8.
  • 127. Exercise B. Draw and find the slope of the line that passes through the given two points. Identify the vertical line and the horizontal lines by inspection first. 9. (0, –1), (–2, 1) 10. (1, –2), (–2, 0) 11. (1, –2), (–2, –1) 12. (3, –1), (3, 1) 13. (1, –2), (–2, 3) 14. (2, –1), (3, –1) 15. (4, –2), (–3, 1) 16. (4, –2), (4, 0) 17. (7, –2), (–2, –6) 18. (3/2, –1), (3/2, 1) 19. (3/2, –1), (1, –3/2) 20. (–5/2, –1/2), (1/2, 1) 21. (3/2, 1/3), (1/3, 1/3) 22. (–2/3, –1/4), (1/2, 2/3) 23. (3/4, –1/3), (1/3, 3/2) Slopes of Lines