SlideShare a Scribd company logo
1 of 18
Derivatives
A Physics 100 Tutorial
Why Do We Need Derivatives?
In physics, and life too, things are constantly
“changing.” Specifically, what we’ll be interested with
in the physics context is how physical quantities
change. For example, how does an object’s velocity
change over time, or how does the force acting on an
object change over a distance traveled. Such changes
are described mathematically by derivatives. A
“derivative” is just a fancy name that describes how
something is changing with respect to something else.
What follows will be a brief summary and insight into
this world of ever changing quantities called
derivatives.
0
1
2
3
4
5
x
y
Getting Started
Let’s start simple. Consider the function
y(x) = 3 shown in the figure to the right.
If you were asked “How does this
function change with x?” or equivalently,
“How does y change as a function of x?,”
you would say, “It doesn’t change. It is a
constant value of 3 everywhere.” And
your response would be correct, but how
would we describe your response
mathematically?
y(x) = 3
x1 x2
Well, we define the change in the function y(x) with respect to
the variable x, Δy/Δx, to be
In English, this equation will tell us how the function y(x)
changes over the distance between x1 and x2. Since y always
equals 3 in our previous example, then
Therefore, the function y(x) does not change over the interval
x1 and x2. This mathematics will be how we describe the change
in any function with respect to a given variable.
Mathematics of “Change”
.
)
(
)
(
1
2
1
2
x
x
x
y
x
Y
x
y





.
0
3
3
1
2






x
x
x
y
The symbol “Δ,” called
delta, represents the
change in a variable.
Translated, Δy reads:
“The change in y,” which
equals:
“y final minus y initial”
or mathematically:
“Δy = yfinal – yinitial.”
Understanding the symbols…
Example of a Straight Line
Now consider the function y(x) = 3x + 1 as
drawn in the figure to the right. Again, how
would y(x) change with x? Let’s look at the
interval between x = 2 and x = 3:
3
1
7
10
2
3
]
1
)
2
(
*
3
[
]
1
)
3
(
*
3
[
2
3
)
2
(
)
3
(














 x
y
x
y
x
y
0
5
10
15
20
0 1 2 3 4 5 6
X
Y
y(x) = 3x + 1
Δy=3
Δx=1
If we look at this graphically in Figure 2,
we see that it is just the slope of the
line!!! If we look at any interval of x, we
would find that y(x) would change by the
same amount, 3, over that interval because
this function is just a straight line! Try it
and see!!!
Δy/Δx = 3
The function y changes by 3 units
between x=2 and x=3.
The slope of the line
equals Δy/Δx
Using our definition for the change in y(x)
with respect to x from the previous slide (hit
the left arrow key if you need to back to the
previous slide), we get:
More than Straight Lines
On the previous slide, you learned that
the slope of a straight line gives you the
change in the function y(x) over the
change in x. That concept will become
the building block for everything that
follows.
x
y
Now let us consider a more complicated
function other than a straight line.
Consider the graph to the right. How
would you describe how the function
y(x) changes at any given value of x?
Well, from what you just learned, the
change in the function y(x) with
respect to x should be given by the
slope of a straight line. But what is the
straight line???
Graphs that Curve
Let us just get started and choose a
point X on the graph. The question to
be answered is “How does y(x) change at
the point X?
x
y
To give the answer away, the change in
y(x) with respect to x at point X is
given by the slope of the tangent line
at point X !!!
X
Slope of the tangent line at
point X gives the change in
y(x) with respect to x.:
Slope=Δy/Δx.
The question now is “How do we
determine the slope of the tangent line
at point X?
Understanding the terminology…
The word “tangent line” describes a line that intersects or touches a curve at only one point. At any given point on a
smooth curve, there is only one unique tangent line and therefore there is only one value for the slope of that tangent
line at that point.
Determining the Slope of the
Tangent Line
To determine the slope of the tangent line,
let us draw a different line that intersects
the curve at both point X and point X + h.
x
y
X X+h
What is the slope of this line? From
before, the slope of the line will be Δy/Δx:
h
y(X)
h)
y(X
X
h)
(X
y(X)
h)
y(X
Δx
Δy 







This line is still not the tangent line at point
X, but we can make it look more like the
tangent line if we make the h a smaller value:
X+h
If you calculate the slope for this second
line, it will have the same form as the above
equation, except now h is a smaller value and
therefore y(X+h) will be a different value.
Δy=y(X+h)–y(X)
Δx=(X+h)–X=h
Because h is smaller, the point X+h is closer to the
original point X than before. Therefore, the slope of
this second line is closer in value to the slope of the
tangent line than what the slope of the first line was.
So What is a Derivative Anyway?
Now, if we keep making h smaller and
smaller, then the line that passes through
the points X and X+h will start looking
more and more like the line tangent to the
curve at point X. Eventually, as h goes to
zero, then the line that goes through X
and X+h will become the tangent line!!!
x
y
Slope of tangent line = )
zero
to
goes
as
(
)
(
)
(
h
h
X
y
h
X
y 

X
We give the symbol
dx
dy
to represent the slope of the tangent line.
This symbol,
dx
dy
, is what we call the derivative of y with respect to x.
Therefore, the term “derivative” just represents how the function y(x) instantaneously
changes with respect to the variable x. As h goes to zero, Δy/Δx becomes dy/dx.
X+h
X+h
X+h
Tangent Line
So, let’s write this out in mathematics…
h gets smaller
h gets even smaller
h goes to zero!
Let animation run!!!
Recap So Far
Let us recap what you have learned so
far:
• The slope of a straight line tells you how the function y(x) changes as the
variable x changes:
initial
final
initial
final
x
x
x
y
x
y
x
y






)
(
)
(
slope
• The “derivative” of y(x) at point X is the slope of the tangent line to the
curve of y(x) at point X.
• The derivative, dy/dx, is defined mathematically by the following equation:
)
zero
to
goes
as
(
)
(
)
(
h
h
x
y
h
x
y
dx
dy 


• As h goes to zero, Δy/Δx becomes dy/dx.
• The derivative, dy/dx, is the instantaneous change of the function y(x).
-15 -10 -5 0 5 10 15
Using the Definition for Derivatives
Let us now apply our newly derived formula
to calculate the derivative of y(x) = x2.
x
h
h
x
h
h
h
xh
h
h
x
h
xh
x
h
h
x
h
x
h
h
x
y
h
x
y
dx
dy
2
)
zero
to
goes
as
(
2
)
zero
to
goes
as
(
2
)
zero
to
goes
as
(
)
2
(
)
zero
to
goes
as
(
)
(
)
)
((
)
zero
to
goes
as
(
)
(
)
(
2
2
2
2
2
2















And therefore, x
dx
dy
2

Let us use this result to determine the derivative at x = 5. Since the derivative of
y(x)=x2 equals 2x, then the derivative at x = 5 is 2*5 = 10. Therefore, the slope of the
tangent line that passes through x = 5 has a slope of 10!
Tangent line at x = 5 has a slope of 10.
Therefore, the function y(x) has an
instantaneous slope of 10 units at x=5.
y = x2
Graphing the Derivative
In our previous example, we used the
definition for the derivative to find the
derivative of the function y = x2. When
we did this, we found the derivative to
be a function itself: dy/dx = 2x. This is
just a straight line as plotted to the
bottom right. -15 -10 -5 0 5 10 15
x
y
-25
-20
-15
-10
-5
0
5
10
15
20
25
-15 -10 -5 0 5 10 15
x
dy/dx
Let us see how the two graphs are related.
• You know that the derivative of a
function is just the slope of that
function. For example, look at the
graph of y = x2, for negative values of
x, the slope of the tangent line should
be negative. Looking at the graph of
dy/dx, when x is negative, dy/dx is also
negative!
The slope of the tangent line at x = -9 is -18.
-18
-8
The slope of the tangent line at x = -4 is -8.
y = x2
dy/dx = 2x
• When the slope of the tangent line
equals zero, then the value of the
derivative will equal zero!
The slope of the tangent line at x = 0 is 0.
Another Example
“Repetition is good for the soul” as one
teacher used to say, therefore, let us
now do another example. Consider the
formula y =4x3-15x2+20. This function
is graphed to the right. Calculating
the derivative, we find:
-80
-60
-40
-20
0
20
40
60
-3 -2 -1 0 1 2 3 4 5
x
y
y=4x3–15x2+20
x
x
dx
dy
h
h
x
h
xh
x
h
h
h
xh
h
xh
h
x
h
h
x
x
h
xh
x
h
xh
h
x
x
h
h
x
x
h
x
h
x
h
h
x
y
h
x
y
dx
dy
30
12
)
zero
to
goes
as
(
15
30
12
12
)
zero
to
goes
as
(
15
30
12
12
)
zero
to
goes
as
(
]
20
15
4
[
]
20
)
2
(
15
)
3
3
(
4
[
)
zero
to
goes
as
(
]
20
15
4
[
]
20
)
(
15
)
(
4
[
)
zero
to
goes
as
(
)
(
)
(
2
2
2
2
3
2
2
2
3
2
2
3
2
2
3
2
3
2
3

































 Definition of derivative
Substituted in the expression for y(x)
Terms that survived after some terms canceled
Divided each term by h
These terms survived after h went to zero
Example Continued
We have found that the derivative of
y(x) = 4x3–15x2+20 to be:
dy/dx = 12x2-30x. The graph of the
original function is plotted in the top
right while the graph of its derivative
is plotted in the bottom right.
-80
-60
-40
-20
0
20
40
60
-3 -2 -1 0 1 2 3 4 5
x
y
y=4x3–15x2+20
-40
-20
0
20
40
60
80
100
120
-3 -2 -1 0 1 2 3 4 5
x
dy/dx dy/dx = 12x2-30x
Let us compare the two graphs
and some of their features:
• The original function y(x) in the
region between x = -2 and x = 0
should have a positive slope.
In this region, dy/dx should be positive.
Indeed, dy/dx has positive values between x=-2 and x=0.
• At x = 0 and at x = 2.5, y(x) has
critical points (points where the
slope of the tangent line equals
zero) and therefore its derivative
should equal zero at those points.
The slope of the tangent lines
should be zero at these points.
Indeed, at x = 0 and x = 2.5, dy/dx equals zero.
• Between x = 0 and 2.5, y(x) is
decreasing in value which implies
that its derivative is negative in
this region.
Between x = 0 and x = 2.5, y(x)
should have a negative slope.
Indeed, between x=0 and x=2.5, dy/dx is negative in value.
The Shortcut…
You have seen so far two examples on calculating derivatives and their graphical
representation and meaning. Certainly, the definition for the derivative can be used
each time when one needs to be determined, but there exists a shortcut when it
comes to functions of the form: y(x) = Axn, where “A” is just a numerical constant and
“n” is an integer, positive or negative. Plugging this expression into the definition for
the derivative, you will find that:
dy/dx = nAxn-1
Using this shortcut to calculate the derivative of y(x) = x2, we get:
dy/dx = 2*x2-1 = 2x.
This is exactly what we got when we used the definition of the derivative several
slides ago. In our second example, we found that the derivative of y =4x3-15x2+20 to
be:
dy/dx = 12x2 – 30x
Does this shortcut work here? The answer is YES!!!
Some Simple Rules of Differentiation
The subject of derivatives is a huge branch of mathematics in of itself and
cannot possibly be contained here in this one tutorial. Hopefully, though,
you now have some knowledge and appreciation for what derivatives are.
The following are commonly known formulas for derivatives.
What are these
symbols?
“f” and “g” are
functions of x:
f(x) and g(x).
“c” represents a
constant
numerical value
and therefore is
not a function of
x.
“n” represents
an integer
number, positive
or negative.
f’ is shorthand
for df/dx.
Likewise, g’ is
shorthand for
dg/dx.
0
]
[
)
1 
c
dx
d
'
'
]
[
)
5 g
f
g
f
dx
d



'
*
'
*
]
*
[
)
7 f
g
g
f
g
f
dx
d


1
]
[
)
3 
 n
n
ncx
cx
dx
d
'
]
[
)
4 cf
cf
dx
d

x
x
dx
d
cos
]
[sin
)
8 
1
]
[
)
2 
x
dx
d
'
]
[
)
6 1
f
nf
f
dx
d n
n 

x
x
dx
d 2
sec
]
[tan
)
10 
x
x
dx
d
sin
]
[cos
)
9 

Problems to Solve
Use the knowledge you just learned to try to solve the following questions. If you need
assistance, feel free to ask any of the Physics 100 instructors.
2
9
.
4
10
30
)
(
:
/
Find
1) t
t
t
x
dt
dx 


  5
θ
3
sinθ
15
θ
y
:
dy/dθ 

Find
2)
3) Based upon the graph shown, where should the derivative of this function be
positive, negative, and zero?
-4
-3
-2
-1
0
1
2
3
-4 -3 -2 -1 0 1 2 3 4 5
x
y
Answers to Problems
4
15θ
15cosθ
dy/dθ 

2)
t
dt
/
dx 9.8
10
1) 

-4
-3
-2
-1
0
1
2
3
-4 -3 -2 -1 0 1 2 3 4 5
x
y
3) The derivative is:
a) negative between -3 and -2,
0 and 2, and between
3 and 4
b) positive between -2 and 0,
and between 2 and 3
c) zero at points -2, 0, 2, and 3.

More Related Content

Similar to DerivativesXP.ppt

Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Mel Anthony Pepito
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Matthew Leingang
 
February 11 2016
February 11 2016February 11 2016
February 11 2016khyps13
 
conference_poster_5_UCSB
conference_poster_5_UCSBconference_poster_5_UCSB
conference_poster_5_UCSBXining Li
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variablesRohan Bhatkar
 
Mathematical blog #1
Mathematical blog #1Mathematical blog #1
Mathematical blog #1Steven Pauly
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcupatrickpaz
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsJessica Garcia
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsJessica Garcia
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphsPalash Dey
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part iiwendyvazzy
 
L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equationsJames Tagara
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1leefong2310
 
Hssc ii introduction of limits
Hssc ii   introduction of limitsHssc ii   introduction of limits
Hssc ii introduction of limitsSadiq Hussain
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsnarayana dash
 

Similar to DerivativesXP.ppt (20)

Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
February 11 2016
February 11 2016February 11 2016
February 11 2016
 
conference_poster_5_UCSB
conference_poster_5_UCSBconference_poster_5_UCSB
conference_poster_5_UCSB
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
Mathematical blog #1
Mathematical blog #1Mathematical blog #1
Mathematical blog #1
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part ii
 
L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equations
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1
 
Cs jog
Cs jogCs jog
Cs jog
 
Lecture Notes In Algebra
Lecture Notes In AlgebraLecture Notes In Algebra
Lecture Notes In Algebra
 
Chapter 4 and half
Chapter 4 and halfChapter 4 and half
Chapter 4 and half
 
Hssc ii introduction of limits
Hssc ii   introduction of limitsHssc ii   introduction of limits
Hssc ii introduction of limits
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
 

Recently uploaded

Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 

Recently uploaded (20)

ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 

DerivativesXP.ppt

  • 2. Why Do We Need Derivatives? In physics, and life too, things are constantly “changing.” Specifically, what we’ll be interested with in the physics context is how physical quantities change. For example, how does an object’s velocity change over time, or how does the force acting on an object change over a distance traveled. Such changes are described mathematically by derivatives. A “derivative” is just a fancy name that describes how something is changing with respect to something else. What follows will be a brief summary and insight into this world of ever changing quantities called derivatives.
  • 3. 0 1 2 3 4 5 x y Getting Started Let’s start simple. Consider the function y(x) = 3 shown in the figure to the right. If you were asked “How does this function change with x?” or equivalently, “How does y change as a function of x?,” you would say, “It doesn’t change. It is a constant value of 3 everywhere.” And your response would be correct, but how would we describe your response mathematically? y(x) = 3 x1 x2
  • 4. Well, we define the change in the function y(x) with respect to the variable x, Δy/Δx, to be In English, this equation will tell us how the function y(x) changes over the distance between x1 and x2. Since y always equals 3 in our previous example, then Therefore, the function y(x) does not change over the interval x1 and x2. This mathematics will be how we describe the change in any function with respect to a given variable. Mathematics of “Change” . ) ( ) ( 1 2 1 2 x x x y x Y x y      . 0 3 3 1 2       x x x y The symbol “Δ,” called delta, represents the change in a variable. Translated, Δy reads: “The change in y,” which equals: “y final minus y initial” or mathematically: “Δy = yfinal – yinitial.” Understanding the symbols…
  • 5. Example of a Straight Line Now consider the function y(x) = 3x + 1 as drawn in the figure to the right. Again, how would y(x) change with x? Let’s look at the interval between x = 2 and x = 3: 3 1 7 10 2 3 ] 1 ) 2 ( * 3 [ ] 1 ) 3 ( * 3 [ 2 3 ) 2 ( ) 3 (                x y x y x y 0 5 10 15 20 0 1 2 3 4 5 6 X Y y(x) = 3x + 1 Δy=3 Δx=1 If we look at this graphically in Figure 2, we see that it is just the slope of the line!!! If we look at any interval of x, we would find that y(x) would change by the same amount, 3, over that interval because this function is just a straight line! Try it and see!!! Δy/Δx = 3 The function y changes by 3 units between x=2 and x=3. The slope of the line equals Δy/Δx Using our definition for the change in y(x) with respect to x from the previous slide (hit the left arrow key if you need to back to the previous slide), we get:
  • 6. More than Straight Lines On the previous slide, you learned that the slope of a straight line gives you the change in the function y(x) over the change in x. That concept will become the building block for everything that follows. x y Now let us consider a more complicated function other than a straight line. Consider the graph to the right. How would you describe how the function y(x) changes at any given value of x? Well, from what you just learned, the change in the function y(x) with respect to x should be given by the slope of a straight line. But what is the straight line???
  • 7. Graphs that Curve Let us just get started and choose a point X on the graph. The question to be answered is “How does y(x) change at the point X? x y To give the answer away, the change in y(x) with respect to x at point X is given by the slope of the tangent line at point X !!! X Slope of the tangent line at point X gives the change in y(x) with respect to x.: Slope=Δy/Δx. The question now is “How do we determine the slope of the tangent line at point X? Understanding the terminology… The word “tangent line” describes a line that intersects or touches a curve at only one point. At any given point on a smooth curve, there is only one unique tangent line and therefore there is only one value for the slope of that tangent line at that point.
  • 8. Determining the Slope of the Tangent Line To determine the slope of the tangent line, let us draw a different line that intersects the curve at both point X and point X + h. x y X X+h What is the slope of this line? From before, the slope of the line will be Δy/Δx: h y(X) h) y(X X h) (X y(X) h) y(X Δx Δy         This line is still not the tangent line at point X, but we can make it look more like the tangent line if we make the h a smaller value: X+h If you calculate the slope for this second line, it will have the same form as the above equation, except now h is a smaller value and therefore y(X+h) will be a different value. Δy=y(X+h)–y(X) Δx=(X+h)–X=h Because h is smaller, the point X+h is closer to the original point X than before. Therefore, the slope of this second line is closer in value to the slope of the tangent line than what the slope of the first line was.
  • 9. So What is a Derivative Anyway? Now, if we keep making h smaller and smaller, then the line that passes through the points X and X+h will start looking more and more like the line tangent to the curve at point X. Eventually, as h goes to zero, then the line that goes through X and X+h will become the tangent line!!! x y Slope of tangent line = ) zero to goes as ( ) ( ) ( h h X y h X y   X We give the symbol dx dy to represent the slope of the tangent line. This symbol, dx dy , is what we call the derivative of y with respect to x. Therefore, the term “derivative” just represents how the function y(x) instantaneously changes with respect to the variable x. As h goes to zero, Δy/Δx becomes dy/dx. X+h X+h X+h Tangent Line So, let’s write this out in mathematics… h gets smaller h gets even smaller h goes to zero! Let animation run!!!
  • 10. Recap So Far Let us recap what you have learned so far: • The slope of a straight line tells you how the function y(x) changes as the variable x changes: initial final initial final x x x y x y x y       ) ( ) ( slope • The “derivative” of y(x) at point X is the slope of the tangent line to the curve of y(x) at point X. • The derivative, dy/dx, is defined mathematically by the following equation: ) zero to goes as ( ) ( ) ( h h x y h x y dx dy    • As h goes to zero, Δy/Δx becomes dy/dx. • The derivative, dy/dx, is the instantaneous change of the function y(x).
  • 11. -15 -10 -5 0 5 10 15 Using the Definition for Derivatives Let us now apply our newly derived formula to calculate the derivative of y(x) = x2. x h h x h h h xh h h x h xh x h h x h x h h x y h x y dx dy 2 ) zero to goes as ( 2 ) zero to goes as ( 2 ) zero to goes as ( ) 2 ( ) zero to goes as ( ) ( ) ) (( ) zero to goes as ( ) ( ) ( 2 2 2 2 2 2                And therefore, x dx dy 2  Let us use this result to determine the derivative at x = 5. Since the derivative of y(x)=x2 equals 2x, then the derivative at x = 5 is 2*5 = 10. Therefore, the slope of the tangent line that passes through x = 5 has a slope of 10! Tangent line at x = 5 has a slope of 10. Therefore, the function y(x) has an instantaneous slope of 10 units at x=5. y = x2
  • 12. Graphing the Derivative In our previous example, we used the definition for the derivative to find the derivative of the function y = x2. When we did this, we found the derivative to be a function itself: dy/dx = 2x. This is just a straight line as plotted to the bottom right. -15 -10 -5 0 5 10 15 x y -25 -20 -15 -10 -5 0 5 10 15 20 25 -15 -10 -5 0 5 10 15 x dy/dx Let us see how the two graphs are related. • You know that the derivative of a function is just the slope of that function. For example, look at the graph of y = x2, for negative values of x, the slope of the tangent line should be negative. Looking at the graph of dy/dx, when x is negative, dy/dx is also negative! The slope of the tangent line at x = -9 is -18. -18 -8 The slope of the tangent line at x = -4 is -8. y = x2 dy/dx = 2x • When the slope of the tangent line equals zero, then the value of the derivative will equal zero! The slope of the tangent line at x = 0 is 0.
  • 13. Another Example “Repetition is good for the soul” as one teacher used to say, therefore, let us now do another example. Consider the formula y =4x3-15x2+20. This function is graphed to the right. Calculating the derivative, we find: -80 -60 -40 -20 0 20 40 60 -3 -2 -1 0 1 2 3 4 5 x y y=4x3–15x2+20 x x dx dy h h x h xh x h h h xh h xh h x h h x x h xh x h xh h x x h h x x h x h x h h x y h x y dx dy 30 12 ) zero to goes as ( 15 30 12 12 ) zero to goes as ( 15 30 12 12 ) zero to goes as ( ] 20 15 4 [ ] 20 ) 2 ( 15 ) 3 3 ( 4 [ ) zero to goes as ( ] 20 15 4 [ ] 20 ) ( 15 ) ( 4 [ ) zero to goes as ( ) ( ) ( 2 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 3 2 3                                   Definition of derivative Substituted in the expression for y(x) Terms that survived after some terms canceled Divided each term by h These terms survived after h went to zero
  • 14. Example Continued We have found that the derivative of y(x) = 4x3–15x2+20 to be: dy/dx = 12x2-30x. The graph of the original function is plotted in the top right while the graph of its derivative is plotted in the bottom right. -80 -60 -40 -20 0 20 40 60 -3 -2 -1 0 1 2 3 4 5 x y y=4x3–15x2+20 -40 -20 0 20 40 60 80 100 120 -3 -2 -1 0 1 2 3 4 5 x dy/dx dy/dx = 12x2-30x Let us compare the two graphs and some of their features: • The original function y(x) in the region between x = -2 and x = 0 should have a positive slope. In this region, dy/dx should be positive. Indeed, dy/dx has positive values between x=-2 and x=0. • At x = 0 and at x = 2.5, y(x) has critical points (points where the slope of the tangent line equals zero) and therefore its derivative should equal zero at those points. The slope of the tangent lines should be zero at these points. Indeed, at x = 0 and x = 2.5, dy/dx equals zero. • Between x = 0 and 2.5, y(x) is decreasing in value which implies that its derivative is negative in this region. Between x = 0 and x = 2.5, y(x) should have a negative slope. Indeed, between x=0 and x=2.5, dy/dx is negative in value.
  • 15. The Shortcut… You have seen so far two examples on calculating derivatives and their graphical representation and meaning. Certainly, the definition for the derivative can be used each time when one needs to be determined, but there exists a shortcut when it comes to functions of the form: y(x) = Axn, where “A” is just a numerical constant and “n” is an integer, positive or negative. Plugging this expression into the definition for the derivative, you will find that: dy/dx = nAxn-1 Using this shortcut to calculate the derivative of y(x) = x2, we get: dy/dx = 2*x2-1 = 2x. This is exactly what we got when we used the definition of the derivative several slides ago. In our second example, we found that the derivative of y =4x3-15x2+20 to be: dy/dx = 12x2 – 30x Does this shortcut work here? The answer is YES!!!
  • 16. Some Simple Rules of Differentiation The subject of derivatives is a huge branch of mathematics in of itself and cannot possibly be contained here in this one tutorial. Hopefully, though, you now have some knowledge and appreciation for what derivatives are. The following are commonly known formulas for derivatives. What are these symbols? “f” and “g” are functions of x: f(x) and g(x). “c” represents a constant numerical value and therefore is not a function of x. “n” represents an integer number, positive or negative. f’ is shorthand for df/dx. Likewise, g’ is shorthand for dg/dx. 0 ] [ ) 1  c dx d ' ' ] [ ) 5 g f g f dx d    ' * ' * ] * [ ) 7 f g g f g f dx d   1 ] [ ) 3   n n ncx cx dx d ' ] [ ) 4 cf cf dx d  x x dx d cos ] [sin ) 8  1 ] [ ) 2  x dx d ' ] [ ) 6 1 f nf f dx d n n   x x dx d 2 sec ] [tan ) 10  x x dx d sin ] [cos ) 9  
  • 17. Problems to Solve Use the knowledge you just learned to try to solve the following questions. If you need assistance, feel free to ask any of the Physics 100 instructors. 2 9 . 4 10 30 ) ( : / Find 1) t t t x dt dx      5 θ 3 sinθ 15 θ y : dy/dθ   Find 2) 3) Based upon the graph shown, where should the derivative of this function be positive, negative, and zero? -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4 5 x y
  • 18. Answers to Problems 4 15θ 15cosθ dy/dθ   2) t dt / dx 9.8 10 1)   -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4 5 x y 3) The derivative is: a) negative between -3 and -2, 0 and 2, and between 3 and 4 b) positive between -2 and 0, and between 2 and 3 c) zero at points -2, 0, 2, and 3.