SlideShare a Scribd company logo
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
x = amount to move
right (+) or left (–).
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3)
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right,
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
(4, –3)
P
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
B
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
B
C
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5),
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5), Q(3, -5),
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5), Q(3, -5), R(-6, 0)
P
Q
R
The coordinate of the
origin is (0, 0).
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).
(0, 6)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).
(0, -4)
(0, 6)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
(+,+)
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
(+,+)(–,+)
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
Q1Q2
Q3 Q4
(+,+)(–,+)
(–,–) (+,–)
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
Respectively, the signs of
the coordinates of each
quadrant are shown.
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
(5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
(5,4)(–5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4)
(–x, –y) is the reflection of
(x, y) across the origin.
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4)
(–x, –y) is the reflection of
(x, y) across the origin.
(–5, –4)
Rectangular Coordinate System
Movements and Coordinates
Rectangular Coordinate System
Movements and Coordinates
Let A be the point (2, 3).
Rectangular Coordinate System
A
(2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3)
Rectangular Coordinate System
A
(2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
Rectangular Coordinate System
A B
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
x–coord.
increased
by 4
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3)
x–coord.
increased
by 4
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
If the x–change is +, the point moves to the right.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
If the x–change is +, the point moves to the right.
If the x–change is – , the point moves to the left.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Again let A be the point (2, 3).
Rectangular Coordinate System
A
(2, 3)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7)
Rectangular Coordinate System
A
(2, 3)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
Rectangular Coordinate System
A
D
y–coord.
increased
by 4
(2, 3)
(2, 7)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
y–coord.
increased
by 4
(2, 3)
(2, 7)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
If the y–change is +, the point moves up.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
If the y–change is +, the point moves up.
If the y–change is – , the point moves down.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
We need to add 50 to the x–coordinate (to the right)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
We need to add 50 to the x–coordinate (to the right)
and subtract 30 from the y–coordinate (to go down).
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
We need to add 50 to the x–coordinate (to the right)
and subtract 30 from the y–coordinate (to go down).
Hence D has coordinate (–2 + 50, 4 – 30)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
We need to add 50 to the x–coordinate (to the right)
and subtract 30 from the y–coordinate (to go down).
Hence D has coordinate (–2 + 50, 4 – 30) = (48, –26).
Exercise. A.
a. Write down the coordinates of the following points.
Rectangular Coordinate System
AB
C
D
E
F
G
H
Ex. B. Plot the following points on the graph paper.
Rectangular Coordinate System
2. a. (2, 0) b. (–2, 0) c. (5, 0) d. (–8, 0) e. (–10, 0)
All these points are on which axis?
3. a. (0, 2) b. (0, –2) c. (0, 5) d. (0, –6) e. (0, 7)
All these points are on which quadrant?
4. a. (5, 2) b. (2, 5) c. (1, 7) d. (7, 1) e. (6, 6)
All these points are in which quadrant?
5. a. (–5, –2) b. (–2, –5) c. (–1, –7) d. (–7, –1) e. (–6, –6)
All these points are in which quadrant?
6. List three coordinates whose locations are in the 2nd
quadrant and plot them.
7. List three coordinates whose locations are in the 4th
quadrant and plot them.
C. Find the coordinates of the following points. Draw both
points for each problem.
Rectangular Coordinate System
The point that’s
8. 5 units to the right of (3, –2).
10. 4 units to the left of (–1, –5).
9. 6 units to the right of (–4, 2).
11. 6 units to the left of (2, –6).
12. 3 units to the left and 6 units down from (–2, 5).
13. 1 unit to the right and 5 units up from (–3, 1).
14. 3 units to the right and 3 units down from (–3, 4).
15. 2 units to the left and 6 units up from (4, –1).

More Related Content

What's hot

Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
Ravichandran Keerthi
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equationsmath123c
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabolaJean Leano
 
Plotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate PlanePlotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate Plane
Joey Valdriz
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
math260
 
Lecture co2 math 21-1
Lecture co2 math 21-1 Lecture co2 math 21-1
Lecture co2 math 21-1
Lawrence De Vera
 
Conic section
Conic sectionConic section
Conic section
Theepakorn Boonpleng
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinatesmath267
 
Unit 13.2
Unit 13.2Unit 13.2
Unit 13.2
Mark Ryder
 
22 the graphs of quadratic equations
22 the graphs of quadratic equations22 the graphs of quadratic equations
22 the graphs of quadratic equationsmath126
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
alg1testreview
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinatesmath267
 
1576 parabola
1576 parabola1576 parabola
1576 parabola
Dr Fereidoun Dejahang
 
Parabola complete
Parabola completeParabola complete
Parabola complete
MATOME PETER
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and linesmath123a
 
Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01
A.
 
Graphing parabola presentation
Graphing parabola presentationGraphing parabola presentation
Graphing parabola presentationVirgilio Paragele
 
3.4 ellipses
3.4 ellipses3.4 ellipses
3.4 ellipsesmath123c
 

What's hot (20)

Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 
Plotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate PlanePlotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate Plane
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
Lecture co2 math 21-1
Lecture co2 math 21-1 Lecture co2 math 21-1
Lecture co2 math 21-1
 
Conic section
Conic sectionConic section
Conic section
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
 
Unit 13.2
Unit 13.2Unit 13.2
Unit 13.2
 
22 the graphs of quadratic equations
22 the graphs of quadratic equations22 the graphs of quadratic equations
22 the graphs of quadratic equations
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
Parabola
ParabolaParabola
Parabola
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
1576 parabola
1576 parabola1576 parabola
1576 parabola
 
Parabola complete
Parabola completeParabola complete
Parabola complete
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and lines
 
Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01
 
Graphing parabola presentation
Graphing parabola presentationGraphing parabola presentation
Graphing parabola presentation
 
3.4 ellipses
3.4 ellipses3.4 ellipses
3.4 ellipses
 
Conic sections
Conic sectionsConic sections
Conic sections
 

Viewers also liked

MIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressionsMIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
Lawrence De Vera
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)itutor
 
Rectangular Coordinates, Introduction to Graphing Equations
Rectangular Coordinates, Introduction to Graphing EquationsRectangular Coordinates, Introduction to Graphing Equations
Rectangular Coordinates, Introduction to Graphing EquationsSandyPoinsett
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
Sukhwinder Kumar
 
co-ordinate systems
 co-ordinate systems co-ordinate systems
co-ordinate systems
Suganthi Thangaraj
 
Coordinate geometry
Coordinate geometry Coordinate geometry
Coordinate geometry
Anju Soman
 
Rectangular Coordinate System & Graphs
Rectangular Coordinate System & GraphsRectangular Coordinate System & Graphs
Rectangular Coordinate System & Graphsmobart02
 

Viewers also liked (8)

MIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressionsMIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)
 
Rectangular Coordinates, Introduction to Graphing Equations
Rectangular Coordinates, Introduction to Graphing EquationsRectangular Coordinates, Introduction to Graphing Equations
Rectangular Coordinates, Introduction to Graphing Equations
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
co-ordinate systems
 co-ordinate systems co-ordinate systems
co-ordinate systems
 
Coordinate geometry
Coordinate geometry Coordinate geometry
Coordinate geometry
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Rectangular Coordinate System & Graphs
Rectangular Coordinate System & GraphsRectangular Coordinate System & Graphs
Rectangular Coordinate System & Graphs
 

Similar to 3 rectangular coordinate system

10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
math260
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
KeizylleCajeme
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
KeizylleCajeme
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 grade
Siddu Lingesh
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variables
Mpumi Mokoena
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variables
mukundapriya
 
Cordinate geometry for class VIII and IX
Cordinate  geometry for class VIII and IXCordinate  geometry for class VIII and IX
Cordinate geometry for class VIII and IX
MD. G R Ahmed
 
The rectangular coordinate plane
The rectangular coordinate planeThe rectangular coordinate plane
The rectangular coordinate plane
MartinGeraldine
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
math266
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
math260
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
HarwinderSingh143
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
avb public school
 
1 6 Notes
1 6 Notes1 6 Notes
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
math267
 
Coordinate plane
Coordinate planeCoordinate plane
Coordinate plane
logginl
 

Similar to 3 rectangular coordinate system (20)

10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 grade
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variables
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variables
 
Cordinate geometry for class VIII and IX
Cordinate  geometry for class VIII and IXCordinate  geometry for class VIII and IX
Cordinate geometry for class VIII and IX
 
The rectangular coordinate plane
The rectangular coordinate planeThe rectangular coordinate plane
The rectangular coordinate plane
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
 
Maths presentation 22
Maths presentation 22Maths presentation 22
Maths presentation 22
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
 
1 6 Notes
1 6 Notes1 6 Notes
1 6 Notes
 
Analytic geometry basic concepts
Analytic geometry basic conceptsAnalytic geometry basic concepts
Analytic geometry basic concepts
 
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
 
Coordinate plane
Coordinate planeCoordinate plane
Coordinate plane
 

More from elem-alg-sample

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
elem-alg-sample
 
5 slopes of lines
5 slopes of lines5 slopes of lines
5 slopes of lines
elem-alg-sample
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
elem-alg-sample
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
elem-alg-sample
 
18 variations
18 variations18 variations
18 variations
elem-alg-sample
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
elem-alg-sample
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
elem-alg-sample
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
elem-alg-sample
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
elem-alg-sample
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
elem-alg-sample
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
elem-alg-sample
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
elem-alg-sample
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
elem-alg-sample
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
elem-alg-sample
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
elem-alg-sample
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
elem-alg-sample
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
elem-alg-sample
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
elem-alg-sample
 
4 literal equations
4 literal equations4 literal equations
4 literal equations
elem-alg-sample
 
3 linear equations
3 linear equations3 linear equations
3 linear equations
elem-alg-sample
 

More from elem-alg-sample (20)

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
 
5 slopes of lines
5 slopes of lines5 slopes of lines
5 slopes of lines
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
 
18 variations
18 variations18 variations
18 variations
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
 
4 literal equations
4 literal equations4 literal equations
4 literal equations
 
3 linear equations
3 linear equations3 linear equations
3 linear equations
 

Recently uploaded

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

3 rectangular coordinate system

  • 2. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). Rectangular Coordinate System
  • 3. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System
  • 4. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System
  • 5. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis.
  • 6. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis.
  • 7. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin.
  • 8. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where:
  • 9. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where: x = amount to move right (+) or left (–).
  • 10. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where: x = amount to move right (+) or left (–). y = amount to move up (+) or down (–).
  • 11. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). Rectangular Coordinate System
  • 12. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) Rectangular Coordinate System
  • 13. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, Rectangular Coordinate System
  • 14. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System (4, –3) P
  • 15. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5).
  • 16. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A
  • 17. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A B
  • 18. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A B C
  • 19. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C
  • 20. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P Q R
  • 21. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), P Q R
  • 22. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), Q(3, -5), P Q R
  • 23. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), Q(3, -5), R(-6, 0) P Q R
  • 24. The coordinate of the origin is (0, 0). (0,0) Rectangular Coordinate System
  • 25. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (0,0) Rectangular Coordinate System
  • 26. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0) (0,0) Rectangular Coordinate System
  • 27. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) (0,0) Rectangular Coordinate System
  • 28. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y).(0,0) Rectangular Coordinate System
  • 29. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y). (0, 6) (0,0) Rectangular Coordinate System
  • 30. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y). (0, -4) (0, 6) (0,0) Rectangular Coordinate System
  • 31. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV
  • 32. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV (+,+)
  • 33. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV (+,+)(–,+)
  • 34. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System Q1Q2 Q3 Q4 (+,+)(–,+) (–,–) (+,–) The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. Respectively, the signs of the coordinates of each quadrant are shown.
  • 35. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. (5,4) Rectangular Coordinate System
  • 36. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. (5,4)(–5,4) Rectangular Coordinate System
  • 37. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) Rectangular Coordinate System
  • 38. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) Rectangular Coordinate System
  • 39. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) (–x, –y) is the reflection of (x, y) across the origin. Rectangular Coordinate System
  • 40. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) (–x, –y) is the reflection of (x, y) across the origin. (–5, –4) Rectangular Coordinate System
  • 42. Movements and Coordinates Let A be the point (2, 3). Rectangular Coordinate System A (2, 3)
  • 43. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) Rectangular Coordinate System A (2, 3)
  • 44. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, Rectangular Coordinate System A B (2, 3) (6, 3)
  • 45. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B x–coord. increased by 4 (2, 3) (6, 3)
  • 46. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) x–coord. increased by 4 (2, 3) (6, 3)
  • 47. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 48. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 49. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 50. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. If the x–change is +, the point moves to the right. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 51. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. If the x–change is +, the point moves to the right. If the x–change is – , the point moves to the left. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 52. Again let A be the point (2, 3). Rectangular Coordinate System A (2, 3)
  • 53. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) Rectangular Coordinate System A (2, 3)
  • 54. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, Rectangular Coordinate System A D y–coord. increased by 4 (2, 3) (2, 7)
  • 55. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D y–coord. increased by 4 (2, 3) (2, 7)
  • 56. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 57. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 58. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 59. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. If the y–change is +, the point moves up. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 60. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. If the y–change is +, the point moves up. If the y–change is – , the point moves down. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 61. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A?
  • 62. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate.
  • 63. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4)
  • 64. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4).
  • 65. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A?
  • 66. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate.
  • 67. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100)
  • 68. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
  • 69. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A?
  • 70. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? We need to add 50 to the x–coordinate (to the right)
  • 71. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? We need to add 50 to the x–coordinate (to the right) and subtract 30 from the y–coordinate (to go down).
  • 72. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? We need to add 50 to the x–coordinate (to the right) and subtract 30 from the y–coordinate (to go down). Hence D has coordinate (–2 + 50, 4 – 30)
  • 73. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? We need to add 50 to the x–coordinate (to the right) and subtract 30 from the y–coordinate (to go down). Hence D has coordinate (–2 + 50, 4 – 30) = (48, –26).
  • 74. Exercise. A. a. Write down the coordinates of the following points. Rectangular Coordinate System AB C D E F G H
  • 75. Ex. B. Plot the following points on the graph paper. Rectangular Coordinate System 2. a. (2, 0) b. (–2, 0) c. (5, 0) d. (–8, 0) e. (–10, 0) All these points are on which axis? 3. a. (0, 2) b. (0, –2) c. (0, 5) d. (0, –6) e. (0, 7) All these points are on which quadrant? 4. a. (5, 2) b. (2, 5) c. (1, 7) d. (7, 1) e. (6, 6) All these points are in which quadrant? 5. a. (–5, –2) b. (–2, –5) c. (–1, –7) d. (–7, –1) e. (–6, –6) All these points are in which quadrant? 6. List three coordinates whose locations are in the 2nd quadrant and plot them. 7. List three coordinates whose locations are in the 4th quadrant and plot them.
  • 76. C. Find the coordinates of the following points. Draw both points for each problem. Rectangular Coordinate System The point that’s 8. 5 units to the right of (3, –2). 10. 4 units to the left of (–1, –5). 9. 6 units to the right of (–4, 2). 11. 6 units to the left of (2, –6). 12. 3 units to the left and 6 units down from (–2, 5). 13. 1 unit to the right and 5 units up from (–3, 1). 14. 3 units to the right and 3 units down from (–3, 4). 15. 2 units to the left and 6 units up from (4, –1).