SlideShare a Scribd company logo
Inverse Functions
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
The range of y  f  x  is the domain of y  f 1  x 
Testing For Inverse Functions
Testing For Inverse Functions
(1) Use a horizontal line test
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3   y



                           x                          x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3    y



                           x                                  x


   Only has an inverse relation            Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x                                             y3 x
    NOT UNIQUE                                        UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1      2 y 1
y          x
     3  2x     3 2y
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1           2 y 1
y          x
     3  2x          3 2y
       3  2 y x  2 y  1
         3 x  2 xy  2 y  1
        2 x  2  y  3 x  1
                       3x  1
                   y
                       2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND         f  f 1  x   x

e.g.            2x 1                          2x 1  
        f x                               3         1
                3  2x                          3  2x 
                            f 1  f  x   
                                               2x 1 
   2x 1            2 y 1                   2        2
y         x                                 3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1
      3 x  2 xy  2 y  1
     2 x  2  y  3 x  1
                    3x  1
                y
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND          f  f 1  x   x

e.g.            2x 1                           2x 1  
        f x                                3         1
                3  2x                           3  2x 
                            f 1  f  x   
                                                2x 1 
   2x 1            2 y 1                    2        2
y         x                                  3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND          f  f 1  x   x

e.g.            2x 1                           2x 1                         3x  1  
        f x                                3         1                   2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                          2x  2 
                            f 1  f  x   
                                                2x 1                             3x  1 
   2x 1            2 y 1                    2         2                  3  2         
y         x                                  3  2x                            2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND           f  f 1  x   x

e.g.            2x 1                           2x 1                          3x  1  
        f x                                3         1                    2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                           2x  2 
                            f 1  f  x   
                                                2x 1                              3x  1 
   2x 1            2 y 1                    2         2                   3  2         
y         x                                  3  2x                             2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x                 6x  2  2x  2
                                                                          
      3 x  2 xy  2 y  1                    4x  2  6  4x                 6x  6  6x  2
     2 x  2  y  3 x  1                 
                                              8x
                                                                           
                                                                             8x
                    3x  1                     8                              8
                y                          x                             x
                    2x  2
Restricting The Domain
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
                                                            y  x3

                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y
                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
                                                   1
     y  x     3
                                             yx   3

       Domain: all real x
       Range: all real y
y  ex
ii  y  e x
                y

                1

                        x
y  ex
ii  y  e x
                         y
    Domain: all real x
   Range: y > 0          1
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x                y  log x
         Range: y > 0          1
                                   1       x
    1
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
iii  y  x 2   y  x2   y



                              x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
                                      x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                        x
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2                 1
                                        y
    Domain: all real x                          yx   2


    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                   y  x2                              1
                                               y
    Domain: all real x                                         yx   2


    Range: y  0
    NO INVERSE                                             x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0                         Book 2
                         Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19
   Range: y  0

More Related Content

What's hot

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
Alexander Burt
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
JJkedst
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functionshisema01
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
Matthew Leingang
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
PLeach
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relationsJessica Garcia
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functionsmath260
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
arvin gutierrez
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6Debra Wallace
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functionstschmucker
 

What's hot (13)

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Ch07
Ch07Ch07
Ch07
 

Viewers also liked

12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)Nigel Simmons
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)Nigel Simmons
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)Nigel Simmons
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)Nigel Simmons
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)Nigel Simmons
 
12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 04 differentiating inverse trig (2013)12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 04 differentiating inverse trig (2013)Nigel Simmons
 
12 x1 t05 03 graphing inverse trig (2013)
12 x1 t05 03 graphing inverse trig (2013)12 x1 t05 03 graphing inverse trig (2013)
12 x1 t05 03 graphing inverse trig (2013)Nigel Simmons
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)Nigel Simmons
 
12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)Nigel Simmons
 
12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)Nigel Simmons
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)Nigel Simmons
 
12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)Nigel Simmons
 
12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)Nigel Simmons
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 

Viewers also liked (19)

12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)
 
12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 04 differentiating inverse trig (2013)12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 04 differentiating inverse trig (2013)
 
12 x1 t05 03 graphing inverse trig (2013)
12 x1 t05 03 graphing inverse trig (2013)12 x1 t05 03 graphing inverse trig (2013)
12 x1 t05 03 graphing inverse trig (2013)
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)
 
12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)
 
12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
 
12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)
 
12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar to 12 x1 t05 01 inverse functions (2013)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)Nigel Simmons
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)Nigel Simmons
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)Nigel Simmons
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functionshisema01
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
Eko Wijayanto
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse FunctionsRyanWatt
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
Nicko Salazar
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
dionesioable
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
RACHELPAQUITCAADA
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
math260
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
Charliez Jane Soriano
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functionsdicosmo178
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)Nigel Simmons
 

Similar to 12 x1 t05 01 inverse functions (2013) (20)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Lesson 51
Lesson 51Lesson 51
Lesson 51
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 

Recently uploaded (20)

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 

12 x1 t05 01 inverse functions (2013)

  • 2. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value.
  • 3. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y)
  • 4. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y
  • 5. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x 
  • 6. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x.
  • 7. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
  • 8. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x 
  • 9. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x  The range of y  f  x  is the domain of y  f 1  x 
  • 10. Testing For Inverse Functions
  • 11. Testing For Inverse Functions (1) Use a horizontal line test
  • 12. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x
  • 13. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x Only has an inverse relation
  • 14. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation
  • 15. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 16. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 17. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2
  • 18. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2 y x NOT UNIQUE
  • 19. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x NOT UNIQUE
  • 20. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x y3 x NOT UNIQUE UNIQUE
  • 21. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then;
  • 22. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x
  • 23. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x 6x  2  2x  2   3 x  2 xy  2 y  1 4x  2  6  4x 6x  6  6x  2 2 x  2  y  3 x  1  8x  8x 3x  1 8 8 y x x 2x  2
  • 32. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function.
  • 33. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible.
  • 34. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y y  x3 x
  • 35. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y x
  • 36. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3
  • 37. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 38. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 39. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 1 y  x 3 yx 3 Domain: all real x Range: all real y
  • 40. y  ex ii  y  e x y 1 x
  • 41. y  ex ii  y  e x y Domain: all real x Range: y > 0 1
  • 42. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x
  • 43. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 44. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 45. y  ex ii  y  e x y Domain: all real x y  log x Range: y > 0 1 1 x 1 f :xe y  y  log x Domain: x > 0 Range: all real y
  • 46. iii  y  x 2 y  x2 y x
  • 47. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 x
  • 48. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x
  • 49. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0
  • 50. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0
  • 51. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2
  • 52. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 53. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 54. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 55. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Book 2 Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19 Range: y  0