SlideShare a Scribd company logo
Approximations To Roots
(1) Halving The Interval
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x


                                               x




  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                          y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign, then at least one root of the equation
   f(x) = 0 lies in the interval a  x  b
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0              68  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0             68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                       1       2         3
      2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                   1       1.5        2
       1 .5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19        f 3  34  23  19
                                      16  0                   68  0
        1 3
   x1             f 2   2 4  22   19
         2
                          1 0                          1        2         3
      2
                                                 solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                    1       1.5        2
       1 .5
                                                solution lies in interval 1.5  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5   1.75   2
    1.75
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94       2
    1.94
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94        2
    1.94
                                       solution lies in interval 1.94  x  2
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97   2
    1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94       1.96       1.97
    1.96
                       0.32  0
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
                 so is the solution closer to 1.96 or 1.97?
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
                 so is the solution closer to 1.96 or 1.97?


                                                   1.96    1.965         1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
                 so is the solution closer to 1.96 or 1.97?

 f 1.965   1.9654  2 1.965   19
             0.16  0                            1.96    1.965         1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
                 so is the solution closer to 1.96 or 1.97?

 f 1.965   1.9654  2 1.965   19
             0.16  0                            1.96    1.965         1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
                 so is the solution closer to 1.96 or 1.97?

 f 1.965   1.9654  2 1.965   19
             0.16  0                            1.96    1.965         1.97

                     an approximation for the root is x  1.97
NOTE:
(2) Newton’s Method of Approximation
     y                                      x0 must be a good first
                                            approximation
                                y  f x   Newton’s method finds
                                            where the tangent at x0
                                            cuts the x axis
                                       x
NOTE:
(2) Newton’s Method of Approximation
     y                                      x0 must be a good first
                                            approximation
                                y  f x   Newton’s method finds
                                            where the tangent at x0
                                            cuts the x axis
                 x0                    x
NOTE:
(2) Newton’s Method of Approximation
     y                                      x0 must be a good first
                                            approximation
                                y  f x   Newton’s method finds
                                            where the tangent at x0
                                            cuts the x axis
            x1   x0                    x
NOTE:
(2) Newton’s Method of Approximation
     y                                      x0 must be a good first
                                            approximation
                                y  f x   Newton’s method finds
                                            where the tangent at x0
                                            cuts the x axis
            x1   x0                    x          If f  x0   0
                                             i.e. tangent || x axis
                                             the method will fail
NOTE:
(2) Newton’s Method of Approximation
     y                                           x0 must be a good first
                                                 approximation
                                     y  f x   Newton’s method finds
                                                 where the tangent at x0
                                                 cuts the x axis
             x1    x0                      x           If f  x0   0
                                                  i.e. tangent || x axis
                                                  the method will fail

Using the tangent at x0 to find x1
NOTE:
(2) Newton’s Method of Approximation
     y                                            x0 must be a good first
                                                  approximation
                                     y  f x    Newton’s method finds
                                                  where the tangent at x0
                                                  cuts the x axis
             x1    x0                        x          If f  x0   0
                                                      i.e. tangent || x axis
                                                      the method will fail

Using the tangent at x0 to find x1
                                       f  x0   0
                  slope of tangent 
                                        x0  x1
NOTE:
(2) Newton’s Method of Approximation
     y                                                x0 must be a good first
                                                      approximation
                                      y  f x       Newton’s method finds
                                                      where the tangent at x0
                                                      cuts the x axis
             x1    x0                            x          If f  x0   0
                                                          i.e. tangent || x axis
                                                          the method will fail

Using the tangent at x0 to find x1
                                           f  x0   0
                  slope of tangent 
                                             x0  x1
                                           f  x0   0
                            f   x0  
                                            x0  x1
 x0  x1  f   x0   f  x0 
                          f  x0 
            x0  x1 
                         f   x0 
 x0  x1  f   x0   f  x0 
                                               f  x0 
                                 x0  x1 
                                              f   x0 

If x0 is a good first approximation to a root of the equation f(x) = 0,
then a closer approximation is given by;
                                              f  x0 
                                 x1  x0 
                                              f  x0 
 x0  x1  f   x0   f  x0 
                                                f  x0 
                                  x0  x1 
                                               f   x0 

If x0 is a good first approximation to a root of the equation f(x) = 0,
then a closer approximation is given by;
                                               f  x0 
                                  x1  x0 
                                               f  x0 


Successive approximations x2 , x3 ,  , xn , xn 1are given by;

                                            f  xn 
                               xn 1  xn 
                                            f  xn 
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.5  2
                                                                  3


                            10.9375                       15.5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5         f 1.5  1.54  21.5  19   f 1.5  41.5  2
                                                                   3


                             10.9375                       15.5

                 f  x0 
   x1  x0 
                 f  x0 
                  10.9375
       1 .5 
                    15.5
       2.21
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5         f 1.5  1.54  21.5  19     f 1.5  41.5  2
                                                                     3


                             10.9375                         15.5

                 f  x0 
   x1  x0                            f 2.21  2.214  22.21  19
                 f  x0 
                                                 9.2744
                  10.9375
       1 .5                         f 2.21  42.21  2
                                                           3
                    15.5
       2.21                                        45.1754
9.2744
x2  2.21 
            45.1754
    2.00
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                             35
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                             35
          1
 x3  2 
          35
     1.97
9.2744         f 2   2 4  22   19
x2  2.21 
            45.1754               1
    2.00
                          f 2   42   2
                                         3


                                  35
 x3  2 
          1           f 1.97   1.97 4  21.97   19
          35                     0.001
     1.97
                      f 1.97   41.97   2
                                             3


                                  32.58
9.2744          f 2   2 4  22   19
x2  2.21 
            45.1754                1
    2.00
                           f 2   42   2
                                          3


                                   35
 x3  2 
          1            f 1.97   1.97 4  21.97   19
          35                      0.001
     1.97
                       f 1.97   41.97   2
                                              3


                                   32.58
               0.001
 x4  1.97 
               32.58
    1.97
9.2744                f 2   2 4  22   19
x2  2.21 
            45.1754                      1
    2.00
                                 f 2   42   2
                                                3


                                         35
 x3  2 
          1                  f 1.97   1.97 4  21.97   19
          35                            0.001
     1.97
                             f 1.97   41.97   2
                                                    3


                                         32.58
               0.001
 x4  1.97 
               32.58
    1.97

                 x  1.97 is a better approximation for the root
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
   f  x  2x
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
         52  23
    x1 
          2 5

    x1  4.8
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
                23  4.80 (to 2 dp)
Other Possible Problems with Newton’s Method
Other Possible Problems with Newton’s Method
          Approximations oscillate
Other Possible Problems with Newton’s Method
    y     Approximations oscillate




                                     x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



                                          x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                                            converges to wrong root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                              y             converges to wrong root



                                                                    x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                                       x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root
                                                     Exercise 6E; 1, 3ac,
                                                       6adf, 8a, 10, 12
            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root

More Related Content

Viewers also liked

12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)
Nigel Simmons
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)
Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
Nigel Simmons
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)Nigel Simmons
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)
Nigel Simmons
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)
Nigel Simmons
 
12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)Nigel Simmons
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)
Nigel Simmons
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
Nigel Simmons
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)Nigel Simmons
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)Nigel Simmons
 

Viewers also liked (12)

12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)
 
12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 03 graphing inverse trig (2012)
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)
 

Similar to 12 x1 t04 07 approximations to roots (2013)

12X1 T04 05 approximations to roots (2011)
12X1 T04 05 approximations to roots (2011)12X1 T04 05 approximations to roots (2011)
12X1 T04 05 approximations to roots (2011)
Nigel Simmons
 
12 x1 t04 07 approximations to roots (2012)
12 x1 t04 07 approximations to roots (2012)12 x1 t04 07 approximations to roots (2012)
12 x1 t04 07 approximations to roots (2012)
Nigel Simmons
 
Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
Dewi Setiyani Putri
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
Matthew Leingang
 
Q2
Q2Q2
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
Matthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
Mel Anthony Pepito
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
swartzje
 
Taylor error
Taylor errorTaylor error
Taylor error
janetvmiller
 
Taylor error
Taylor errorTaylor error
Taylor error
janetvmiller
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
coburgmaths
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
shivamvadgama50
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
Matthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
Matthew Leingang
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
Matthew Leingang
 

Similar to 12 x1 t04 07 approximations to roots (2013) (17)

12X1 T04 05 approximations to roots (2011)
12X1 T04 05 approximations to roots (2011)12X1 T04 05 approximations to roots (2011)
12X1 T04 05 approximations to roots (2011)
 
12 x1 t04 07 approximations to roots (2012)
12 x1 t04 07 approximations to roots (2012)12 x1 t04 07 approximations to roots (2012)
12 x1 t04 07 approximations to roots (2012)
 
Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Q2
Q2Q2
Q2
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
Taylor error
Taylor errorTaylor error
Taylor error
 
Taylor error
Taylor errorTaylor error
Taylor error
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
National Information Standards Organization (NISO)
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
zuzanka
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
melliereed
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
EduSkills OECD
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
BoudhayanBhattachari
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
 

Recently uploaded (20)

writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptxBeyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
Beyond Degrees - Empowering the Workforce in the Context of Skills-First.pptx
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
 

12 x1 t04 07 approximations to roots (2013)

  • 1. Approximations To Roots (1) Halving The Interval
  • 2. Approximations To Roots (1) Halving The Interval y y  f x x If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 3. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 4. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign, then at least one root of the equation f(x) = 0 lies in the interval a  x  b
  • 5. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3
  • 6. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0
  • 7. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2
  • 8. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2
  • 9. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5
  • 10. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5  solution lies in interval 1.5  x  2
  • 11. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75
  • 12. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2
  • 13. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88
  • 14. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2
  • 15. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94
  • 16. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94  solution lies in interval 1.94  x  2
  • 17. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97
  • 18. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97
  • 19. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0
  • 20. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97
  • 21. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 so is the solution closer to 1.96 or 1.97?
  • 22. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 so is the solution closer to 1.96 or 1.97? 1.96 1.965 1.97
  • 23. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 so is the solution closer to 1.96 or 1.97? f 1.965   1.9654  2 1.965   19  0.16  0 1.96 1.965 1.97
  • 24. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 so is the solution closer to 1.96 or 1.97? f 1.965   1.9654  2 1.965   19  0.16  0 1.96 1.965 1.97
  • 25. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 so is the solution closer to 1.96 or 1.97? f 1.965   1.9654  2 1.965   19  0.16  0 1.96 1.965 1.97  an approximation for the root is x  1.97
  • 26. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x
  • 27. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x0 x
  • 28. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x
  • 29. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail
  • 30. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail Using the tangent at x0 to find x1
  • 31. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail Using the tangent at x0 to find x1 f  x0   0 slope of tangent  x0  x1
  • 32. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail Using the tangent at x0 to find x1 f  x0   0 slope of tangent  x0  x1 f  x0   0 f   x0   x0  x1
  • 33.  x0  x1  f   x0   f  x0  f  x0  x0  x1  f   x0 
  • 34.  x0  x1  f   x0   f  x0  f  x0  x0  x1  f   x0  If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0 
  • 35.  x0  x1  f   x0   f  x0  f  x0  x0  x1  f   x0  If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 36. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0
  • 37. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2
  • 38. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.5  2 3  10.9375  15.5
  • 39. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.5  2 3  10.9375  15.5 f  x0  x1  x0  f  x0   10.9375  1 .5  15.5  2.21
  • 40. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.5  2 3  10.9375  15.5 f  x0  x1  x0  f 2.21  2.214  22.21  19 f  x0   9.2744  10.9375  1 .5  f 2.21  42.21  2 3 15.5  2.21  45.1754
  • 41. 9.2744 x2  2.21  45.1754  2.00
  • 42. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35
  • 43. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 1 x3  2  35  1.97
  • 44. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58
  • 45. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97
  • 46. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97  x  1.97 is a better approximation for the root
  • 47. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places
  • 48. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23
  • 49. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23 f  x  2x
  • 50. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1
  • 51. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5
  • 52. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 x1  2 5 x1  4.8
  • 53. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)
  • 54. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)  23  4.80 (to 2 dp)
  • 55. Other Possible Problems with Newton’s Method
  • 56. Other Possible Problems with Newton’s Method Approximations oscillate
  • 57. Other Possible Problems with Newton’s Method y Approximations oscillate x
  • 58. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x
  • 59. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 60. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 61. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point converges to wrong root
  • 62. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x
  • 63. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x want to find this root
  • 64. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 65. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 66. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root Exercise 6E; 1, 3ac, 6adf, 8a, 10, 12 x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root