SlideShare a Scribd company logo
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Amplificadores de Potência
(Estágios de Saída)
Prof. Jader A. De Lima
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
η% - eficiência do amplificador
Pout – potência de saída do amplificador entregue à carga
Pdc – potência DC retirada da fonte de alimentação
Ex: amplificador
de audio
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Output Stage Requirements:
• deliver a specified amount of signal power to a load
with acceptably low levels of signal distortion;
• high input impedance/low output impedance (why?);
• low quiescent power (when the input signal is zero
the power dissipation should be low).
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Collector current waveforms for transistors operating in (a) class A, (b) class B,
Estágios de Sáida (Estágios de Potência)
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
(Continued) (c) class AB, and (d) class C amplifier stages.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Estágios de Sáida (Estágios de Potência)
Classe A - Seguidor de Fonte
( )oLm
0ioutin
out
V
r//Rg
1
1
1
v
v
A
+
==
=
∞→=
x
x
in
i
v
r
m
L
m
oL0vinout
g
1
//R
g
1
//r//Rr ≅==
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Class A amplifiers ( the transistor conducts for the entire
cycle of the input signal) are highly (power) inefficient.
• Large power dissipation occurs even for no signal input (standby).
• Why save power?
• Preserve natural resources/reduce pollution
• Extend battery life
• Reduce costs, improve reliability (power wasted
is dissipated in the active devices: temperature↑,
performance ↓, chance of failure↑ and larger
devices are required → cost ↑
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Vin
VL
Vbe
- RL Is
Vcc - Vcesat
Vcc - Vcesat + Vbe
- RL Is + Vbe
Vin
VL
Vcc
-Vcc
Is
RL
Q1
~
Va
Vs
Rs
• Classe A (seguidor de emissor) com fonte de corrente
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• class-A efficiency:






−= CEsat
CC
V
V
vo
2
max






−== CEsat
CC
LL
V
V
RR
vo
IQ
2
1max
min
CC
CEsatCC
V
VV 2
4
1
max
−
≤η
Ex: VCC = 3V e VCEsat = 0.3V → ηmax = 20.5%
< 25% !!
{
( )
CEsat
CC
L
CCL
CEsat
CC
VV
R
VR
VV
−
−
≤
2
2
2
1
2
maxη
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• class-A exemple:
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Vout x VG
- 277mA x 12.5 ohm
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• class-A amplifier with inductive coupling
• small speaker of 3.2Ω (8Ω) needs only 100mW (500mW) to operate
• class-A amplifier may be adequate for output power of a few hundred mW
• using the transformer impedance reflexion, speaker load apperas (Np/Ns)2
larger
at the collector; Ex: if turns ratio is 10:1, a 3.2Ω-speaker appears as 320Ω load.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Classe B – Push-Pull
Transfer characteristic for the class B output stage
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Distorção de cruzamento (crossover distortion)
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
≈ 78.6%
• class-B efficiency:
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• class-B amplifier with inductive coupling
• however, audio transformers are bulky and expensive
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Classe AB – Push-Pull (eliminar distorção de cruzamento)
Class AB output stage. A bias voltage VBB is applied between the bases of QN and QP, giving rise to a bias current IQ .Thus, for
small vI, both transistors conduct and crossover distortion is almost completely eliminated.
• quiescent current
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• D1 (D2) must match VBE curves of QN (QP)
in saturation current , area and temperature;
→ only good approach for integrated deisgn
• compensating biased diodes
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
Determinar o rendimento do estágio:
i) Ibias (resistores)
ii) IC_pk (transistor limite saturação)
iii) IC_av
iv) Idc
v) Pdc
vi) PL_max
vii) η
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
A
I
I
CMAX
AV 309.0
1416.3
97.0
===
π
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
AAmAIdc 311.0309.038.2 =+=
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
A
I
I
CMAX
AV 309.0
1416.3
97.0
===
π
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
ex:
WAVxPdc 22.6311.020 ==
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
A
I
I
CMAX
AV 309.0
1416.3
97.0
===
π
AAmAIdc 311.0309.038.2 =+=
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
( ) ( ) W
R
VVV
P
L
CCCEsatCC
L 70.4
10
103.020
2
15.0
2
1
22
max =
−−
=
−−
=
ex:
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
A
I
I
CMAX
AV 309.0
1416.3
97.0
===
π
AAmAIdc 311.0309.038.2 =+=
WAVxPdc 22.60311.020 ==
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
%5.75%100
22.6
70.4
%100
max
max === xx
P
P
dc
L
η
ex:
( ) ( ) A
R
VVV
I
L
CCCEsatCC
C 97.0
10
103.0205.0
max =
−−
=
−−
=
A
I
I
CMAX
AV 309.0
1416.3
97.0
===
π
AAmAIdc 311.0309.038.2 =+=
WAVxPdc 22.60311.020 ==
( ) ( ) W
R
VVV
P
L
CCCEsatCC
L 70.4
10
103.020
2
15.0
2
1
22
max =
−−
=
−−
=
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• push-pull com multiplicador de VBE
VBB = VBE1 (1 + ( R2 / R1 ))
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
QPNPBEQQNPNBEQBB IVIVV @@ __ +=
- curvas dos BJTs devem ser consultadas para se determinar correto valor de VBB
R2/R1 definido
Projeto Multiplicador VBE
• passo #1
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
1
1_
2
max_max__
max__
21_max__max_3
max_max__max_33
R
V
I
R
VI
I
IIII
VVIRV
QBE
R
LNPN
o
NPN
NPNC
NPNB
RQCNPNBR
onpnBERCC
≅
==
++=
++=
ββ
• no máximo de excursão no semiciclo positivo tem-se:
R3 definido
para IB_Q1 << IR2
Obs:assume-se um valor inicial para IC_Q1 para se determinar VBE_Q1 a partir
Da curva característica IC x VBE de Q1
• passo #2
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
1
1_
1
max_max__
max__
11_max__max_4
max_max__max_44
R
V
I
R
VI
I
IIII
VVIRV
QBE
R
LPNP
o
PNP
PNPC
PNPB
RQEPNPBR
opnpBERCC
≅
=≅
++=
++=
ββ
• no máximo de excursão do semiciclo negativo tem-se:
R4 definido
• passo #3
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• passo #4
• re-calcular valores de IR2 e VBE_Q1
• no caso de diferença importante, reiniciar a partir do passo #2
Homework
• Considerando npn Q2N2222 e pnp Q2N3906, projetar um estágio
classe-AB para IQ = 5mA, RL = 8Ω e Vo_max = 2.5V. Admitir fontes
simétricas, sendo VCC = 5V.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• capacitive coupling is not the preferred coupling mechanism for audio push-
pull stages (bulky caps!)
• common-emitter driver: In addition to providing a higher input resistance, the
buffer Q1 biases the output transistors Q2 and Q3
driver
(Av ~ R3/R4)
small
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
The compound-pnp configuration.
The Darlington configuration.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• overload protection
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• overload protection
• short-circuit protection occurs by sensing
current threough R6
• VR6 = VBE_Q15
• When load current reaches a given limit, Q15
becomes forwardly-biased and diverts any
further base current of Q14
→ load current no longer increases
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• thermal shutdown
• Q2 acts as a swicth and is normally off at
operating temperatures
• with temperature increase above a given threshold,
positive tempco of Zener and negative tempco of
VBE_Q1 increses Q1 current
→ VBE_Q2 increases and Q2 turns on
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• power opamp
low-power
gain stage
current booster
• when Q5 turns on, it sources
additiona load current
• when Q6 turns on, it sinks
additiona load current
buffer
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Class B circuit with an op amp connected in a negative-feedback
loop to reduce crossover distortion
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• bridge amplifier
critical match
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• 741
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Class C (tuning amplifier)
• power devices conducts less than 180o
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
tank is driven by current pulses
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
rich in harmonics
(f, 2f, 3f, ..., nf)
only ressonance
frequency f
(like pure sinewave)
fundamental frequency f
Very-low impedance at harmonics
→ no gain
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Series to Parallel Conversion for RL Circuits
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Coil Q > 50
• class-C amps have Q > 10 usually
(for overall circuit)
narrowband operation
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
- for QL_coil = 100, determine:
• resonance frequency: fr
• bandwidth: BW
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
class-A, B, AB
class-D
Class D
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• power devices (normally MOSFETs) operate as switches (either fully ON or
OFF) → reducing their power losses (efficiency 90 – 95% is possible, as swicthes
have zero DC current when not switching and low VDS when conducting)
• input signal modulates a PWM carrier that drives the output switches
• commonly used in audio power amplifiers
PWM
~ lossless filter
high-side
low-side
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Despite the complexity involved, a properly designed class D amplifier
offers the following benefits:
• Reduction in size and weight of the amplifier
• Reduced power waste as heat dissipation and hence smaller (or no)
heat sinks
• Reduction in cost due to smaller heat sink and compact circuitry
• Very high power conversion efficiency, usually better than 90% above
one quarter of the amplifier's maximum power, and around 50% at low
power levels
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• The value of deadtime should be based on the device characteristics, ambient
operating conditions, parasitic parameters of switching devices and load conditions.
• Reduces the RMS output to a certain extent and increases THD.
No deadtime:
deadtime:
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Using Feedback to Improve Performance
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Many class D amplifiers utilize negative feedback from the PWM
output back to the input of the device.
• A closed-loop approach:
• improves linearity
• allows better power-supply rejection.
• Open-loop amplifier inherently has minimal (if any) supply rejection.
• In closed-loop topology, as the output waveform is sensed and fed
back to the input of the amplifier, deviations in the supply rail are
detected at the output and corrected by the control loop.
• Drawback: control loop must be carefully designed and compensated
to ensure stability under all operating conditions
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Many Class D amplifiers are implemented as full-bridge output stage.
• A full bridge uses two half-bridge stages to drive the load differentially.
• The full-bridge configuration operates by alternating the conduction path through
the load. This allows bidirectional current to flow through the load without the need
of a negative supply or a DC-blocking capacitor.
Half Bridge vs. Full Bridge
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Half-bridge amplifier:
• output swings between VDD and ground and idles at 50% duty cycle
→ output has a DC offset equal to VDD/2
• efficiency >90% while delivering more than 14W per channel into 8Ω.
• Full-bridge amplifier:
• does not require DC-blocking capacitors on outputs when operating from a
single supply
→ offset appears on each side of the load, which means that zero DC current
flows at the output.
• can achieve twice the output signal as the load is driven differentially. → 4x
increase in maximum output power over a half-bridge amplifier operating from
the same supply (at cost of twice as many MOSFET switches)
• efficiency in the range of 80% to 88% with 8Ω loads
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
deadtime:
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Class E
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• current I is diverted through C1 when S1 is opened (see IC and IS)
• RFC: only DC current
• Theorectical zero overlap between VDS and IS → ideally 100% efficiency
• LC resonator ensures single tone at output
RFC
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• C1: shunt cap to switch ( + device parasitics) – exact value for max efficiency
• L2 – C2 resonates below the operating frequency (↑Q → sinewave output current)
→ excessive inductive reactance → max efficiency at center frequency (not max power)
• ↑ L1 RF choke (only DC current)
high Qhigh L
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• switch driven with 50%-duty cycle
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Rise of Vds is delayed
until Is = 0
Vds returns to zero before Is increases
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• efficiency as function of duty-cycle
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Safe Operating Area (SOA)
• voltage and current conditions over which the device can be
expected to operate without self-damage
(only BJT´s)
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Transistor Power Rating
• temperature at collector junction places a limit on allowable power
dissipation PD.
Ex: 2N3904 → Tj (max) = 150o
C
2N3710 → Tj (max) = 200o
C
• ambient temperature: heat produced in junction passes through the transistor
case (metal or plastic) and radiates to the surrounding air (ambient
temperature, usually around 25o
C)
• Derating Factor: data sheets often specify PD (max) @25o
C.
Ex: 2N1936 has PD (max) @25o
C = 4W.
• What happens if temperature is higher than 25o
C? → power rating must be
derated (reduced)
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Power Derating
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Heat Sinks
• increase transistor power rating
→ area of transistor case is increased
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Ex: assuming the circuit below must operate from 0o
C to 50o
C, what is the
maximum power rating of the transistor?
• for TO-92 case, PD(max) = 625mW@25o
C
derating factor D = 5mW/o
C
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Ex: assuming the circuit below must operate from 0o
C to 50o
C, what is the
maximum power rating of the transistor?
• for TO-92 case, PD(max) = 625mW@25o
C
derating factor D = 5mW/o
C
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
• Failure mechanisms in ICs are accentuated by increased temperatures
(leakage in reverse biased diodes, electromigration, and hot-electron
trapping).
• To prevent failure, the die temperature must be kept within certain
ranges:
• commercial devices [0° to 70°C]
• military parts [–55° to 125°C]
• 40-pin DIP has a thermal resistance of 38 °C/W (natural) and 25 °C/W
(forced air convection).
→ DIP can dissipate 2 watts (natural) or 3 watts (forced), and still
keep the temperature difference between the die and the
environment below 75 °C
• PGA has thermal resistance from 15 ° to 30 °C/W.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Electromigration
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Valvulated Amplifiers
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Advantages of Valves
• Very linear (especially triodes) making it viable to use them in low distortion
linear circuits with little or no negative feedback
• Inherently suitable for high voltage circuits.
• Valves remained the only viable technology for very high power applications
such as radio and TV transmitters
• Electrically very robust, they can tolerate overloads for minutes, which would
•destroy BJT- and MOSFET-systems in milliseconds
• Withstand very high transient peak voltages without damage, suiting them to
certain military and industrial applications
• Softer clipping when overloading the circuit, which many audiophiles and
musicians subjectively believe gives a more pleasant sound.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
Disadvantages of Valves
• Tubes require cathode heater. Heater power represents a significant heat loss
• They require higher voltages for the anodes compared to solid state amplifiers
of similar power rating.
• Tubes are significantly larger than equivalent solid-state devices
• High impedance and low current output is unsuitable for the direct drive of
many real-world loads, notably various forms of electric motors.
• Valves have a shorter working life than solid state parts due to various failure
mechanisms (such as heat, cathode poisoning, breakage, or internal short-circuits)
• Tubes are available in only a single polarity, whereas transistors are available
in complementary polarities (e.g., NPN/PNP), making possible many circuit
configurations that cannot be realized directly with valves.
• Valve circuits must avoid introduction of noise from ac heater supplies.
EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
REFERÊNCIAS:
• Fundamentals of Microelectronics, B. Razavi, John Wiley
and Sons, 2006
• Microelectronic Circuits, A. Sedra and K. Smith, Oxford
university Press, 5th Edition, 2003
• Analysis and Design of Analog Circuits, Gary, Hurst,
Lewis and Meyer, 4th
Edition, 2001

More Related Content

What's hot

Irf3415
Irf3415Irf3415
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for IC
Chenming Hu
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
Simen Li
 
17b transformer class exercise solution_r13
17b transformer class exercise solution_r1317b transformer class exercise solution_r13
17b transformer class exercise solution_r13
MecmedMomod
 
Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5
Aravinda Koithyar
 
Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4
Aravinda Koithyar
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)
John Turner
 
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 NewOriginal MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
AUTHELECTRONIC
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
Shiwam Isrie
 
Switched capacitor circuits_shish
Switched capacitor circuits_shishSwitched capacitor circuits_shish
Switched capacitor circuits_shish
Shishira S Venkatesha
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
Shiwam Isrie
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
Magdi Mohamed
 
(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors
Gabriel O'Brien
 
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IROriginal IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
AUTHELECTRONIC
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
aicdesign
 
Dc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuitDc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuit
MahoneyKadir
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Shiwam Isrie
 
Chapter17
Chapter17Chapter17
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
aicdesign
 

What's hot (20)

Irf3415
Irf3415Irf3415
Irf3415
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for IC
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
17b transformer class exercise solution_r13
17b transformer class exercise solution_r1317b transformer class exercise solution_r13
17b transformer class exercise solution_r13
 
Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5
 
Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)
 
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 NewOriginal MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-8
 
Switched capacitor circuits_shish
Switched capacitor circuits_shishSwitched capacitor circuits_shish
Switched capacitor circuits_shish
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-11
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-12
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
 
(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors
 
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IROriginal IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
 
Lect2 up360 (100329)
Lect2 up360 (100329)Lect2 up360 (100329)
Lect2 up360 (100329)
 
Dc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuitDc analysis of four resistor biasing circuit
Dc analysis of four resistor biasing circuit
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
 
Chapter17
Chapter17Chapter17
Chapter17
 
Lect2 up300 (100328)
Lect2 up300 (100328)Lect2 up300 (100328)
Lect2 up300 (100328)
 

Similar to 06 amplificadores de potência

Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
divakarrvl
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
Fairul Izwan Muzamuddin
 
Firing Circuit
Firing CircuitFiring Circuit
Firing Circuit
ashutoshgupta1102
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
Simen Li
 
Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual
Santhosh Kumar
 
Design and analysis of low power pseudo differential
Design and analysis of low power pseudo differentialDesign and analysis of low power pseudo differential
Design and analysis of low power pseudo differential
eSAT Publishing House
 
Bjt amplifiers
Bjt amplifiersBjt amplifiers
Bjt amplifiers
Gastarot
 
EMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU DelftEMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU Delft
Dutch Power
 
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/sDesign of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
IJERA Editor
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth
 
Lab sheet
Lab sheetLab sheet
Lab sheet
rahul9374
 
L13 ic based triggering circuit
L13 ic based triggering circuitL13 ic based triggering circuit
L13 ic based triggering circuit
Mohammad Umar Rehman
 
Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3
Aravinda Koithyar
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
ls234
 
Irjet v4 i6288
Irjet v4 i6288Irjet v4 i6288
Irjet v4 i6288
Dinesh shetty
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission Line
IRJET Journal
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
ssuser39bdb9
 
Electronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMCElectronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMC
Dr Naim R Kidwai
 
Design of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical ApplicationsDesign of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical Applications
IOSR Journals
 

Similar to 06 amplificadores de potência (20)

Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 
Firing Circuit
Firing CircuitFiring Circuit
Firing Circuit
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual Power System Simulation Laboratory Manual
Power System Simulation Laboratory Manual
 
Design and analysis of low power pseudo differential
Design and analysis of low power pseudo differentialDesign and analysis of low power pseudo differential
Design and analysis of low power pseudo differential
 
Bjt amplifiers
Bjt amplifiersBjt amplifiers
Bjt amplifiers
 
EMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU DelftEMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU Delft
 
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/sDesign of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
Design of a current Mode Sample and Hold Circuit at sampling rate of 150 MS/s
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
L13 ic based triggering circuit
L13 ic based triggering circuitL13 ic based triggering circuit
L13 ic based triggering circuit
 
Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3Analog Electronic Circuits - Module 3
Analog Electronic Circuits - Module 3
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Irjet v4 i6288
Irjet v4 i6288Irjet v4 i6288
Irjet v4 i6288
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission Line
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
 
Electronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMCElectronic DC Voltmeter using PMMC
Electronic DC Voltmeter using PMMC
 
Design of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical ApplicationsDesign of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical Applications
 

More from Universidade Federal de Santa Catarina

01 amplificadores elementares transistorizados
01 amplificadores elementares transistorizados01 amplificadores elementares transistorizados
01 amplificadores elementares transistorizados
Universidade Federal de Santa Catarina
 
09 sistemas realimentados
09 sistemas realimentados09 sistemas realimentados
09 sistemas realimentados
Universidade Federal de Santa Catarina
 
11 osciladores
11 osciladores11 osciladores
Espelhos de corrente
Espelhos de correnteEspelhos de corrente
05 amplificador diferencial
05 amplificador diferencial05 amplificador diferencial
05 amplificador diferencial
Universidade Federal de Santa Catarina
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
Universidade Federal de Santa Catarina
 
08 resposta em frequencia de amplificadores
08 resposta em frequencia de amplificadores08 resposta em frequencia de amplificadores
08 resposta em frequencia de amplificadores
Universidade Federal de Santa Catarina
 
08 amplificador operacional
08 amplificador operacional08 amplificador operacional
08 amplificador operacional
Universidade Federal de Santa Catarina
 
Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)
Universidade Federal de Santa Catarina
 
Circuitos básicos a diodos
Circuitos básicos a diodosCircuitos básicos a diodos
Circuitos básicos a diodos
Universidade Federal de Santa Catarina
 
Mixed mode ch4_v1
Mixed mode ch4_v1Mixed mode ch4_v1
Mixed mode ch5_v1
Mixed mode ch5_v1Mixed mode ch5_v1
Design of Mixed-Mode ICs - Module 3
Design of Mixed-Mode ICs - Module 3Design of Mixed-Mode ICs - Module 3
Design of Mixed-Mode ICs - Module 3
Universidade Federal de Santa Catarina
 
Design of Mixed-Mode ICs - Module 1
Design of Mixed-Mode ICs - Module 1Design of Mixed-Mode ICs - Module 1
Design of Mixed-Mode ICs - Module 1
Universidade Federal de Santa Catarina
 
05 voltage & current references
05 voltage & current references05 voltage & current references
05 voltage & current references
Universidade Federal de Santa Catarina
 

More from Universidade Federal de Santa Catarina (15)

01 amplificadores elementares transistorizados
01 amplificadores elementares transistorizados01 amplificadores elementares transistorizados
01 amplificadores elementares transistorizados
 
09 sistemas realimentados
09 sistemas realimentados09 sistemas realimentados
09 sistemas realimentados
 
11 osciladores
11 osciladores11 osciladores
11 osciladores
 
Espelhos de corrente
Espelhos de correnteEspelhos de corrente
Espelhos de corrente
 
05 amplificador diferencial
05 amplificador diferencial05 amplificador diferencial
05 amplificador diferencial
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
 
08 resposta em frequencia de amplificadores
08 resposta em frequencia de amplificadores08 resposta em frequencia de amplificadores
08 resposta em frequencia de amplificadores
 
08 amplificador operacional
08 amplificador operacional08 amplificador operacional
08 amplificador operacional
 
Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)
 
Circuitos básicos a diodos
Circuitos básicos a diodosCircuitos básicos a diodos
Circuitos básicos a diodos
 
Mixed mode ch4_v1
Mixed mode ch4_v1Mixed mode ch4_v1
Mixed mode ch4_v1
 
Mixed mode ch5_v1
Mixed mode ch5_v1Mixed mode ch5_v1
Mixed mode ch5_v1
 
Design of Mixed-Mode ICs - Module 3
Design of Mixed-Mode ICs - Module 3Design of Mixed-Mode ICs - Module 3
Design of Mixed-Mode ICs - Module 3
 
Design of Mixed-Mode ICs - Module 1
Design of Mixed-Mode ICs - Module 1Design of Mixed-Mode ICs - Module 1
Design of Mixed-Mode ICs - Module 1
 
05 voltage & current references
05 voltage & current references05 voltage & current references
05 voltage & current references
 

Recently uploaded

Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 

Recently uploaded (20)

Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 

06 amplificadores de potência

  • 1. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Amplificadores de Potência (Estágios de Saída) Prof. Jader A. De Lima
  • 2. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 η% - eficiência do amplificador Pout – potência de saída do amplificador entregue à carga Pdc – potência DC retirada da fonte de alimentação Ex: amplificador de audio
  • 3. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Output Stage Requirements: • deliver a specified amount of signal power to a load with acceptably low levels of signal distortion; • high input impedance/low output impedance (why?); • low quiescent power (when the input signal is zero the power dissipation should be low).
  • 4. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Collector current waveforms for transistors operating in (a) class A, (b) class B, Estágios de Sáida (Estágios de Potência)
  • 5. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 (Continued) (c) class AB, and (d) class C amplifier stages.
  • 6. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Estágios de Sáida (Estágios de Potência) Classe A - Seguidor de Fonte ( )oLm 0ioutin out V r//Rg 1 1 1 v v A + == = ∞→= x x in i v r m L m oL0vinout g 1 //R g 1 //r//Rr ≅==
  • 7. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Class A amplifiers ( the transistor conducts for the entire cycle of the input signal) are highly (power) inefficient. • Large power dissipation occurs even for no signal input (standby). • Why save power? • Preserve natural resources/reduce pollution • Extend battery life • Reduce costs, improve reliability (power wasted is dissipated in the active devices: temperature↑, performance ↓, chance of failure↑ and larger devices are required → cost ↑
  • 8. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Vin VL Vbe - RL Is Vcc - Vcesat Vcc - Vcesat + Vbe - RL Is + Vbe Vin VL Vcc -Vcc Is RL Q1 ~ Va Vs Rs • Classe A (seguidor de emissor) com fonte de corrente
  • 9. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • class-A efficiency:       −= CEsat CC V V vo 2 max       −== CEsat CC LL V V RR vo IQ 2 1max min CC CEsatCC V VV 2 4 1 max − ≤η Ex: VCC = 3V e VCEsat = 0.3V → ηmax = 20.5% < 25% !! { ( ) CEsat CC L CCL CEsat CC VV R VR VV − − ≤ 2 2 2 1 2 maxη
  • 10. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • class-A exemple:
  • 11. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Vout x VG - 277mA x 12.5 ohm
  • 12. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 13. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 14. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • class-A amplifier with inductive coupling • small speaker of 3.2Ω (8Ω) needs only 100mW (500mW) to operate • class-A amplifier may be adequate for output power of a few hundred mW • using the transformer impedance reflexion, speaker load apperas (Np/Ns)2 larger at the collector; Ex: if turns ratio is 10:1, a 3.2Ω-speaker appears as 320Ω load.
  • 15. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 16. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 17. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Classe B – Push-Pull Transfer characteristic for the class B output stage
  • 18. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Distorção de cruzamento (crossover distortion)
  • 19. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ≈ 78.6% • class-B efficiency:
  • 20. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 21. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • class-B amplifier with inductive coupling • however, audio transformers are bulky and expensive
  • 22. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Classe AB – Push-Pull (eliminar distorção de cruzamento) Class AB output stage. A bias voltage VBB is applied between the bases of QN and QP, giving rise to a bias current IQ .Thus, for small vI, both transistors conduct and crossover distortion is almost completely eliminated. • quiescent current
  • 23. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 24. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • D1 (D2) must match VBE curves of QN (QP) in saturation current , area and temperature; → only good approach for integrated deisgn • compensating biased diodes
  • 25. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex: Determinar o rendimento do estágio: i) Ibias (resistores) ii) IC_pk (transistor limite saturação) iii) IC_av iv) Idc v) Pdc vi) PL_max vii) η
  • 26. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex:
  • 27. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex: ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− =
  • 28. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex: A I I CMAX AV 309.0 1416.3 97.0 === π ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− =
  • 29. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex: AAmAIdc 311.0309.038.2 =+= ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− = A I I CMAX AV 309.0 1416.3 97.0 === π
  • 30. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ex: WAVxPdc 22.6311.020 == ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− = A I I CMAX AV 309.0 1416.3 97.0 === π AAmAIdc 311.0309.038.2 =+=
  • 31. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 ( ) ( ) W R VVV P L CCCEsatCC L 70.4 10 103.020 2 15.0 2 1 22 max = −− = −− = ex: ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− = A I I CMAX AV 309.0 1416.3 97.0 === π AAmAIdc 311.0309.038.2 =+= WAVxPdc 22.60311.020 ==
  • 32. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 %5.75%100 22.6 70.4 %100 max max === xx P P dc L η ex: ( ) ( ) A R VVV I L CCCEsatCC C 97.0 10 103.0205.0 max = −− = −− = A I I CMAX AV 309.0 1416.3 97.0 === π AAmAIdc 311.0309.038.2 =+= WAVxPdc 22.60311.020 == ( ) ( ) W R VVV P L CCCEsatCC L 70.4 10 103.020 2 15.0 2 1 22 max = −− = −− =
  • 33. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • push-pull com multiplicador de VBE VBB = VBE1 (1 + ( R2 / R1 ))
  • 34. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 QPNPBEQQNPNBEQBB IVIVV @@ __ += - curvas dos BJTs devem ser consultadas para se determinar correto valor de VBB R2/R1 definido Projeto Multiplicador VBE • passo #1
  • 35. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 1 1_ 2 max_max__ max__ 21_max__max_3 max_max__max_33 R V I R VI I IIII VVIRV QBE R LNPN o NPN NPNC NPNB RQCNPNBR onpnBERCC ≅ == ++= ++= ββ • no máximo de excursão no semiciclo positivo tem-se: R3 definido para IB_Q1 << IR2 Obs:assume-se um valor inicial para IC_Q1 para se determinar VBE_Q1 a partir Da curva característica IC x VBE de Q1 • passo #2
  • 36. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 1 1_ 1 max_max__ max__ 11_max__max_4 max_max__max_44 R V I R VI I IIII VVIRV QBE R LPNP o PNP PNPC PNPB RQEPNPBR opnpBERCC ≅ =≅ ++= ++= ββ • no máximo de excursão do semiciclo negativo tem-se: R4 definido • passo #3
  • 37. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • passo #4 • re-calcular valores de IR2 e VBE_Q1 • no caso de diferença importante, reiniciar a partir do passo #2 Homework • Considerando npn Q2N2222 e pnp Q2N3906, projetar um estágio classe-AB para IQ = 5mA, RL = 8Ω e Vo_max = 2.5V. Admitir fontes simétricas, sendo VCC = 5V.
  • 38. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 39. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 40. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 41. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 42. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • capacitive coupling is not the preferred coupling mechanism for audio push- pull stages (bulky caps!) • common-emitter driver: In addition to providing a higher input resistance, the buffer Q1 biases the output transistors Q2 and Q3 driver (Av ~ R3/R4) small
  • 43. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 The compound-pnp configuration. The Darlington configuration.
  • 44. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 45. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 46. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • overload protection
  • 47. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • overload protection • short-circuit protection occurs by sensing current threough R6 • VR6 = VBE_Q15 • When load current reaches a given limit, Q15 becomes forwardly-biased and diverts any further base current of Q14 → load current no longer increases
  • 48. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • thermal shutdown • Q2 acts as a swicth and is normally off at operating temperatures • with temperature increase above a given threshold, positive tempco of Zener and negative tempco of VBE_Q1 increses Q1 current → VBE_Q2 increases and Q2 turns on
  • 49. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • power opamp low-power gain stage current booster • when Q5 turns on, it sources additiona load current • when Q6 turns on, it sinks additiona load current buffer
  • 50. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Class B circuit with an op amp connected in a negative-feedback loop to reduce crossover distortion
  • 51. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • bridge amplifier critical match
  • 52. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • 741
  • 53. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Class C (tuning amplifier) • power devices conducts less than 180o
  • 54. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 55. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 56. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 tank is driven by current pulses
  • 57. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 rich in harmonics (f, 2f, 3f, ..., nf) only ressonance frequency f (like pure sinewave) fundamental frequency f Very-low impedance at harmonics → no gain
  • 58. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Series to Parallel Conversion for RL Circuits
  • 59. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Coil Q > 50 • class-C amps have Q > 10 usually (for overall circuit) narrowband operation
  • 60. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 - for QL_coil = 100, determine: • resonance frequency: fr • bandwidth: BW
  • 61. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 62. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 63. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 class-A, B, AB class-D Class D
  • 64. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 65. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • power devices (normally MOSFETs) operate as switches (either fully ON or OFF) → reducing their power losses (efficiency 90 – 95% is possible, as swicthes have zero DC current when not switching and low VDS when conducting) • input signal modulates a PWM carrier that drives the output switches • commonly used in audio power amplifiers PWM ~ lossless filter high-side low-side
  • 66. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 67. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 68. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Despite the complexity involved, a properly designed class D amplifier offers the following benefits: • Reduction in size and weight of the amplifier • Reduced power waste as heat dissipation and hence smaller (or no) heat sinks • Reduction in cost due to smaller heat sink and compact circuitry • Very high power conversion efficiency, usually better than 90% above one quarter of the amplifier's maximum power, and around 50% at low power levels
  • 69. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 70. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 71. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • The value of deadtime should be based on the device characteristics, ambient operating conditions, parasitic parameters of switching devices and load conditions. • Reduces the RMS output to a certain extent and increases THD. No deadtime: deadtime:
  • 72. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 73. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Using Feedback to Improve Performance
  • 74. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 75. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 76. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Many class D amplifiers utilize negative feedback from the PWM output back to the input of the device. • A closed-loop approach: • improves linearity • allows better power-supply rejection. • Open-loop amplifier inherently has minimal (if any) supply rejection. • In closed-loop topology, as the output waveform is sensed and fed back to the input of the amplifier, deviations in the supply rail are detected at the output and corrected by the control loop. • Drawback: control loop must be carefully designed and compensated to ensure stability under all operating conditions
  • 77. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 78. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Many Class D amplifiers are implemented as full-bridge output stage. • A full bridge uses two half-bridge stages to drive the load differentially. • The full-bridge configuration operates by alternating the conduction path through the load. This allows bidirectional current to flow through the load without the need of a negative supply or a DC-blocking capacitor. Half Bridge vs. Full Bridge
  • 79. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 80. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 81. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Half-bridge amplifier: • output swings between VDD and ground and idles at 50% duty cycle → output has a DC offset equal to VDD/2 • efficiency >90% while delivering more than 14W per channel into 8Ω. • Full-bridge amplifier: • does not require DC-blocking capacitors on outputs when operating from a single supply → offset appears on each side of the load, which means that zero DC current flows at the output. • can achieve twice the output signal as the load is driven differentially. → 4x increase in maximum output power over a half-bridge amplifier operating from the same supply (at cost of twice as many MOSFET switches) • efficiency in the range of 80% to 88% with 8Ω loads
  • 82. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 deadtime:
  • 83. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 84. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Class E
  • 85. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • current I is diverted through C1 when S1 is opened (see IC and IS) • RFC: only DC current • Theorectical zero overlap between VDS and IS → ideally 100% efficiency • LC resonator ensures single tone at output RFC
  • 86. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • C1: shunt cap to switch ( + device parasitics) – exact value for max efficiency • L2 – C2 resonates below the operating frequency (↑Q → sinewave output current) → excessive inductive reactance → max efficiency at center frequency (not max power) • ↑ L1 RF choke (only DC current) high Qhigh L
  • 87. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 88. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • switch driven with 50%-duty cycle
  • 89. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Rise of Vds is delayed until Is = 0 Vds returns to zero before Is increases
  • 90. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • efficiency as function of duty-cycle
  • 91. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Safe Operating Area (SOA) • voltage and current conditions over which the device can be expected to operate without self-damage (only BJT´s)
  • 92. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017
  • 93. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Transistor Power Rating • temperature at collector junction places a limit on allowable power dissipation PD. Ex: 2N3904 → Tj (max) = 150o C 2N3710 → Tj (max) = 200o C • ambient temperature: heat produced in junction passes through the transistor case (metal or plastic) and radiates to the surrounding air (ambient temperature, usually around 25o C) • Derating Factor: data sheets often specify PD (max) @25o C. Ex: 2N1936 has PD (max) @25o C = 4W. • What happens if temperature is higher than 25o C? → power rating must be derated (reduced)
  • 94. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Power Derating
  • 95. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Heat Sinks • increase transistor power rating → area of transistor case is increased
  • 96. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Ex: assuming the circuit below must operate from 0o C to 50o C, what is the maximum power rating of the transistor? • for TO-92 case, PD(max) = 625mW@25o C derating factor D = 5mW/o C
  • 97. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Ex: assuming the circuit below must operate from 0o C to 50o C, what is the maximum power rating of the transistor? • for TO-92 case, PD(max) = 625mW@25o C derating factor D = 5mW/o C
  • 98. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 • Failure mechanisms in ICs are accentuated by increased temperatures (leakage in reverse biased diodes, electromigration, and hot-electron trapping). • To prevent failure, the die temperature must be kept within certain ranges: • commercial devices [0° to 70°C] • military parts [–55° to 125°C] • 40-pin DIP has a thermal resistance of 38 °C/W (natural) and 25 °C/W (forced air convection). → DIP can dissipate 2 watts (natural) or 3 watts (forced), and still keep the temperature difference between the die and the environment below 75 °C • PGA has thermal resistance from 15 ° to 30 °C/W.
  • 99. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Electromigration
  • 100. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Valvulated Amplifiers
  • 101. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Advantages of Valves • Very linear (especially triodes) making it viable to use them in low distortion linear circuits with little or no negative feedback • Inherently suitable for high voltage circuits. • Valves remained the only viable technology for very high power applications such as radio and TV transmitters • Electrically very robust, they can tolerate overloads for minutes, which would •destroy BJT- and MOSFET-systems in milliseconds • Withstand very high transient peak voltages without damage, suiting them to certain military and industrial applications • Softer clipping when overloading the circuit, which many audiophiles and musicians subjectively believe gives a more pleasant sound.
  • 102. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 Disadvantages of Valves • Tubes require cathode heater. Heater power represents a significant heat loss • They require higher voltages for the anodes compared to solid state amplifiers of similar power rating. • Tubes are significantly larger than equivalent solid-state devices • High impedance and low current output is unsuitable for the direct drive of many real-world loads, notably various forms of electric motors. • Valves have a shorter working life than solid state parts due to various failure mechanisms (such as heat, cathode poisoning, breakage, or internal short-circuits) • Tubes are available in only a single polarity, whereas transistors are available in complementary polarities (e.g., NPN/PNP), making possible many circuit configurations that cannot be realized directly with valves. • Valve circuits must avoid introduction of noise from ac heater supplies.
  • 103. EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2017 REFERÊNCIAS: • Fundamentals of Microelectronics, B. Razavi, John Wiley and Sons, 2006 • Microelectronic Circuits, A. Sedra and K. Smith, Oxford university Press, 5th Edition, 2003 • Analysis and Design of Analog Circuits, Gary, Hurst, Lewis and Meyer, 4th Edition, 2001