Diode
 Electronic Circuits
     CHO, Yong Heui
Electronic Circuits
1. Ideal diode

 Nonlinear device




          No voltage drop       External circuits


                            2              EM Wave Lab
Electronic Circuits
1. Ideal diode

 Rectifier: ideal diode




                                      Output Waveform




            Equivalent Circuits
                                      Waveform of V D

                                  3             EM Wave Lab
Electronic Circuits
1. Ideal diode

 Logic circuits

 Logic definition:   0 V  [0], 5 V  [1]




 Y = A + B +         Y = A · B · C
 C

                                     4            EM Wave Lab
Electronic Circuits
2. Junction diode

  Forward bias

                                i = I s (e v/nVT – 1)
                         I S ( T ) : reverse-biased saturation current
                           depends on Temp. and junction area
                              ≈ 10 -15 (doubles at every 5 ºC)


                                  V T = kT/q



                              V 2 – V 1 = 2.3nV T ·log(I 2 /I 1 )



                    2.3 V T is theoretical threshold swing : 60 mV


                     5                                   EM Wave Lab
Electronic Circuits
2. Junction diode

  Temperature dependence


                               Reverse-bias / Breakdown regions




     i = I s (e v/nVT – 1)   i ≈ I s when v is negative and more than a few V T




     Reverse current : doubles for every 10
     ºC

     Zener breakdown and avalanche breakdown

                                        6                                EM Wave Lab
Electronic Circuits
3. Modeling

 Exponential model

                                 I D = (V DD – V D ) / R
                                 I D = I s e v/nVT




   The exponential model:
   I D = I s e v/nVT


                 Graphical
                 Analysis



                             7                               EM Wave Lab
Electronic Circuits
3. Modeling

 Piecewise linear model




        i D = 0, v D ≤ V D0

     i D = (v D - V D0 ) / r D , v D ≥ V D0

                                              8         EM Wave Lab
Electronic Circuits
3. Modeling

 Constant voltage model




    i D = 0, v D ≤ V D

  i D = undefined , v D ≥ V D



                                9         EM Wave Lab
Electronic Circuits
3. Modeling

 Small signal model

                                                   I D = I s e v/nVT
                                                  v D (t) = V D + v d (t)



                       i D (t) ≈ I D (1 + v d /nV T ) , v d /nV T ≪ 1

                       i D (t) = I D + I D v d /nV T = I D + i d


                        i d = I D v d /nV T = v d / r D


                           r D = nV T / I D : small-signal resistance




                      10                                            EM Wave Lab
Electronic Circuits
4. Zener diode

 Breakdown region

                                                At Bias point, ΔV = ΔI ·r Z
                                                  r Z : dynamic resistance




                                                          V Z = V Z0 + r Z ·I Z




                                      Almost linear i-v characteristics


  I ZK : minimum current for the operation of Zener diode
                                 11                                EM Wave Lab
Electronic Circuits
4. Zener diode

 Shunt regulator
 Shunt Regulator: V Z = 6.8V, I Z = 5 mA, r Z = 20Ω, and I ZK = 0.2 mA




                                                12                             EM Wave Lab
Electronic Circuits
4. Zener diode

 Shunt regulator
 Shunt Regulator: V Z = 6.8V, I Z = 5 mA, r Z = 20Ω, and I Z K = 0.2 mA




                                                13                              EM Wave Lab
Electronic Circuits
4. Zener diode

 Shunt regulator
Shunt Regulator: V Z = 6.8V, I Z = 5 mA, r Z = 20Ω, and I Z K = 0.2 mA




                                                 14                            EM Wave Lab
Electronic Circuits
5. Rectifier

 DC power supply




        V1 / V2 = N1 / N2




                            15         EM Wave Lab
Electronic Circuits
5. Rectifier

 Half-wave rectifier




  v O = 0, v S < V D0
           R               R
  vO =            vS -            V D0
         R + rD          R + rD          v S ≥ V D0

    ≈ v S – V D0 ,       for r D ≪ R




                                                      16         EM Wave Lab
Electronic Circuits
5. Rectifier

 Full-wave rectifier




      PIV = 2V S – V D0


                          17         EM Wave Lab
Electronic Circuits
5. Rectifier

 Bridge rectifier




                         v D 3 (reverse) = v O + v D2 (forward)

                           PIV = V s -2V D + V D = V s - V D

                    18                                     EM Wave Lab
Electronic Circuits
5. Rectifier

 Peak detector


               Ideal case




                            19         EM Wave Lab
Electronic Circuits
5. Rectifier

 Peak rectifier
                   t1 < t < t2




                                      V r = V P – v O (T-ΔT) =




                  i Dav = I L (1 + π√2V p /V r )       i Dmax = I L (1 + 2π√2V p /V r )



                                 20                                     EM Wave Lab
Electronic Circuits
5. Rectifier

 Rectifier with RC load




    Precision half-wave rectifier




                                    21         EM Wave Lab
Electronic Circuits
6. Limiter

 Limiting circuits




                     22         EM Wave Lab
Electronic Circuits
6. Limiter

 Clamping circuits




                     23         EM Wave Lab
Electronic Circuits
6. Limiter

 Voltage doubler




                   24         EM Wave Lab

Diode