SlideShare a Scribd company logo
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 5-1
Chapter 5 MOS Capacitor
MOS: Metal-Oxide-Semiconductor
SiO2
metal
gate
Si body
Vg
gate
P-body
N+
MOS capacitor MOS transistor
Vg
SiO2
N+
Slide 5-2
This energy-band diagram for Vg = 0 is not the simplest one.
N+
polysilicon
SiO2
P-Siliconbody
Chapter 5 MOS Capacitor
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Ef , Ec
Ev
Ev
Si
Body
Gate
Ec
Ec
Ev
Ef
Slide 5-3
5.1 Flat-band Condition and Flat-band Voltage
E0 : Vacuum level
E0 – Ef : Work function
E0 – Ec : Electron affinity
Si/SiO2 energy barrier
sgfbV  
cSiO2
=0.95 eV
9 eV
Ec, Ef
Ev
Ec
Ev
Ef
3.1 eV q s
= cSi
+ (Ec
–Ef
)qg
cSi
E0
3.1 eV
Vfb
N+ -poly-Si P-body
4.8 eV
=4.05eV
Ec
Ev
SiO2
The band is flat at
the flat band voltage.
q
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-4
5.2 Surface Accumulation
oxsfbg VVV  
3.1eV
Ec ,Ef
Ev E0
Ec
Ef
Ev
M O S
qVg
Vox
qs
Make Vg < Vfb
s is negligible when
the surface is in
accumulation.
s : surface potential, band
bending
Vox: voltage across the oxide
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-5
5.2 Surface Accumulation
fbgox VVV 
)( fbgoxacc VVCQ 
oxsox CQV /
oxaccox CQV /Gauss’s Law
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Vg <Vt
Slide 5-6
ox
ssa
ox
depa
ox
dep
ox
s
ox
C
qN
C
WqN
C
Q
C
Q
V
2

5.3 Surface Depletion ( )gV > Vfb
Ec, Ef
Ev
Ec
Ef
Ev
M O S
qVg
depletion
region
qs
Wdep
qVox
---
-SiO
2
gate
P-Si body
+ + + + + +
- - - - - - -
V
- - - - - - -
depletion layer
charge, Qdep
- - - - - - -
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-7
5.3 Surface Depletion
ox
ssa
sfboxsfbg
C
qN
VVVV


2

This equation can be solved to yield s .
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-8
5.4 Threshold Condition and Threshold Voltage
Threshold (of inversion):
ns = Na , or
(Ec–Ef)surface= (Ef – Ev)bulk , or
 A=B, and C = D







i
a
Bst
n
N
q
kT
ln22



















i
a
a
v
i
v
bulkvf
g
B
n
N
q
kT
N
N
q
kT
n
N
q
kT
EE
E
q lnlnln|)(
2

Ec,Ef
M O S
Ev
Ef
Ei
Ec
A
B
C =qB
Ev
D
qVg
=qVt
st
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-9
Threshold Voltage
ox
Bsa
Bfbgt
C
qN
VthresholdatVV


22
2 
oxsfbg VφVV 
At threshold,







i
a
Bst
n
N
q
kT
ln22
ox
Bsa
ox
C
qN
V
 22

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-10
Threshold Voltage
ox
Bssub
Bfbt
C
qN
VV


22
2 
+ for P-body,
– for N-body
(a)
Tox= 20nm
Vt(V),N+gate/P-body
Vt(V),P+
gate/N-body
Body Doping Density (cm-3)
ody
ody
Tox= 20nm
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-11
5.5 Strong Inversion–Beyond Threshold
Ec,Ef
Ev
Ec
Ef
Ev
M O S
qVg
-
-
----
a
Bs
dmaxdep
qN
WW
 22
Vg > Vt
SiO2
gate
P- Si substrate
++++++++++
V
Vg > Vt
- - - - - ---
- - - - - - -
Qdep
Qinv
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-12
Inversion Layer Charge, Qinv (C/cm2)
ox
inv
t
ox
inv
ox
Bsa
Bfb
ox
inv
ox
dep
Bfbg
C
Q
V
C
Q
C
qN
V
C
Q
C
Q
VV


22
22


)( tgoxinv VVCQ 
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Vg > Vt Vg > Vt
Slide 5-13
5.5.1 Choice of Vt and Gate Doping Type
Vt is generally set at a small
positive value so that, at Vg =
0, the transistor does not
have an inversion layer and
current does not flow
between the two N+ regions
• P-body is normally paired with N+-gate to achieve a small
positive threshold voltage.
• N-body is normally paired with P+-gate to achieve a small
negative threshold voltage.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-14
Review : Basic MOS Capacitor Theory
s
2B
Vf
b
V
t
Vg
accumulation depletion inversion
Wdep
Wdmax
accumulation depletion inversion
(s
)1/2
Wdmax
= (2s
2B /qNa
)1/2
Vg
V
t
Vf
b
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-15
Review : Basic MOS Capacitor Theory
0
Vg
accumulation depletion inversion
Qinv
accumulation depletion inversion
(a)
(b)
accumulation depletion inversion
(c)
Qs
0
accumulation
regime
depletion
regime
inversion
regime
total substrate charge, Qs
invdepaccs QQQQ 
Qacc
Vg
Vg
Qdep=- qNaWdep
Vt
Vfb
slope =  Cox
slope =  Cox
VtVfb
Vt
Vfb
–qNaWdep
–qNaWdmax
Vg
Qinv
slope =  Cox
Vfb
Vt
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-16
5.6 MOS CV Characteristics
g
s
g
g
dV
dQ
dV
dQ
C 
C-V Meter
MOS Capacitor
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-17
5.6 MOS CV Characteristics
g
s
g
g
dV
dQ
dV
dQ
C 
Qs
0
Vg
accumulation
regime
depletion
regime
inversion
regime
Qinv
C
Vfb Vt
Cox
accumulation depletion inversion
Vg
Vt
Vfb
slope =  Cox
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-18
CV Characteristics
depox CCC
111

sa
fbg
ox qN
VV
CC 
)(211
2


C
Cox
accumulation depletion inversion
Vg
Vfb Vt
In the depletion regime:
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-19
Cox
gate
P-substrate
-
-
-
-
- --
Cdmax
Wdmax
- - - - - - -
AC
DC
+++++ + + + +
Cox
gate
P-substrate
Cox
gate
P-substrate
- - - - - -
Cdep Wdep
Cox
gate
P-substrate
-
Wdmax
- - - - - - -N+
DC and AC
Supply of Inversion Charge May be Limited
Accumulation Depletion
Inversion
Inversion
In each case, C = ?
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-20
Capacitor and Transistor CV (or HF and LF CV)
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-21
Quasi-Static CV of MOS Capacitor
The quasi-static CV is obtained by the application of a slow linear-
ramp voltage (< 0.1V/s) to the gate, while measuring Ig with a very
sensitive DC ammeter. C is calculated from Ig = C·dVg/dt. This allows
sufficient time for Qinv to respond to the slow-changing Vg .
C
Cox
accumulation depletion inversion
Vg
Vfb Vt
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-22
(1) MOS transistor, 10kHz. (Answer: QS CV).
(2) MOS transistor, 100MHz. (Answer: QS CV).
(3) MOS capacitor, 100MHz. (Answer: HF capacitor CV).
(4) MOS capacitor, 10kHz. (Answer: HF capacitor CV).
(5) MOS capacitor, slow Vg ramp. (Answer: QS CV).
(6) MOS transistor, slow Vg ramp. (Answer: QS CV).
EXAMPLE : CV of MOS Capacitor and Transistor
Does the QS CV or the HF
capacitor CV apply?
C
Vg
QS CV
HF capacitor CV
MOS transistor CV,
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-23
5.7 Oxide Charge–A Modification to Vfb and Vt
oxoxsgoxoxfbfb CQCQVV //0  
Ef, Ec
Ev
Ec
Ef
Ev
Vfb0
gate oxide body
Ef, Ec
Ev
Ec
Ef
Ev
Vfb
gate oxide body
+
+
+
Qox/Cox
(a) (b)
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-24
Types of oxide charge:
• Fixed oxide charge, Si+
• Mobile oxide charge, due to Na+contamination
• Interface traps, neutral or charged depending on Vg.
• Voltage/temperature stress induced charge and
traps--a reliability issue
5.7 Oxide Charge–A Modification to Vfb and Vt
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-25
EXAMPLE: Interpret this measured Vfb dependence on oxide
thickness. The gate electrode is N+ poly-silicon.
oxoxoxsgfb TQV  /Solution:
What does it tell us? Body work function? Doping type? Other?
0
–0.15V
–0.3V
Tox
Vfb
10 nm 20 nm 30 nm



Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-26
from intercept V15.0 sg 
from slope 28
cm/C107.1 
oxQ
-317eV15.0
cm10  kT
cd eNnNN-type substrate,
E0
, vacuum level
Ef
, Ec
Ev
Ec
Ef
Ev
g s = g + 0.15V
N+-Si gate Si body
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-27
5.8 Poly-Silicon Gate Depletion–Effective
Increase in Tox
Gauss’s Law polyoxoxdpoly qNW /E
3/
11
11
dpolyox
ox
s
dpoly
ox
ox
polyox
WT
WT
CC
C





















If Wdpoly= 15 Å, what is the
effective increase in Tox?
Cox
N-body
Cpoly
++ + + + + + +P+
Ec
Ef
Ev
(b)
P+
poly-Si
P+
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-28
Effect of Poly-Gate Depletion on Qinv
)( tpolygoxinv VVCQ  
• How can poly-depletion be
minimized?
Wdpoly
Ec
Ef, Ev
Ec
Ef
Ev
qpoly
P+ -gate N-substrate
• Poly-gate depletion degrades
MOSFET current and circuit speed.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-29
EXAMPLE : Poly-Silicon Gate Depletion
Vox , the voltage across a 2 nm thin oxide, is –1 V. The P+ poly-
gate doping is Npoly = 8 1019 cm-3 and substrate Nd is 1017cm-3.
Find (a) Wdpoly , (b) poly , and (c) Vg .
Solution:
(a)
nm3.1
8C106.1cm102
V1)F/cm(1085.89.3
//
197
14



cm10 319 

polyoxoxoxpolyoxoxdpoly qNTVqNW  E

   

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-30
(b)
poly
polys
dpoly
qN
W
2

V11.02/2
 sdpolypolydpoly WqN 
(c)
V01.1V11.0V1V85.0V95.0
V95.0V15.0V1.1ln









g
d
cg
fb
polyoxstfbg
V
N
N
q
kT
q
E
V
VVV 
Is the loss of 0.11 V from the 1.01 V significant?
EXAMPLE : Poly-Silicon Gate Depletion
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-31
5.9 Inversion and Accumulation Charge-Layer
Thickness–Quantum Mechanical Effect
Average inversion-layer location below the Si/SiO2 interface is
called the inversion-layer thickness, Tinv .
n(x) is determined by Schrodinger’s eq.,
Poisson eq., and Fermi function.
-50 -40 -30 -20 -10 0 10 20 30 40 A
Electron Density
Quantum
mechanical theory
SiO2
poly-Si
depletion
region
Å
50
Tinv SiGate
Effective Tox
Physical Tox
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-32
Electrical Oxide Thickness, Toxe
• Tinv is a function of
the average electric
field in the inversion
layer, which is (Vg +
Vt)/6Tox (Sec. 6.3.1).
• Tinv of holes is larger
than that of electrons
because of difference
in effective mass.
•Toxe is the electrical
oxide thickness.
3/3/ invdpolyoxoxe TWTT  at Vg=Vdd
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-33
Effective Oxide Thickness and Effective
Oxide Capacitance
)( tgoxeinv VVCQ 
C
Basic CV
with poly-depletion
with poly-depletion and
charge-layer thickness
Vg
measured data
Cox
3/3/ invdpolyoxoxe TWTT 
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-34
Equivalent circuit in the depletion and the inversion regimes
Cpoly
Cox
Cdep Cinv
Cox
Cdep
Cpoly
Cox
Cdep,min Cinv Cinv
Cox
(a) (b) (c) (d)
General case for
both depletion and
inversion regions.
In the depletion
regions
Vg  Vt Strong inversion
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-35
5.10 CCD Imager and CMOS Imager
Deep depletion, Qinv= 0 Exposed to light
5.10.1 CCD Imager
+
---
Ec , Ef
Ev
Ec
Ef
Ev
Ec, Ef
Ev
(a) (b)
-
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-36
CCD Charge Transfer
P-Si
oxide
V2
- - -- - - -- - - - --
- -depletion region
P-Si
oxide
- - -- - - --
depletion region
P-Si
oxide
- - -- - - --
depletion region
(a)
(b)
(c)
V1 > V2 = V3
V1
V2
V3
V1 V3 V1 V2 V3 V1
V2 > V1 > V3
V2 > V1 = V3
V1
V2 V3 V1
V2 V3 V1
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-37
two-dimensional CCD imager
The reading row is shielded from the light by a metal film.
The 2-D charge packets are read row by row.
Signal out
Charge-to-voltage converter
Reading row,
shielded from light
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-38
5.10.2 CMOS Imager
CMOS imagers can be
integrated with signal
processing and control
circuitries to further
reduce system costs.
However, The size
constrain of the sensing
circuits forces the CMOS
imager to use very
simple circuits
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
PN junction
charge
collector
switch
Amplifier
circuit
Shifter circuit Signal out
V2
V1
V3
Slide 5-39
5.11 Chapter Summary
N-type device: N+-polysilicon gate over P-body
P-type device: P+-polysilicon gate over N-body
)/( oxoxsgfb CQV  
polyoxssfb
polyoxsfbg
CQV
VVV




/
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-40
i
sub
B
n
N
q
kT
ln
Bst  2 )V45.0(  Bor
ox
stssub
stfbt
C
qN
VV
||2 
 
+ : N-type device, – : P-type device
5.11 Chapter Summary
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-41
N-type Device
(N+-gate over P-substrate)
P-type Device
(P+-gate over N-substrate)
What’s the diagram like at Vg > Vt ? at Vg= 0?
Ef
Ef
Vg>Vfb>0
Ef
Ef
Vg<Vfb<0
Accumulation
Ef
Ef
Vg=Vfb<0
Ef
Ef
Vg=Vfb>0
Flat-band
EfEf
Vg0>Vfb
Ef
Ef
Vg0<Vfb
Ef
Vg=Vt>0
Ef
Ef
Ef
Vg=Vt<0Threshold
Depletion
Ef
Ef
Vg=Vfb<0
Ef
Ef
Vg=Vfb>0
Flat-band
EfEf
Vg0>Vfb
EfEf
Vg0<Vfb
Ef
Vg=Vt>0
Ef
Ef
Ef
Vg=Vt<0Threshold
Depletion
Ef
Vg>Vt>0
Ef
Vg<Vt
Inversion
5.11 Chapter Summary
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 5-42
What is the root cause of the low C in the HF CV branch?
5.11 Chapter Summary
Vg
N-type Device
(N+
-gate over P-substrate)
P-type Device
(P+
-gate over N-substrate)
Vg
QS CV
Transistor CV
Capacitor
(HF) CV
Modern Semiconductor Devices for Integrated Circuits (C. Hu)

More Related Content

What's hot

MOS Capacitor
MOS CapacitorMOS Capacitor
HSpice Essential Examples
HSpice Essential ExamplesHSpice Essential Examples
HSpice Essential Examples
Dariush Naseh
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
Ece 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basicsEce 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basics
Muhammad Naveed Sultan
 
Review on Tunnel Field Effect Transistors (TFET)
Review on Tunnel Field Effect Transistors (TFET)Review on Tunnel Field Effect Transistors (TFET)
Review on Tunnel Field Effect Transistors (TFET)
IRJET Journal
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
K. M.
 
Basic MOSFET structure
Basic MOSFET structureBasic MOSFET structure
Basic MOSFET structure
Gec bharuch
 
MESFET
MESFETMESFET
Understanding CTLE
Understanding CTLEUnderstanding CTLE
Understanding CTLE
继顺(Jeffrey) 王
 
Junctionless transistors
Junctionless transistorsJunctionless transistors
Junctionless transistors
Pratishtha Agnihotri
 
Poisson's equation 2nd 4
Poisson's equation 2nd 4Poisson's equation 2nd 4
Poisson's equation 2nd 4
HIMANSHU DIWAKAR
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
University of Liverpool
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
Lee Rather
 
Density of states of bulk semiconductor
Density of states of bulk semiconductorDensity of states of bulk semiconductor
Density of states of bulk semiconductor
RCC Institute of Information Technology
 
Double gate mosfet
Double gate mosfetDouble gate mosfet
Double gate mosfet
Pooja Shukla
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Presentation on-FET( Field Effect Transistor)
Presentation on-FET( Field Effect Transistor)Presentation on-FET( Field Effect Transistor)
Presentation on-FET( Field Effect Transistor)
UthsoNandy
 
Foundation of MOS Capacitor
Foundation of MOS CapacitorFoundation of MOS Capacitor
Foundation of MOS Capacitor
RCC Institute of Information Technology
 

What's hot (20)

MOS Capacitor
MOS CapacitorMOS Capacitor
MOS Capacitor
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
HSpice Essential Examples
HSpice Essential ExamplesHSpice Essential Examples
HSpice Essential Examples
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Ece 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basicsEce 334 lecture 15-mosfet-basics
Ece 334 lecture 15-mosfet-basics
 
Review on Tunnel Field Effect Transistors (TFET)
Review on Tunnel Field Effect Transistors (TFET)Review on Tunnel Field Effect Transistors (TFET)
Review on Tunnel Field Effect Transistors (TFET)
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Basic MOSFET structure
Basic MOSFET structureBasic MOSFET structure
Basic MOSFET structure
 
MESFET
MESFETMESFET
MESFET
 
Understanding CTLE
Understanding CTLEUnderstanding CTLE
Understanding CTLE
 
Junctionless transistors
Junctionless transistorsJunctionless transistors
Junctionless transistors
 
Poisson's equation 2nd 4
Poisson's equation 2nd 4Poisson's equation 2nd 4
Poisson's equation 2nd 4
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
 
Density of states of bulk semiconductor
Density of states of bulk semiconductorDensity of states of bulk semiconductor
Density of states of bulk semiconductor
 
Double gate mosfet
Double gate mosfetDouble gate mosfet
Double gate mosfet
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
Presentation on-FET( Field Effect Transistor)
Presentation on-FET( Field Effect Transistor)Presentation on-FET( Field Effect Transistor)
Presentation on-FET( Field Effect Transistor)
 
Foundation of MOS Capacitor
Foundation of MOS CapacitorFoundation of MOS Capacitor
Foundation of MOS Capacitor
 

Similar to Ch5 lecture slides Chenming Hu Device for IC

Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)aicdesign
 
Giannakas____icecs2010
Giannakas____icecs2010Giannakas____icecs2010
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
NikhilKumarJaiswal2
 
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 NewOriginal IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
authelectroniccom
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
ARCHISTUDIO1
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
MADHUMITHA154
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage Murali Rai
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
Gopinath.B.L Naidu
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)aicdesign
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)aicdesign
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Balraj Singh
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
Gur Kan
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
sebden
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
germinal nana
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
karthigeyankassn
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)aicdesign
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI Design
Eutectics
 

Similar to Ch5 lecture slides Chenming Hu Device for IC (20)

Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)
 
Bicoms
BicomsBicoms
Bicoms
 
Giannakas____icecs2010
Giannakas____icecs2010Giannakas____icecs2010
Giannakas____icecs2010
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
 
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 NewOriginal IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
Lect2 up150 (100325)
Lect2 up150 (100325)Lect2 up150 (100325)
Lect2 up150 (100325)
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI Design
 

Ch5 lecture slides Chenming Hu Device for IC

  • 1. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 5-1 Chapter 5 MOS Capacitor MOS: Metal-Oxide-Semiconductor SiO2 metal gate Si body Vg gate P-body N+ MOS capacitor MOS transistor Vg SiO2 N+
  • 2. Slide 5-2 This energy-band diagram for Vg = 0 is not the simplest one. N+ polysilicon SiO2 P-Siliconbody Chapter 5 MOS Capacitor Modern Semiconductor Devices for Integrated Circuits (C. Hu) Ef , Ec Ev Ev Si Body Gate Ec Ec Ev Ef
  • 3. Slide 5-3 5.1 Flat-band Condition and Flat-band Voltage E0 : Vacuum level E0 – Ef : Work function E0 – Ec : Electron affinity Si/SiO2 energy barrier sgfbV   cSiO2 =0.95 eV 9 eV Ec, Ef Ev Ec Ev Ef 3.1 eV q s = cSi + (Ec –Ef )qg cSi E0 3.1 eV Vfb N+ -poly-Si P-body 4.8 eV =4.05eV Ec Ev SiO2 The band is flat at the flat band voltage. q Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 4. Slide 5-4 5.2 Surface Accumulation oxsfbg VVV   3.1eV Ec ,Ef Ev E0 Ec Ef Ev M O S qVg Vox qs Make Vg < Vfb s is negligible when the surface is in accumulation. s : surface potential, band bending Vox: voltage across the oxide Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 5. Slide 5-5 5.2 Surface Accumulation fbgox VVV  )( fbgoxacc VVCQ  oxsox CQV / oxaccox CQV /Gauss’s Law Modern Semiconductor Devices for Integrated Circuits (C. Hu) Vg <Vt
  • 6. Slide 5-6 ox ssa ox depa ox dep ox s ox C qN C WqN C Q C Q V 2  5.3 Surface Depletion ( )gV > Vfb Ec, Ef Ev Ec Ef Ev M O S qVg depletion region qs Wdep qVox --- -SiO 2 gate P-Si body + + + + + + - - - - - - - V - - - - - - - depletion layer charge, Qdep - - - - - - - Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 7. Slide 5-7 5.3 Surface Depletion ox ssa sfboxsfbg C qN VVVV   2  This equation can be solved to yield s . Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 8. Slide 5-8 5.4 Threshold Condition and Threshold Voltage Threshold (of inversion): ns = Na , or (Ec–Ef)surface= (Ef – Ev)bulk , or  A=B, and C = D        i a Bst n N q kT ln22                    i a a v i v bulkvf g B n N q kT N N q kT n N q kT EE E q lnlnln|)( 2  Ec,Ef M O S Ev Ef Ei Ec A B C =qB Ev D qVg =qVt st Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 9. Slide 5-9 Threshold Voltage ox Bsa Bfbgt C qN VthresholdatVV   22 2  oxsfbg VφVV  At threshold,        i a Bst n N q kT ln22 ox Bsa ox C qN V  22  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 10. Slide 5-10 Threshold Voltage ox Bssub Bfbt C qN VV   22 2  + for P-body, – for N-body (a) Tox= 20nm Vt(V),N+gate/P-body Vt(V),P+ gate/N-body Body Doping Density (cm-3) ody ody Tox= 20nm Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 11. Slide 5-11 5.5 Strong Inversion–Beyond Threshold Ec,Ef Ev Ec Ef Ev M O S qVg - - ---- a Bs dmaxdep qN WW  22 Vg > Vt SiO2 gate P- Si substrate ++++++++++ V Vg > Vt - - - - - --- - - - - - - - Qdep Qinv Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 12. Slide 5-12 Inversion Layer Charge, Qinv (C/cm2) ox inv t ox inv ox Bsa Bfb ox inv ox dep Bfbg C Q V C Q C qN V C Q C Q VV   22 22   )( tgoxinv VVCQ  Modern Semiconductor Devices for Integrated Circuits (C. Hu) Vg > Vt Vg > Vt
  • 13. Slide 5-13 5.5.1 Choice of Vt and Gate Doping Type Vt is generally set at a small positive value so that, at Vg = 0, the transistor does not have an inversion layer and current does not flow between the two N+ regions • P-body is normally paired with N+-gate to achieve a small positive threshold voltage. • N-body is normally paired with P+-gate to achieve a small negative threshold voltage. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 14. Slide 5-14 Review : Basic MOS Capacitor Theory s 2B Vf b V t Vg accumulation depletion inversion Wdep Wdmax accumulation depletion inversion (s )1/2 Wdmax = (2s 2B /qNa )1/2 Vg V t Vf b Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 15. Slide 5-15 Review : Basic MOS Capacitor Theory 0 Vg accumulation depletion inversion Qinv accumulation depletion inversion (a) (b) accumulation depletion inversion (c) Qs 0 accumulation regime depletion regime inversion regime total substrate charge, Qs invdepaccs QQQQ  Qacc Vg Vg Qdep=- qNaWdep Vt Vfb slope =  Cox slope =  Cox VtVfb Vt Vfb –qNaWdep –qNaWdmax Vg Qinv slope =  Cox Vfb Vt Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 16. Slide 5-16 5.6 MOS CV Characteristics g s g g dV dQ dV dQ C  C-V Meter MOS Capacitor Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 17. Slide 5-17 5.6 MOS CV Characteristics g s g g dV dQ dV dQ C  Qs 0 Vg accumulation regime depletion regime inversion regime Qinv C Vfb Vt Cox accumulation depletion inversion Vg Vt Vfb slope =  Cox Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 18. Slide 5-18 CV Characteristics depox CCC 111  sa fbg ox qN VV CC  )(211 2   C Cox accumulation depletion inversion Vg Vfb Vt In the depletion regime: Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 19. Slide 5-19 Cox gate P-substrate - - - - - -- Cdmax Wdmax - - - - - - - AC DC +++++ + + + + Cox gate P-substrate Cox gate P-substrate - - - - - - Cdep Wdep Cox gate P-substrate - Wdmax - - - - - - -N+ DC and AC Supply of Inversion Charge May be Limited Accumulation Depletion Inversion Inversion In each case, C = ? Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 20. Slide 5-20 Capacitor and Transistor CV (or HF and LF CV) Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 21. Slide 5-21 Quasi-Static CV of MOS Capacitor The quasi-static CV is obtained by the application of a slow linear- ramp voltage (< 0.1V/s) to the gate, while measuring Ig with a very sensitive DC ammeter. C is calculated from Ig = C·dVg/dt. This allows sufficient time for Qinv to respond to the slow-changing Vg . C Cox accumulation depletion inversion Vg Vfb Vt Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 22. Slide 5-22 (1) MOS transistor, 10kHz. (Answer: QS CV). (2) MOS transistor, 100MHz. (Answer: QS CV). (3) MOS capacitor, 100MHz. (Answer: HF capacitor CV). (4) MOS capacitor, 10kHz. (Answer: HF capacitor CV). (5) MOS capacitor, slow Vg ramp. (Answer: QS CV). (6) MOS transistor, slow Vg ramp. (Answer: QS CV). EXAMPLE : CV of MOS Capacitor and Transistor Does the QS CV or the HF capacitor CV apply? C Vg QS CV HF capacitor CV MOS transistor CV, Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 23. Slide 5-23 5.7 Oxide Charge–A Modification to Vfb and Vt oxoxsgoxoxfbfb CQCQVV //0   Ef, Ec Ev Ec Ef Ev Vfb0 gate oxide body Ef, Ec Ev Ec Ef Ev Vfb gate oxide body + + + Qox/Cox (a) (b) Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 24. Slide 5-24 Types of oxide charge: • Fixed oxide charge, Si+ • Mobile oxide charge, due to Na+contamination • Interface traps, neutral or charged depending on Vg. • Voltage/temperature stress induced charge and traps--a reliability issue 5.7 Oxide Charge–A Modification to Vfb and Vt Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 25. Slide 5-25 EXAMPLE: Interpret this measured Vfb dependence on oxide thickness. The gate electrode is N+ poly-silicon. oxoxoxsgfb TQV  /Solution: What does it tell us? Body work function? Doping type? Other? 0 –0.15V –0.3V Tox Vfb 10 nm 20 nm 30 nm    Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 26. Slide 5-26 from intercept V15.0 sg  from slope 28 cm/C107.1  oxQ -317eV15.0 cm10  kT cd eNnNN-type substrate, E0 , vacuum level Ef , Ec Ev Ec Ef Ev g s = g + 0.15V N+-Si gate Si body Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 27. Slide 5-27 5.8 Poly-Silicon Gate Depletion–Effective Increase in Tox Gauss’s Law polyoxoxdpoly qNW /E 3/ 11 11 dpolyox ox s dpoly ox ox polyox WT WT CC C                      If Wdpoly= 15 Å, what is the effective increase in Tox? Cox N-body Cpoly ++ + + + + + +P+ Ec Ef Ev (b) P+ poly-Si P+ Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 28. Slide 5-28 Effect of Poly-Gate Depletion on Qinv )( tpolygoxinv VVCQ   • How can poly-depletion be minimized? Wdpoly Ec Ef, Ev Ec Ef Ev qpoly P+ -gate N-substrate • Poly-gate depletion degrades MOSFET current and circuit speed. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 29. Slide 5-29 EXAMPLE : Poly-Silicon Gate Depletion Vox , the voltage across a 2 nm thin oxide, is –1 V. The P+ poly- gate doping is Npoly = 8 1019 cm-3 and substrate Nd is 1017cm-3. Find (a) Wdpoly , (b) poly , and (c) Vg . Solution: (a) nm3.1 8C106.1cm102 V1)F/cm(1085.89.3 // 197 14    cm10 319   polyoxoxoxpolyoxoxdpoly qNTVqNW  E       Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 30. Slide 5-30 (b) poly polys dpoly qN W 2  V11.02/2  sdpolypolydpoly WqN  (c) V01.1V11.0V1V85.0V95.0 V95.0V15.0V1.1ln          g d cg fb polyoxstfbg V N N q kT q E V VVV  Is the loss of 0.11 V from the 1.01 V significant? EXAMPLE : Poly-Silicon Gate Depletion Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 31. Slide 5-31 5.9 Inversion and Accumulation Charge-Layer Thickness–Quantum Mechanical Effect Average inversion-layer location below the Si/SiO2 interface is called the inversion-layer thickness, Tinv . n(x) is determined by Schrodinger’s eq., Poisson eq., and Fermi function. -50 -40 -30 -20 -10 0 10 20 30 40 A Electron Density Quantum mechanical theory SiO2 poly-Si depletion region Å 50 Tinv SiGate Effective Tox Physical Tox Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 32. Slide 5-32 Electrical Oxide Thickness, Toxe • Tinv is a function of the average electric field in the inversion layer, which is (Vg + Vt)/6Tox (Sec. 6.3.1). • Tinv of holes is larger than that of electrons because of difference in effective mass. •Toxe is the electrical oxide thickness. 3/3/ invdpolyoxoxe TWTT  at Vg=Vdd Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 33. Slide 5-33 Effective Oxide Thickness and Effective Oxide Capacitance )( tgoxeinv VVCQ  C Basic CV with poly-depletion with poly-depletion and charge-layer thickness Vg measured data Cox 3/3/ invdpolyoxoxe TWTT  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 34. Slide 5-34 Equivalent circuit in the depletion and the inversion regimes Cpoly Cox Cdep Cinv Cox Cdep Cpoly Cox Cdep,min Cinv Cinv Cox (a) (b) (c) (d) General case for both depletion and inversion regions. In the depletion regions Vg  Vt Strong inversion Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 35. Slide 5-35 5.10 CCD Imager and CMOS Imager Deep depletion, Qinv= 0 Exposed to light 5.10.1 CCD Imager + --- Ec , Ef Ev Ec Ef Ev Ec, Ef Ev (a) (b) - Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 36. Slide 5-36 CCD Charge Transfer P-Si oxide V2 - - -- - - -- - - - -- - -depletion region P-Si oxide - - -- - - -- depletion region P-Si oxide - - -- - - -- depletion region (a) (b) (c) V1 > V2 = V3 V1 V2 V3 V1 V3 V1 V2 V3 V1 V2 > V1 > V3 V2 > V1 = V3 V1 V2 V3 V1 V2 V3 V1 Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 37. Slide 5-37 two-dimensional CCD imager The reading row is shielded from the light by a metal film. The 2-D charge packets are read row by row. Signal out Charge-to-voltage converter Reading row, shielded from light Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 38. Slide 5-38 5.10.2 CMOS Imager CMOS imagers can be integrated with signal processing and control circuitries to further reduce system costs. However, The size constrain of the sensing circuits forces the CMOS imager to use very simple circuits Modern Semiconductor Devices for Integrated Circuits (C. Hu) PN junction charge collector switch Amplifier circuit Shifter circuit Signal out V2 V1 V3
  • 39. Slide 5-39 5.11 Chapter Summary N-type device: N+-polysilicon gate over P-body P-type device: P+-polysilicon gate over N-body )/( oxoxsgfb CQV   polyoxssfb polyoxsfbg CQV VVV     / Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 40. Slide 5-40 i sub B n N q kT ln Bst  2 )V45.0(  Bor ox stssub stfbt C qN VV ||2    + : N-type device, – : P-type device 5.11 Chapter Summary Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 41. Slide 5-41 N-type Device (N+-gate over P-substrate) P-type Device (P+-gate over N-substrate) What’s the diagram like at Vg > Vt ? at Vg= 0? Ef Ef Vg>Vfb>0 Ef Ef Vg<Vfb<0 Accumulation Ef Ef Vg=Vfb<0 Ef Ef Vg=Vfb>0 Flat-band EfEf Vg0>Vfb Ef Ef Vg0<Vfb Ef Vg=Vt>0 Ef Ef Ef Vg=Vt<0Threshold Depletion Ef Ef Vg=Vfb<0 Ef Ef Vg=Vfb>0 Flat-band EfEf Vg0>Vfb EfEf Vg0<Vfb Ef Vg=Vt>0 Ef Ef Ef Vg=Vt<0Threshold Depletion Ef Vg>Vt>0 Ef Vg<Vt Inversion 5.11 Chapter Summary Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 42. Slide 5-42 What is the root cause of the low C in the HF CV branch? 5.11 Chapter Summary Vg N-type Device (N+ -gate over P-substrate) P-type Device (P+ -gate over N-substrate) Vg QS CV Transistor CV Capacitor (HF) CV Modern Semiconductor Devices for Integrated Circuits (C. Hu)