Structural Design and Inspection-
Deflection and Slope of Beams
By
Dr. Mahdi Damghani
2016-2017
1
Suggested Readings
Reference 1
Chapter 16
2
Objective
• To obtain slope and deflection of beam and frame
structures using slope-deflection method
3
Introduction
• Structural analysis method for beams and frames
introduced in 1914 by George A. Maney
• This method was later replaced by moment
distribution method which is more advanced and
useful (students are encouraged) to study this
separately
4
Slope-Deflection Method
• Sign convention:
• Moments, slopes,
displacements,
shear are all in
positive direction as
shown
5
• Axial forces are
ignored
 xSM
dx
vd
EI ABAB2
2









21
32
1
2
62
2
CxC
x
S
x
MEIv
C
x
SxM
dx
dv
EI
ABAB
ABAB
Slope-Deflection Method
6
 AA vv
dx
dv
x ,0@  








AAABAB
AABAB
EIvxEI
x
S
x
MEIv
EI
x
SxM
dx
dv
EI


62
2
32
2
 BB vv
dx
dv
Lx ,@  








AAABABB
AABABB
EIvLEI
L
S
L
MEIv
EI
L
SLMEI


62
2
32
2
Solving for MAB and SAB
 



 BABAAB vv
LL
EI
M
3
2
2
  



 BABAAB vv
LL
EI
S
26
2

 



 BABABA vv
LL
EI
M
3
2
2
  



 BABABA vv
LL
EI
S
26
2

Slope-Deflection Method
• Last 4 equations obtained in previous slide are called
slope-deflection equations
• They establish force-displacement relationship
• This method can find exact solution to indeterminate
structures
7
Slope-Deflection Method
• The beam we considered
so far did not have any
external loading from A to B
8
• In the presence of mid-span loading (common engineering
problems) the equations become:
  F
ABBABAAB Mvv
LL
EI
M 




3
2
2
   F
ABBABAAB Svv
LL
EI
S 




26
2

  F
BABABABA Mvv
LL
EI
M 




3
2
2
   F
BABABABA Svv
LL
EI
S 




26
2

Fixed End Moment/Shear
• MAB
F, MBA
F are fixed end moments at nodes A and B,
respectively.
• Moments at two ends of beam when beam is clamped at
both ends under external loading (see next slides)
• SAB
F, SBA
F are fixed end shears at nodes A and B,
respectively.
• Shears at two ends of beam when beam is clamped at both
ends under external loading (see next slides)
9
Fixed End Moment/Shear
10
Fixed End Moment/Shear
11
Example
• Find support reactions.
12
Solution
• This beam has 2 degrees
of indeterminacy
13
1- Assume all beams
are fixed & calculate
FEM
2- Establish Slope-
Deflection equations
3- Enforce boundary
conditions &
equilibrium conditions
at joints
4- Solve simultaneous
equations to get
slopes/deflections
Solution
14
kNmMM F
BA
F
AB 75.0
8
0.16


 kNmMM F
CB
F
BC 25.1
8
0.110


 kNmMM F
DC
F
CD 00.1
12
0.112 2



Solution
15
  F
ijjijiij Mvv
LL
EI
M 




3
2
2

  F
jijijiji Mvv
LL
EI
M 




3
2
2

vi=0 and vj=0 for all
cases
Solution
• Equilibrium moments at the joints
16
MBA MBC
MCB MCD
0ABM
0
0


BCBA
B
MM
M
0
0


CDCB
C
MM
M 0DCM
Solution
• Substitution into slope deflection equations gives 4
equations and 4 unknown slopes.
• By simultaneously solving the equations
17
Solution
• Simply operation of substitution:
18
Solution
• Now support reactions can easily be calculated as
19
15.485.16
85.1
0.1
15.15.06




BA
AB
R
R
6 10
25.575.410
75.4
0.1
4.115.15.010




CB
BC
R
R
12
6.44.712
4.7
0.1
4.15.012




DC
CD
R
R
Solution
20
1.85 4.15 4.75 5.25 7.4 4.6
1.85 8.9 12.65 4.60
Solution
21
Example 2
• Obtain moment reaction at the clamped
support B for 6m long beam if support A settles
down by 5mm. EI=17×1012 Nmm2
22
A
4kN/m
B
Solution
23
  F
ijjijiij Mvv
LL
EI
M 




3
2
2
   F
jijijiji Mvv
LL
EI
M 




3
2
2

A
4kN/m
5mm
B
  



 F
ABBABAAB Mvv
LL
EI
M
3
2
2

  






12
4000
0005.0
3
02
2
0
2
L
LL
EI
M AAB 
radL
L
EI
A
4
3
1033.9
2
0015.0
24
4000










Solution
24
A
4kN/m
5mm
B
  F
ijjijiij Mvv
LL
EI
M 




3
2
2
   F
jijijiji Mvv
LL
EI
M 




3
2
2

radA
4
1033.9 

  



 F
BABAABBA Mvv
LL
EI
M
3
2
2

  





 
12
4000
0005.0
3
1033.90
2 2
4 L
LL
EI
MBA
mNMBA .3.18705
Case study
25
Case study
26
t=3.552 mm
b=7.792 mm
  F
ijjijiij Mvv
LL
EI
M 




3
2
2

Case study
27
Rotation and displacement
can be obtained from the
FEM
Wire in composite beam
Case study
28
Rotation and displacement
can be obtained from the
FEM
Q1
• Determine the support reactions in the beam shown
below.
29
Q2
• Calculate the support reactions in the beam shown
below.
30
Q3
• Determine the end moments in the members of the
portal frame shown. The second moment of area of
the vertical members is 2.5I while that of the
horizontal members is I.
31
Q4
• Analyze two span continuous beam ABC by slope
deflection method. Then draw Bending moment & Shear
force diagram. Take EI constant.
32

Slope Deflection Method

  • 1.
    Structural Design andInspection- Deflection and Slope of Beams By Dr. Mahdi Damghani 2016-2017 1
  • 2.
  • 3.
    Objective • To obtainslope and deflection of beam and frame structures using slope-deflection method 3
  • 4.
    Introduction • Structural analysismethod for beams and frames introduced in 1914 by George A. Maney • This method was later replaced by moment distribution method which is more advanced and useful (students are encouraged) to study this separately 4
  • 5.
    Slope-Deflection Method • Signconvention: • Moments, slopes, displacements, shear are all in positive direction as shown 5 • Axial forces are ignored  xSM dx vd EI ABAB2 2          21 32 1 2 62 2 CxC x S x MEIv C x SxM dx dv EI ABAB ABAB
  • 6.
    Slope-Deflection Method 6  AAvv dx dv x ,0@           AAABAB AABAB EIvxEI x S x MEIv EI x SxM dx dv EI   62 2 32 2  BB vv dx dv Lx ,@           AAABABB AABABB EIvLEI L S L MEIv EI L SLMEI   62 2 32 2 Solving for MAB and SAB       BABAAB vv LL EI M 3 2 2        BABAAB vv LL EI S 26 2        BABABA vv LL EI M 3 2 2        BABABA vv LL EI S 26 2 
  • 7.
    Slope-Deflection Method • Last4 equations obtained in previous slide are called slope-deflection equations • They establish force-displacement relationship • This method can find exact solution to indeterminate structures 7
  • 8.
    Slope-Deflection Method • Thebeam we considered so far did not have any external loading from A to B 8 • In the presence of mid-span loading (common engineering problems) the equations become:   F ABBABAAB Mvv LL EI M      3 2 2    F ABBABAAB Svv LL EI S      26 2    F BABABABA Mvv LL EI M      3 2 2    F BABABABA Svv LL EI S      26 2 
  • 9.
    Fixed End Moment/Shear •MAB F, MBA F are fixed end moments at nodes A and B, respectively. • Moments at two ends of beam when beam is clamped at both ends under external loading (see next slides) • SAB F, SBA F are fixed end shears at nodes A and B, respectively. • Shears at two ends of beam when beam is clamped at both ends under external loading (see next slides) 9
  • 10.
  • 11.
  • 12.
  • 13.
    Solution • This beamhas 2 degrees of indeterminacy 13 1- Assume all beams are fixed & calculate FEM 2- Establish Slope- Deflection equations 3- Enforce boundary conditions & equilibrium conditions at joints 4- Solve simultaneous equations to get slopes/deflections
  • 14.
    Solution 14 kNmMM F BA F AB 75.0 8 0.16   kNmMM F CB F BC 25.1 8 0.110    kNmMM F DC F CD 00.1 12 0.112 2   
  • 15.
    Solution 15   F ijjijiijMvv LL EI M      3 2 2    F jijijiji Mvv LL EI M      3 2 2  vi=0 and vj=0 for all cases
  • 16.
    Solution • Equilibrium momentsat the joints 16 MBA MBC MCB MCD 0ABM 0 0   BCBA B MM M 0 0   CDCB C MM M 0DCM
  • 17.
    Solution • Substitution intoslope deflection equations gives 4 equations and 4 unknown slopes. • By simultaneously solving the equations 17
  • 18.
    Solution • Simply operationof substitution: 18
  • 19.
    Solution • Now supportreactions can easily be calculated as 19 15.485.16 85.1 0.1 15.15.06     BA AB R R 6 10 25.575.410 75.4 0.1 4.115.15.010     CB BC R R 12 6.44.712 4.7 0.1 4.15.012     DC CD R R
  • 20.
    Solution 20 1.85 4.15 4.755.25 7.4 4.6 1.85 8.9 12.65 4.60
  • 21.
  • 22.
    Example 2 • Obtainmoment reaction at the clamped support B for 6m long beam if support A settles down by 5mm. EI=17×1012 Nmm2 22 A 4kN/m B
  • 23.
    Solution 23   F ijjijiijMvv LL EI M      3 2 2    F jijijiji Mvv LL EI M      3 2 2  A 4kN/m 5mm B        F ABBABAAB Mvv LL EI M 3 2 2           12 4000 0005.0 3 02 2 0 2 L LL EI M AAB  radL L EI A 4 3 1033.9 2 0015.0 24 4000          
  • 24.
    Solution 24 A 4kN/m 5mm B   F ijjijiijMvv LL EI M      3 2 2    F jijijiji Mvv LL EI M      3 2 2  radA 4 1033.9          F BABAABBA Mvv LL EI M 3 2 2            12 4000 0005.0 3 1033.90 2 2 4 L LL EI MBA mNMBA .3.18705
  • 25.
  • 26.
    Case study 26 t=3.552 mm b=7.792mm   F ijjijiij Mvv LL EI M      3 2 2 
  • 27.
    Case study 27 Rotation anddisplacement can be obtained from the FEM Wire in composite beam
  • 28.
    Case study 28 Rotation anddisplacement can be obtained from the FEM
  • 29.
    Q1 • Determine thesupport reactions in the beam shown below. 29
  • 30.
    Q2 • Calculate thesupport reactions in the beam shown below. 30
  • 31.
    Q3 • Determine theend moments in the members of the portal frame shown. The second moment of area of the vertical members is 2.5I while that of the horizontal members is I. 31
  • 32.
    Q4 • Analyze twospan continuous beam ABC by slope deflection method. Then draw Bending moment & Shear force diagram. Take EI constant. 32