Structural Analysis Example with
Solutions
By
Dr. Mahdi Damghani
2016-2017
1
Objective(s)
• Review of structural analysis methods and
procedures learnt in this module
• Preparation for final exam (familiarity with a typical
question) as this year’s exam will be different from
previous years
2
Session plan
Introduction
(5-10 mins)
Slope-Deflection
theory by students
(5-10 mins)
Q&A
(5 mins)
Solving a
representative
example (30 mins)
Q&A
(5-10 mins)
3
Asking Questions
• Ask in publicly
• Write your questions in the following link and I will
answer them all at the end of the session:
https://padlet.com/mahdi_damghani/SDI
4
Topics covered in this module
• Direct integration method
• Macaulay’s method
• Slope-deflection method
• Principle of virtual work
• Rigid bodies
• Deformable bodies
• Unit load method
• Principle of complementary energy
• Castigliano’s second theorem
• Principle of total potential energy
• Castigliano’s first theorem
• Rayleigh-Ritz
• Finite element analysis of truss structures
• Finite element analysis of beam structures
• Finite element analysis of frame structures
5
Objectives satisfied
by the assignment
Assessment in the
final exam
Assessment in the
final exam with all
details
Slope-Deflection Method
• The beam we considered
so far did not have any
external loading from A to B
6
• In the presence of mid-span loading (common engineering
problems) the equations become:
  F
ABBABAAB Mvv
LL
EI
M 




3
2
2
   F
ABBABAAB Svv
LL
EI
S 




26
2

  F
BABABABA Mvv
LL
EI
M 




3
2
2
   F
BABABABA Svv
LL
EI
S 




26
2

Fixed End Moment/Shear
• MAB
F, MBA
F are fixed end moments at nodes A and B,
respectively.
• Moments at two ends of beam when beam is clamped at
both ends under external loading (see next slides)
• SAB
F, SBA
F are fixed end shears at nodes A and B,
respectively.
• Shears at two ends of beam when beam is clamped at both
ends under external loading (see next slides)
7
Fixed End Moment/Shear
8
Fixed End Moment/Shear
9
Example
10
PL
2P
CDB
A
P
3EI/L 2EI/L
EI/L
Question 1
Is this structure
determinate or
indeterminate?
Degree of
indeterminacy
is 9-3=6
1
1
Question 2
(slope-deflection equations?)
12
  F
ABBABAAB Mvv
LL
EI
M 




3
2
2

  F
BABABABA Mvv
LL
EI
M 




3
2
2

 
8
2
8
2
2 0 PL
L
EI
M
PL
L
EI
M DADDAAD
A
  
 
 
8
4
8
2
2 0 PL
L
EI
M
PL
L
EI
M DDAADDA
A
  
 
  DBDDBBD
L
EI
M
L
EI
M B
  6
2
32 0
 

 
  DDBBDDB
L
EI
M
L
EI
M B
  12
2
32 0
 

 
 
4
4
8
2
2
22 0 PL
L
EI
M
PL
L
EI
M DCDDCCD
C
 

 
 
 
4
8
8
2
2
22 0 PL
L
EI
M
PL
L
EI
M DDCCDDC
C
 

 
 
Question 3
(Equation of equilibrium at joints?)
1313
PL
D
MDB
MDA
MDC
0 PLMMM DCDADB
Question 4
(Rotation of joint D?)
14
0 PLMMM DCDADB
8
4 PL
L
EI
M DDA  DDB
L
EI
M 
12

4
8 PL
L
EI
M DDC  
2
7
192
D
PL
EI
 
Question 5
(Reaction at support locations?)
15
2
2 2 7
0.2
8 192 8
AD D
EI PL EI PL PL
M PL
L L EI

 
        
 
2
4 4 7
0.02
8 192 8
DA D
EI PL EI PL PL
M PL
L L EI

 
         
 
6
0.22BD D
EI
M PL
L
   
12
0.43DB D
EI
M PL
L
   
4
0.10
4
CD D
EI PL
M PL
L
    
8
0.54
4
DC D
EI PL
M PL
L
    
Question 5 continued
16
A
P
EI/L
MAD=-0.2PL
MDA=-0.02PL
D
0
0.02 0.2 0.5
0.72
D
Ax
Ax
M
R L PL PL PL
R P
 
    
 

RAx
Question 5 continued
17
B
MDB=-0.43PLMBD=-0.22PL
D
0
0.22 0.43
0.65
D
By
By
M
R L PL PL
R P
 
  
 

RBy
Question 5 continued
18
D
MCD=+0.10PLMDC=-0.54PL
C
0
0.54 0.10
0.56
D
Cy
Cy
M
R L PL PL PL
R P
 
    
 

RCy
2P
Question 6
(Shear and bending moment diagram o f AD?)
19
A
P
MAD=-0.2PL
MDA=-0.02PL
D
RAx=-0.72P
M(y)
V(y)
( ) 0.72 ; 0 0.5
0
( ) 0.28 ; 0.5
x
V y P y L
F
V y P L y L
   
  
   

 
( ) 0.2 0.72 ; 0 0.5
0
( ) 0.2 0.72 0.5 ; 0.5
M y PL Py y L
M
M y PL Py P y L L y L
    
  
      



-0.72P
+0.28P


-0.2PL
+0.16PL
-0.02PL

Slope-deflection question

  • 1.
    Structural Analysis Examplewith Solutions By Dr. Mahdi Damghani 2016-2017 1
  • 2.
    Objective(s) • Review ofstructural analysis methods and procedures learnt in this module • Preparation for final exam (familiarity with a typical question) as this year’s exam will be different from previous years 2
  • 3.
    Session plan Introduction (5-10 mins) Slope-Deflection theoryby students (5-10 mins) Q&A (5 mins) Solving a representative example (30 mins) Q&A (5-10 mins) 3
  • 4.
    Asking Questions • Askin publicly • Write your questions in the following link and I will answer them all at the end of the session: https://padlet.com/mahdi_damghani/SDI 4
  • 5.
    Topics covered inthis module • Direct integration method • Macaulay’s method • Slope-deflection method • Principle of virtual work • Rigid bodies • Deformable bodies • Unit load method • Principle of complementary energy • Castigliano’s second theorem • Principle of total potential energy • Castigliano’s first theorem • Rayleigh-Ritz • Finite element analysis of truss structures • Finite element analysis of beam structures • Finite element analysis of frame structures 5 Objectives satisfied by the assignment Assessment in the final exam Assessment in the final exam with all details
  • 6.
    Slope-Deflection Method • Thebeam we considered so far did not have any external loading from A to B 6 • In the presence of mid-span loading (common engineering problems) the equations become:   F ABBABAAB Mvv LL EI M      3 2 2    F ABBABAAB Svv LL EI S      26 2    F BABABABA Mvv LL EI M      3 2 2    F BABABABA Svv LL EI S      26 2 
  • 7.
    Fixed End Moment/Shear •MAB F, MBA F are fixed end moments at nodes A and B, respectively. • Moments at two ends of beam when beam is clamped at both ends under external loading (see next slides) • SAB F, SBA F are fixed end shears at nodes A and B, respectively. • Shears at two ends of beam when beam is clamped at both ends under external loading (see next slides) 7
  • 8.
  • 9.
  • 10.
  • 11.
    Question 1 Is thisstructure determinate or indeterminate? Degree of indeterminacy is 9-3=6 1 1
  • 12.
    Question 2 (slope-deflection equations?) 12  F ABBABAAB Mvv LL EI M      3 2 2    F BABABABA Mvv LL EI M      3 2 2    8 2 8 2 2 0 PL L EI M PL L EI M DADDAAD A        8 4 8 2 2 0 PL L EI M PL L EI M DDAADDA A        DBDDBBD L EI M L EI M B   6 2 32 0        DDBBDDB L EI M L EI M B   12 2 32 0        4 4 8 2 2 22 0 PL L EI M PL L EI M DCDDCCD C          4 8 8 2 2 22 0 PL L EI M PL L EI M DDCCDDC C       
  • 13.
    Question 3 (Equation ofequilibrium at joints?) 1313 PL D MDB MDA MDC 0 PLMMM DCDADB
  • 14.
    Question 4 (Rotation ofjoint D?) 14 0 PLMMM DCDADB 8 4 PL L EI M DDA  DDB L EI M  12  4 8 PL L EI M DDC   2 7 192 D PL EI  
  • 15.
    Question 5 (Reaction atsupport locations?) 15 2 2 2 7 0.2 8 192 8 AD D EI PL EI PL PL M PL L L EI               2 4 4 7 0.02 8 192 8 DA D EI PL EI PL PL M PL L L EI                6 0.22BD D EI M PL L     12 0.43DB D EI M PL L     4 0.10 4 CD D EI PL M PL L      8 0.54 4 DC D EI PL M PL L     
  • 16.
    Question 5 continued 16 A P EI/L MAD=-0.2PL MDA=-0.02PL D 0 0.020.2 0.5 0.72 D Ax Ax M R L PL PL PL R P           RAx
  • 17.
    Question 5 continued 17 B MDB=-0.43PLMBD=-0.22PL D 0 0.220.43 0.65 D By By M R L PL PL R P         RBy
  • 18.
    Question 5 continued 18 D MCD=+0.10PLMDC=-0.54PL C 0 0.540.10 0.56 D Cy Cy M R L PL PL PL R P           RCy 2P
  • 19.
    Question 6 (Shear andbending moment diagram o f AD?) 19 A P MAD=-0.2PL MDA=-0.02PL D RAx=-0.72P M(y) V(y) ( ) 0.72 ; 0 0.5 0 ( ) 0.28 ; 0.5 x V y P y L F V y P L y L               ( ) 0.2 0.72 ; 0 0.5 0 ( ) 0.2 0.72 0.5 ; 0.5 M y PL Py y L M M y PL Py P y L L y L                   -0.72P +0.28P   -0.2PL +0.16PL -0.02PL