SlideShare a Scribd company logo
1 of 87
Download to read offline
DISPLACEMENT METHOD OF ANALYSIS:
SLOPE DEFLECTION EQUATIONS
!
!
!
!
!
!
!
!
!

General Case
Stiffness Coefficients
Stiffness Coefficients Derivation
Fixed-End Moments
Pin-Supported End Span
Typical Problems
Analysis of Beams
Analysis of Frames: No Sidesway
Analysis of Frames: Sidesway

1
Slope – Deflection Equations
P

i

w

j

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

2
Degrees of Freedom
M

θΑ

B

A

1 DOF: θΑ

C

2 DOF: θΑ , θΒ

L

θΑ

A

P
B
θΒ

3
Stiffness

kAA

kBA

1

B

A
L
k AA =

4 EI
L

k BA =

2 EI
L

4
kBB

kAB

A

B

1
L
k BB =

4 EI
L

k AB =

2 EI
L

5
Fixed-End Forces
Fixed-End Moments: Loads
P
L/2

PL
8

L/2

PL
8

L
P
2

P
2

w
wL2
12
wL
2

L

wL2
12
wL
2

6
General Case

P

i

w

j

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

7
Mij

P

i

j

w

Mji

θi
L

θj

ψ
4 EI
2 EI
θi +
θj = M
ij
L
L

Mji =

2 EI
4 EI
θi +
θj
L
L

θj

θi
(MFij)∆

+
(MFji)∆
settlement = ∆j

+
P
(MFij)Load

M ij = (

settlement = ∆j

w
(MFji)Load

4 EI
2 EI
2 EI
4 EI
)θ i + (
)θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = (
)θ i + (
)θ j + ( M F ji ) ∆ + ( M F ji ) Load 8
L
L
L
L
Equilibrium Equations
i

P

w

j

k

Cj

Cj M

Mji
Mji

jk

Mjk
j

+ ΣM j = 0 : − M ji − M jk + C j = 0

9
Stiffness Coefficients
Mij

i

j

Mji

L

θj

θi

kii =

4 EI
L

k ji =

2 EI
L

×θ i

k jj =

4 EI
L

×θ j

1

kij =

2 EI
L

+
1

10
Matrix Formulation

M ij = (

4 EI
2 EI
)θ i + (
)θ j + ( M F ij )
L
L

M ji = (

2 EI
4 EI
)θ i + (
)θ j + ( M F ji )
L
L

 M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F 

M  = 
 +
(2 EI / L) ( 4 EI / L) θ j   M ji F 

 ji  



 kii
k ji

[k ] = 

kij 
k jj 


Stiffness Matrix
11
P

i

Mij

w

j

Mji

θi

L

[ M ] = [ K ][θ ] + [ FEM ]

θj

ψ

∆j

([ M ] − [ FEM ]) = [ K ][θ ]

[θ ] = [ K ]−1[ M ] − [ FEM ]

Mij

Mji

θj

θi

Fixed-end moment
Stiffness matrix matrix

+
(MFij)∆

(MFji)∆

[D] = [K]-1([Q] - [FEM])
+
(MFij)Load

P

w

(MFji)Load

Displacement
matrix

Force matrix

12
Stiffness Coefficients Derivation: Fixed-End Support
Mj

θi

Mi

Real beam
i

j

L

Mi + M j
L

Mi + M j

L/3

M jL
2 EI

L

Mj
EI

Conjugate beam
Mi
EI

θι

MiL
2 EI

M j L 2L
MiL L
)( ) + (
)( ) = 0
2 EI 3
2 EI 3
M i = 2 M j − − − (1)

+ ΣM 'i = 0 : − (

+ ↑ ΣFy = 0 : θ i − (

M L
MiL
) + ( j ) = 0 − − − (2)
2 EI
2 EI

From (1) and (2);
4 EI
)θ i
L
2 EI
)θ i
Mj =(
L
Mi = (

13
Stiffness Coefficients Derivation: Pinned-End Support
Mi

θi
i

L
Mi
L

2L
3

Mi
EI

θi
+ ΣM ' j = 0 : (

MiL
2 EI

M i L 2L
)( ) − θ i L = 0
2 EI 3
ML
θi = ( i )
3EI

θi = 1 = (

θj

j

Real beam

Mi
L

Conjugate beam

θj
+ ↑ ΣFy = 0 : (

MiL
ML
) − ( i ) +θ j = 0
3EI
2 EI

θj =(
MiL
3EI
) → Mi =
L
3EI

− MiL
)
6 EI
14
Fixed end moment : Point Load
P Real beam

Conjugate beam
A

A

B

B

L

M
EI

M

M

M
EI

M
EI

ML
2 EI

ML
2 EI

P
PL2
16 EI

PL
4 EI

M
EI

PL2
16 EI

PL
ML ML 2 PL2
+ ↑ ΣFy = 0 : −
−
+
= 0, M =
2 EI 2 EI 16 EI
8 15
P
PL
8

PL
8

L
P
2

P
2

P/2

PL/8

P/2

-PL/8

-PL/8
-

-PL/8

-PL/16
-

-PL/16
PL/4
+

-PL/8

− PL − PL PL PL
+
=
+
16
16
4
8

16
Uniform load
w

Real beam

Conjugate beam
A

A

L

B

B
M
EI

M

M

M
EI

M
EI

ML
2 EI

ML
2 EI

w

wL3
24 EI

wL2
8 EI

M
EI

wL3
24 EI

wL2
ML ML 2 wL3
+ ↑ ΣFy = 0 : −
−
+
= 0, M =
2 EI 2 EI 24 EI
12 17
Settlements
Mi = Mj

Real beam

Mj

Conjugate beam

L
Mi + M j

M

L

A

M
EI

B

∆

∆
M
EI

Mi + M j
L
M
EI

ML
2 EI

ML
2 EI

M

M
EI

∆

+ ΣM B = 0 : − ∆ − (

ML L
ML 2 L
)( ) + (
)( ) = 0,
2 EI 3
2 EI 3
M=

6 EI∆
L2

18
Pin-Supported End Span: Simple Case
P

w
B

A

L

2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

θB

+
P

B
w
(FEM)BA

(FEM)AB
A
B
= 0 = (4 EI / L)θ A + (2 EI / L)θ B + ( FEM ) AB

− − − (1)

M BA = 0 = (2 EI / L)θ A + (4 EI / L)θ B + ( FEM ) BA

− − − ( 2)

M AB

2(2) − (1) : 2 M BA = (6 EI / L)θ B + 2( FEM ) BA − ( FEM ) BA

M BA = (3EI / L)θ B + ( FEM ) BA −

( FEM ) BA
2

19
Pin-Supported End Span: With End Couple and Settlement
P

w

MA

B

A

L

∆

2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

P

θB

w

B
(MF BA)load

(MF AB)load
(MF

AB)∆

A
A

B
B

(MF BA) ∆

4 EI
2 EI
F
F
θA +
θ B + ( M AB )load + ( M AB ) ∆ − − − (1)
L
L
2 EI
4 EI
F
F
θA +
θ B + ( M BA )load + ( M BA ) ∆ − − − (2)
M BA =
L
L
2(2) − (1)
3EI
1
1
M
F
F
F
: M BA =
θ B + [( M BA )load − ( M AB )load ] + ( M BA ) ∆ + A
2
2
2
2
L

M AB = M A =

E lim inate θ A by

20
Fixed-End Moments
Fixed-End Moments: Loads
P
PL
8

L/2

L/2

PL
8

L/2

PL 1
PL
3PL
+ ( )[−(−
)] =
8
2
8
16

P
L/2

wL2
12

wL2
12

wL2 1
wL2
wL2
)] =
+ ( )[−( −
12
2
12
8

21
Typical Problem

CB
w

P1

P2
C

A
B

L1

P

PL
8

PL
8

L2
wL2
12

L
0
PL
4 EI
2 EI
M AB =
θA +
θB + 0 + 1 1
8
L1
L1
0 EI
PL
2 EI
4
M BA =
θA +
θB + 0 − 1 1
8
L1
L1
0
2
P2 L2 wL2
4 EI
2 EI
M BC =
θB +
θC + 0 +
+
L2
L2
8
12
0
2
− P2 L2 wL2
2 EI
4 EI
θB +
θC + 0 +
−
M CB =
8
12
L2
L2

w

wL2
12

L

22
CB
w

P1

P2
C

A
B

L1

L2

CB M
BC

MBA

B

M BA =
M BC

PL
2 EI
4 EI
θA +
θB + 0 − 1 1
8
L1
L1

P L wL
4 EI
2 EI
=
θB +
θC + 0 + 2 2 + 2
L2
L2
8
12

2

+ ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B

23
P1
MAB

CB
w

MBA

A
L1

B

P2

MBC
L2

C M
CB

Substitute θB in MAB, MBA, MBC, MCB
0
PL
4 EI
2 EI
θA +
θB + 0 + 1 1
M AB =
L1
L1
8
0 EI
PL
2 EI
4
M BA =
θA +
θB + 0 − 1 1
8
L1
L1
0
2
4 EI
2 EI
P2 L2 wL2
θB +
θC + 0 +
+
M BC =
8
12
L2
L2
0
2
− P2 L2 wL2
2 EI
4 EI
θB +
θC + 0 +
−
M CB =
L2
L2
8
12

24
P1
MAB
A

Ay

CB
w

MBA
B

L1

P2
MCB

MBC
L2

Cy

C

By = ByL + ByR

B

P1
MAB

B

A
Ay

L1

MBA

ByL

P2

MBC
ByR

L2

C
MCB

Cy

25
Example of Beams

26
Example 1
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN

6 kN/m
C

A
4m

4m

B

6m

27
10 kN

6 kN/m
C

A
4m
PL
8

4m

P

B

6m
wL2
30

PL
8

wL2
20

w

FEM
MBA

MBC

[M] = [K][Q] + [FEM]
0

4 EI
2 EI
(10)(8)
θA +
θB +
8
8
8
0
2 EI
4 EI
(10)(8)
M BA =
θA +
θB −
8
8
8
0
4 EI
2 EI
(6)(6 2 )
θB +
θC +
M BC =
6
6
30
0
2 EI
4 EI
(6)(6) 2
θB +
θC −
M CB =
6
6
20
M AB =

B

+ ΣM B = 0 : − M BA − M BC = 0
4 EI 4 EI
(6)(6 2 )
+
=0
(
)θ B − 10 +
8
6
30
2.4
θB =
EI
Substitute θB in the moment equations:

MAB = 10.6 kN•m,

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

MCB = -10 kN•m 28
10 kN
8.8 kN•m
10.6 kN•m

A

6 kN/m
C

8.8 kN•m
4m

B

4m

MAB = 10.6 kN•m,

6m

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

10 kN•m

MCB= -10 kN•m

2m
18 kN

10 kN

6 kN/m
10.6 kN•m

A

B

8.8 kN•m B
10 kN•m
8.8 kN•m

Ay = 5.23 kN

ByL = 4.78 kN

ByR = 5.8 kN

Cy = 12.2 kN

29
10 kN
10.6 kN•m

6 kN/m
C

A
4m

5.23 kN

B

4m

6m

10 kN•m

12.2 kN

4.78 + 5.8 = 10.58 kN

V (kN)

5.8

5.23
+

+

x (m)

- 4.78

-

10.3
M
(kN•m)

-10.6

Deflected shape

-12.2
+
-8.8

2.4
θB =
EI

x (m)
-10
x (m)
30
Example 2
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.
10 kN

6 kN/m
C

A
4m

4m

B

6m

31
10 kN

6 kN/m
C

A
4m
PL
8

P

4m

B

6m
wL2
30

PL
8

w

wL2
20

FEM
10
[M] = [K][Q] + [FEM]
0 4 EI
2 EI
(10)(8)
θA +
θB +
M AB =
− − − (1)
8
8
8 10
2 EI
4 EI
(10)(8)
θA +
θB −
− − − (2)
M BA =
8
8
8
4 EI
2 EI 0 (6)(6 2 )
θB +
θC +
− − − (3)
M BC =
6
6
30
2 EI
4 EI 0 (6)(6) 2
θB +
θC −
− − − (4)
M CB =
6
6
20
6 EI
2(2) − (1) : 2 M BA =
θ B − 30
8
3EI
θ B − 15 − − − (5)
M BA =
8

32
MBA

MBC
B

M BC

4 EI
(6)(6 2 )
=
θB +
6
30

M CB =

2 EI
(6)(6)
θB −
6
20

2

− − − (3)

Substitute θA and θB in (5), (3) and (4):
MBA = - 12.19 kN•m

− − − (4)

3EI
θ B − 15 − − − (5)
8
+ ΣM B = 0 : − M BA − M BC = 0
M BA =

MBC = 12.19 kN•m
MCB = - 8.30 kN•m

3EI 4 EI
(6)(6 2 )
+
= 0 − − − (6 )
(
)θ B − 15 +
8
6
30
7.488
θB =
EI

4 EI
2 EI
θA +
θ B − 10
8
8
− 23.74
θA =
EI

Substitute θ B in (1) : 0 =

33
10 kN
12.19 kN•m
A
4m

4m

B

6 kN/m
C

12.19 kN•m
6m

8.30 kN•m

MBA = - 12.19 kN•m, MBC = 12.19 kN•m, MCB = - 8.30 kN•m
2m
10 kN
A

18 kN
B

B
12.19 kN•m

6 kN/m
C

8.30 kN•m

12.19 kN•m
Ay = 3.48 kN

ByL = 6.52 kN

ByR = 6.65 kN

Cy = 11.35 kN

34
10 kN

6 kN/m
C

A
3.48 kN

4m

4m

B

6m

11.35 kN

6.52 + 6.65 = 13.17 kN

V (kN)

6.65

3.48

x (m)
- 6.52

-11.35

14
M
(kN•m)

x (m)
-12.2

Deflected shape
− 23.74
θA =
EI

θB =

7.49
EI

-8.3
x (m)
35
Example 3
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN

4 kN/m
C

A
2EI
4m

B
4m

3EI
6m

36
10 kN

4 kN/m
C

A
2EI
(10)(8)/8
(10)(8)/8
4m
4m

0
M AB

3EI
B (4)(62)/12
6m

(4)(62)/12

10
4(2 EI )
2(2 EI )
(10)(8)
=
θA +
θB +
− − − (1)
8
8
8 10

M BA =

2(2 EI )
4(2 EI )
(10)(8)
θA +
θB −
8
8
15 8

− − − (2)

2(2) − (1)
3(2 EI )
(3 / 2)(10)(8)
: M BA =
θB −
− − − ( 2a )
2
8
8
12
4(3EI )
(4)(6 2 )
θB +
− − − (3)
M BC =
6
12

37
10 kN

4 kN/m
C

A
3EI
2EI
(3/2)(10)(8)/8 B (4)(62)/12
4m
6m
4m

(4)(62)/12

15
3(2 EI )
(3 / 2)(10)(8)
M BA =
θB −
− − − ( 2a )
8
8
12
2
4(3EI )
(4)(6 )
θB +
− − − (3)
M BC =
6
12
− M BA − M BC = 0 : 2.75EIθ B = −12 + 15 = 3

θ B = 1.091 / EI
3(2 EI ) 1.091
(
) − 15 = −14.18 kN • m
8
EI
4(3EI ) 1.091
(
) − 12 = 14.18 kN • m
=
6
EI
2(3EI )
=
θ B − 12 = −10.91 kN • m
6

M BA =
M BC
M CB

38
10 kN
A

2EI 14.18
4m

4 kN/m
C 10.91
B

14.18

3EI

6m

4m

MBA = - 14.18 kN•m, MBC = 14.18 kN•m, MCB = -10.91 kN•m

10 kN
A

24 kN
B

4 kN/m

14.18 kN•m
140.18 kN•m

10.91 kN•m
C

Ay = 3.23 kN

ByL = 6.73 kN

ByR = 12.55 kN

Cy = 11.46 kN

39
10 kN

4 kN/m
C 10.91 kN•m

A
2EI

3.23 kN
4m

V (kN)

3.23

B

3EI
11.46 kN

6m

4m

6.77 + 12.55 = 19.32 kN
12.55
2.86
+
-6.73

+

x (m)
-11.46

12.91
M
(kN•m)

5.53
+

+
-

-10.91
-14.18

Deflected shape

-

x (m)

θB = 1.091/EI

x (m)

40
Example 4
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN 12 kN•m

4 kN/m
C

A
2EI
4m

B
4m

3EI
6m

41
10 kN 12 kN•m

4 kN/m
C

A

2EI
3EI
2/12 = 12
1.5PL/8 = 15 B wL
wL2/12 = 12
4m
6m
4m

M BA =

3(2 EI )
θ B − 15 − − − (1)
8

M BC =

4(3EI )
θ B + 12 − − − (2)
6

2(3EI )
θ B − 12 − − − (3)
6
12 kN•m
MBA
MBA

M CB =

B MBC MBC
Jo int B : − M BA − M BC − 12 = 0

-3.273/EI
4(2 EI )
2(3EI )
(10)(8)
θA +
θB +
M AB =
8
8
8
7.21
θA = −
EI
3.273
M BA = 0.75 EI ( −
) − 15 = −17.45 kN • m
EI
3.273
M BC = 2 EI (−
) + 12 = 5.45 kN • m
EI
3.273
M CB = EI (−
) − 12 = −15.27 kN • m
EI
0

− (0.75 EI − 15) − (2 EIθ B + 12) − 12 = 0

θB = −

3.273
EI

42
3.273
) − 15 = −17.45 kN • m
EI
3.273
M BC = 2 EI (−
) + 12 = 5.45 kN • m
EI
3.273
M CB = EI ( −
) − 12 = −15.27 kN • m
EI
M BA = 0.75EI ( −

24 kN

10 kN

4 kN/m
A

5.45 kN•m

B

2.82 kN

17.45 kN•m
7.18 kN

C

10.36 kN

10 kN 12 kN•m

2.82 kN

B
17.54 kN

13.64 kN

4 kN/m
C

A

15.27 kN•m

15.27 kN•m

13.64 kN
43
10 kN 12 kN•m

4 kN/m
C 15.27 kN•m

A
2.82 kN
4m

3EI

2EI

7.21
EI
3.273
θB = −
EI

B
17.54 kN
6m

4m

13.64 kN θ A = −

10.36
V (kN)

2.82

+

+

3.41 m

-

-

-7.18
M
(kN•m)

-13.64

11.28

7.98

+

+
-

x (m)
-

-5.45

-15.27

-17.45
Deflected shape
− 7.21
θA =
EI

x (m)

x (m)

θB =

3.273
EI

44
Example 5
Draw the quantitative shear, bending moment diagrams, and qualitative
deflected curve for the beam shown. Support B settles 10 mm, and EI is
constant. Take E = 200 GPa, I = 200x106 mm4.

10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

45
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
6 EI∆
L2

4m

4m

A

P

B

6 EI∆
L2

[FEM]∆
PL
8

6 EI∆
L2

6m

6 EI∆
L2

∆
PL
8

10 mm

2

wL
30

∆
B

w

C
wL2
30

[FEM]load
-12
4(2 EI )
2(2 EI )
6(2 EI )(0.01) (10)(8)
M AB =
θA +
θB +
+
− − − (1)
8
8
82
8
2(2 EI )
4(2 EI )
6(2 EI )(0.01) (10)(8)
M BA =
θA +
θB +
−
− − − ( 2)
8
8
82
8
0
4(3EI )
2(3EI )
6(3EI )(0.01) (6)(6 2 )
M BC =
θB +
θC −
+
− − − (3)
6
6
62
30
0
2(3EI )
4(3EI )
6(3EI )(0.01) (6)(6) 2
M CB =
θB +
θC −
−
− − − (4)
2
6
6
6
30

46
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

4(2 EI )
2(2 EI )
6(2 EI )(0.01) (10)(8)
θA +
θB +
+
− − − (1)
8
8
82
8
2(2 EI )
4(2 EI )
6(2 EI )(0.01) (10)(8)
=
θA +
θB +
−
− − − ( 2)
8
8
82
8

M AB =
M BA

Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN• m2 :
4(2 EI )
2(2 EI )
θA +
θ B + 75 + 10 − − − (1)
8
8
2(2 EI )
4(2 EI )
=
θA +
θ B + 75 − 10 − − − (2)
8
8
16.5

M AB =
M BA

2(2) − (1)
3(2 EI )
: M BA =
θ B + 75 − (75 / 2) − 10 − (10 / 2) − 12 / 2 − − − (2a )
8
2
47
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

MBA = (3/4)(2EI)θB + 16.5
MBC = (4/6)(3EI)θB - 192.8
+ ΣMB = 0: - MBA - MBC = 0
MBA

MBC
B

(3/4 + 2)EIθB + 16.5 - 192.8 = 0

θB = 64.109/ EI
Substitute θB in (1):

θA = -129.06/EI

Substitute θA and θB in (5), (3), (4):
MBA = 64.58 kN•m,
MBC = -64.58 kN•m
MCB = -146.69 kN•m
48
10 kN

12 kN•m

6 kN/m
B

146.69 kN•m

C

A
64.58 kN•m
4m

4m

64.58 kN•m
6m

MBA = 64.58 kN•m,
MBC = -64.58 kN•m
2m

MCB = -146.69 kN•m
12 kN•m

18 kN

10 kN

A

64.58 kN•m
B

146.69 kN•m
B

Ay = 11.57 kN

ByL = -1.57 kN

6 kN/m

64.58 kN•m

ByR = -29.21 kN

C
Cy = 47.21 kN

49
10 kN

12 kN•m

6 kN/m
C

A
2EI

11.57 kN

3EI

B

4m

47.21 kN

6m

4m

θA = -129.06/EI
θB = 64.109/ EI

1.57 + 29.21 = 30.78 kN
11.57
+

V (kN)

1.57

x (m)
-

-29.21

M
(kN•m)

12

58.29

146.69 kN•m

-47.21

64.58

+

x (m)
-146.69

Deflected shape

x (m)
θA = -129.06/EI

10 mm

θB = 64.109/ EI

50
Example 6
For the beam shown, support A settles 10 mm downward, use the slope-deflection
method to
(a)Determine all the slopes at supports
(b)Determine all the reactions at supports
(c)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape. (3 points)
Take E= 200 GPa, I = 50(106) mm4.

6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

51
6 kN/m
B

C

2EI
3m
6(32 )
= 4.5
12
6(1.5 × 200 × 50)(0.01)
32
= 100 kN • m

12 kN•m
A

1.5EI

10 mm

3m
6 kN/m
4.5
C
C

MFw

A
0.01 m

MF∆

100 kN • m

A

M CB =

4(2 EI )
θC
3

M CA =

4(1.5EI )
2(1.5 EI )
θC +
θ A + 4.5 + 100 − − − (2)
3
3

12

M AC =

− − − (1)

2(1.5EI )
4(1.5 EI )
θC +
θ A − 4.5 + 100 − − − (3)
3
3

2(2) − (2)
3(1.5EI )
3(4.5) 100 12
: M CA =
θC +
+
+
3
2
2
2
2

− − − ( 2a )
52
6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

4(2 EI )
θ C − − − (1)
3
3(1.5 EI )
3(4.5) 100 12
=
θC +
+
+
3
2
2
2

M CB =
M CA

MCB

MCA

− − − ( 2a )

• Equilibrium equation:
M CB + M CA = 0

(8 + 4.5) EI
3(4.5) 100 12
θC +
+
+ =0
C
3
2
2
2
− 15.06
θC =
= −0.0015 rad
EI
2(1.5 EI ) − 15.06 4(1.5 EI )
Substitute θC in eq.(3)
12 =
(
)+
θ A − 4.5 + 100 − − − (3)
EI
3
3
− 34.22
θA =
= −0.0034 rad
EI

53
6 kN/m
B

C

2EI

12 kN•m

1.5EI

3m

A

10 mm

3m

− 15.06
− 34.22
= −0.0015 rad θ A =
= −0.0034 rad
EI
EI
2(2 EI )
2( 2 EI ) − 15.06
=
θC =
(
) = −20.08 kN • m
3
3
EI
4(2 EI )
4(2 EI ) − 15.06
=
θC =
(
) = −40.16 kN • m
3
3
EI

θC =
M BC
M CB

20.08 kN•m
B
20.08 kN

C

40.16 kN•m

40.16 + 20.08
= 20.08 kN
3
18 kN

6 kN/m
40.16 kN•m

C
26.39 kN

12 kN•m

A

8.39 kN

54
12 kN•m

6 kN/m

θ C = −0.0015 rad

B

θ A = −0.0034 rad

C

2EI
3m
B

40.16 kN•m

C
20.08 kN
40.16 kN•m

V (kN)

6 kN/m

C
26.39 kN
26.39

12 kN•m

A

-

Deflected shape

-20.08
20.08

12
-40.16

θ C = 0.0015 rad

8.39 kN
8.39
x (m)

+
M (kN•m)

10 mm

3m

20.08 kN•m
20.08 kN

A

1.5EI

x (m)

x (m)
θ A = 0.0034 rad

55
Example 7

For the beam shown, support A settles 10 mm downward, use the
slope-deflection method to
(a)Determine all the slopes at supports
(b)Determine all the reactions at supports
(c)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape.
Take E= 200 GPa, I = 50(106) mm4.

6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

56
12 kN•m

6 kN/m
B

C

2EI
3m

C
B

∆C

6( 2 EI )∆ C 4 EI∆ C
=
2
3
3

M BC
M CB
M CA =

2(2 EI )
4 EI
=
θC −
∆C
3
3
4(2 EI )
4 EI
=
θC −
∆C
3
3

A

1.5EI

10 mm

3m
EI∆ C

C
∆C

4 EI∆ C
3

A

6 kN/m
4.5

100
− − − (1)

C

A

C

− − − (2)

0.01 m

A

6(1.5 EI ) ∆ C
= EI∆ C
2
3

6(32 )
= 4.5
12
6(1.5 × 200 × 50)(0.01)
32
= 100 kN • m

4(1.5 EI )
2(1.5EI )
θC +
θ A + EI∆ C + 4.5 + 100 − −(3)
3
3

12
2(1.5 EI )
4(1.5 EI )
M AC =
θC +
θ A + EI∆ C − 4.5 + 100 − −(4)
3
3
2(3) − (4)
3(1.5 EI )
EI
3(4.5) 100 12
: M CA =
θ C + ∆C +
+
+
− − − (3a)
2
3
2
2
2
2

57
12 kN•m

6 kN/m
B

C

2EI
3m

A

1.5EI
3m

18 kN

• Equilibrium equation:

6 kN/m
MBC

B
By

C
(C y ) CB = −(

MCB

MCA

C

M BC + M CB
(C y ) CA
)
3
MCB
MCA

(Cy)CB

10 mm

C

12 kN•m

A

Ay
M + 12 + 18(1.5) M CA + 39
= CA
=
3
3
ΣM C = 0 : M CB + M CA = 0 − − − (1*)

ΣC y = 0 : (C y ) CB + (C y ) CA = 0 − − − (2*)

(Cy)CA

Substitute in (1*) 4.167 EIθ C − 0.8333EI∆ C = −62.15 − − − (5)
Substitute in ( 2*) − 2.5 EIθ C + 3.167 EI∆ C = −101.75 − − − (6)
From (5) and (6) θ C = −25.51 / EI = −0.00255 rad

∆ C = −52.27 / EI = −5.227 mm

58
6 kN/m
B
2EI

C

3m

1.5EI

12 kN•m
A

10 mm

3m

• Solve equation

θC =

− 25.51
= −0.00255 rad
EI

Substitute θC and ∆C in (1), (2) and (3a)
M BC = 35.68 kN • m

− 52.27
∆C =
= −5.227 mm
EI

M CB = 1.67 kN • m

Substitute θC and ∆C in (4)

θA =

M CA = −1.67 kN • m

− 2.86
= −0.000286 rad
EI

6 kN/m
35.68 kN•m

B

B y = 18 − 5.55
= 12.45 kN

2EI
3m

C

1.5EI
3m

12 kN•m
A

18(4.5) − 12 − 35.68
6
= 5.55 kN

Ay =

59
6 kN/m
35.68 kN•m

B

C

2EI

12.45 kN

3m

12 kN•m
A

1.5EI

10 mm
5.55 kN

3m

V (kN) 12.45
θ C = −0.00255 rad
+

0.925 m
x (m)

∆ C = −5.227 mm

-5.55

θ A = −0.000286 rad
M (kN•m)

1.67

14.57
+

12

-

x (m)

-35.68
Deflected shape

∆ C = 5.227 mm

θ C = 0.00255 rad

x (m)

θ A = 0.000286 rad

60
Example of Frame: No Sidesway

61
Example 6
For the frame shown, use the slope-deflection method to
(a) Determine the end moments of each member and reactions at supports
(b) Draw the quantitative bending moment diagram, and also draw the
qualitative deflected shape of the entire frame.
10 kN

12 kN/m
C

3m

B
3EI

40 kN
3m

2EI

A
1m

6m

62
10 kN

36/2 = 18

12 kN/m

• Equilibrium equations

C
B

3m
40 kN
3m

A
1m

2EI 2
36
(wL /12 ) =36
PL/8 = 30
3EI
PL/8 = 30
6m

• Slope-Deflection Equations
M AB =

M BA =
M BC

10
MBC
MBA
10 − M BA − M BC = 0 − − − (1*)

Substitute (2) and (3) in (1*)
10 − 3EIθ B + 30 − 54 = 0

− 14 − 4.667
=
(3EI )
EI

2(3EI )
θ B + 30 − − − (1)
6

θB =

4(3EI )
θ B − 30 − − − (2)
6

Substitute θ B =

3( 2 EI )
θ B + 36 + 18 − − − (3)
=
6

− 4.667
in (1) to (3)
EI

M AB = 25.33 kN • m
M BA = −39.33 kN • m
M BC = 49.33 kN • m

63
10 kN

12 kN/m

20.58

C
3m

B

49.33
39.33
3EI

40 kN
3m

25.33

A
1m

2EI

10

-39.3

-49.33

MAB = 25.33 kN•m

27.7

MBA = -39.33 kN•m
-25.33

MBC = 49.33 kN•m

6m

Bending moment diagram
12 kN/m

B
B

C

θB

49.33
39.33

27.78 kN

θB

θB = -4.667/EI

40 kN
A

17.67 kN
25.33

Deflected curve

64
Example 7
Draw the quantitative shear, bending moment diagrams and qualitative
deflected curve for the frame shown. E = 200 GPa.
25 kN

5 kN/m

B
240(106) mm4
5m

180(106)

C

120(106) mm4

60(106) mm4

A

E

D
3m

3m

4m

65
25 kN
PL/8 = 18.75
18.75
B
240(106) mm4 C
5m

5 kN/m
180(106)
6.667+ 3.333

120(106) mm4

(wL2/12 ) = 6.667

60(106) mm4

A

E

D
3m

3m

0
4(2 EI )
2(2 EI )
M AB =
θA +
θB
5
5
0
2(2 EI )
4(2 EI )
M BA =
θA +
θB
5
5
4( 4 EI )
2(4 EI )
M BC =
θB +
θ C + 18.75
6
6
2(4 EI )
4(4 EI )
M CB =
θB +
θ C − 18.75
6
6
3( EI )
θC
M CD =
5
3(3EI )
M CE =
θ C + 10
4

4m
M BA + M BC = 0
8 16
8
( + ) EIθ B + ( ) EIθ C = −18.75 − − − (1)
5 6
6
M CB + M CD + M CE = 0
16 3 9
8
( ) EIθ B + ( + + ) EIθ C = 8.75 − − − (2)
6 5 4
6
From (1) and (2) : θ B =

− 5.29
EI

θC =

2.86
EI
66
Substitute θB = -1.11/EI, θc = -20.59/EI below
4(2 EI ) 0 2(2 EI )
M AB =
θA +
θB
5
5
0
2(2 EI )
4(2 EI )
M BA =
θA +
θB
5
5
4( 4 EI )
2(4 EI )
M BC =
θB +
θ C + 18.75
6
6
2(4 EI )
4(4 EI )
θB +
θ C − 18.75
M CB =
6
6
3( EI )
θC
M CD =
5
3(3EI )
θ C + 10
M CE =
4

MAB = −4.23 kN•m
MBA = −8.46 kN•m
MBC = 8.46 kN•m
MCB = −18.18 kN•m
MCD = 1.72 kN•m
MCE = 16.44 kN•m

67
MAB = -4.23 kN•m, MBA = -8.46 kN•m, MBC = 8.46 kN•m, MCB = -18.18 kN•m,
MCD = 1.72 kN•m, MCE = 16.44 kN•m
20 kN

25 kN

16.44 kN•m
3m
3m C
C
2.54 kN B
2.54 kN 2.54-0.34
=2.2 kN
8.46 kN•m
18.18 kN•m
(20(2)+16.44)/4
(25(3)+8.46-18.18)/6
14.12 kN
= 14.11 kN
= 10.88 kN
10.88 kN
B

8.46 kN•m
(8.46 + 4.23)/5
= 2.54 kN

5m

A

E 2.2 kN
5.89 kN

14.12+14.11=28.23 kN
1.72 kN•m
(1.72)/5 = 0.34 kN
B

5m
2.54 kN

A

0.34 kN

4.23 kN•m
10.88 kN

28.23 kN

68
24.18
1.29 m 2.33 m

14.11

10.88

1.18 m

+

+

-2.54

2.82 m

-

-14.12

-

-2.54

+

0.78 m

-

-8.46

-5.89 -8.46 +

-

-18.18

0.34

4.23

Shear diagram
0.78 m

+

3.46

1.72

+

-

1.18 m

-16.44

1.67m
Moment diagram

1.29 m 2.33 m

θB = −5.29/EI

1.18 m

θC = 2.86/EI
1.67m
Deflected curve

69
Example of Frames: Sidesway

70
Example 8
Determine the moments at each joint of the frame and draw the quantitative
bending moment diagrams and qualitative deflected curve . The joints at A and
D are fixed and joint C is assumed pin-connected. EI is constant for each member
3m
1m

B
10 kN

C

3m
A

D

71
• Overview
• Unknowns

C

B
1m
10 kN

θB and ∆
• Boundary Conditions

3m
MAB
Ax
3m

A
Ay

θA = θD = 0

MDC
D D

• Equilibrium Conditions

x

- Joint B

Dy

B
MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*)

72
∆

∆
(0.375EI∆)∆

1m

B
10 kN
(5.625)load

MAB

C
(0.375EI∆)∆

10 kN

C

B

4m

4m

3m
(1.875)load

A

(0.375EI∆)∆

(1/2)(0.375EI∆)∆
(0.375EI∆)∆

A

D

Ax

D

Dx

3m

MBA

• Slope-Deflection Equations
5.625 0.375EI∆
2( EI )
10(3)(12 ) 6 EI∆
M AB =
θB +
+ 2
− − − (1)
4
42
4
5.625
0.375EI∆
2
4( EI )
10(3 )(1) 6 EI∆
M BA =
θB −
+ 2
− − − (2)
4
42
4
M BC =

3( EI )
θB
3

− − − (3)

1
M DC = 0.375EI∆ − 0.375EI∆ = 0.1875EI∆ − − − (4)
2

MDC

+ ΣM B = 0 :
( M AB + M BA )
4
Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5)
Ax =

+ ΣM C = 0 :
Dx =

M DC
= 0.0468EI∆ − − − (6)
4

73
Equilibrium Conditions:
M BA + M BC = 0 − − − (1*)

10 − Ax − Dx = 0 − − − (2*)

• Solve equation
Substitute (2) and (3) in (1*)
2EI θB + 0.375EI ∆ = 5.625 ----(7)

Slope-Deflection Equations:
Substitute (5) and (6) in (2*)
2( EI )
M AB =
θ B + 5.625 + 0.375EI∆ − − − (1)
− 0.375EIθ B − 0.235EI∆ = −8.437 − − − (8)
4
4( EI )
M BA =
θ B − 5.625 + 0.375EI∆ − − − (2) From (7) and (8) can solve;
4
− 5.6
44.8
3( EI )
θB =
∆=
M BC =
θ B − − − (3)
EI
EI
3
− 5.6
44.8
M DC = 0.1875EI∆ − − − (4)
Substituteθ B =
and ∆ =
in (1)to (6)
EI
EI
Horizontal reaction at supports:
Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5)
Dx = 0.0468EI∆ − − − (6)

MAB = 15.88 kN•m
MBA = 5.6 kN•m
MBC = -5.6 kN•m
MDC = 8.42 kN•m
Ax = 7.9 kN
Dx = 2.1 kN

74
C

B
1m
10 kN

MAB = 15.88 kN•m, MBA = 5.6 kN•m,
MBC = -5.6 kN•m, MDC = 8.42 kN•m,
Ax = 7.9 kN, Dx = 2.1 kN,

5.6

3m
8.42
D 2.1 kN

15.88
7.9 kN
3m

A

5.6

C

B

B

7.8

A

∆ = 44.8/EI
C

∆ = 44.8/EI

5.6

15.88

D

8.42

Bending moment diagram

A

θB = -5.6/EI

D
Deflected curve

75
Example 9
From the frame shown use the slope-deflection method to:
(a) Determine the end moments of each member and reactions at supports
(b) Draw the quantitative bending moment diagram, and also draw the
qualitative deflected shape of the entire frame.
B

C
2 EI

10 kN
2m

pin

4m

2.5 EI

EI

A

D
4m

3m

76
• Overview
B ∆ 2EI
B´

10 kN
2m
A

EI
MAB
Ax
Ay

4m

∆ CD

C

C´
∆BC
∆

2.5EI

• Unknowns

θB and ∆
MDC

• Boundary Conditions

Dx

D
3m

4m

θA = θD = 0

Dy

• Equilibrium Conditions
- Joint B
B
MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*)

77
• Slope-Deflection Equation
C´
B ∆
∆ CD
∆BC
5
B´ 2EI C ∆
10 kN
36.87°
4m
2.5EI
EI
2m
PL/8 = 5
D
A
4m
3m
0.375EI∆
B
∆´

B´

= ∆ / cos 36.87° = 1.25 ∆
C´
∆CD
∆BC = ∆ tan 36.87° = 0.75 ∆
36.87°
∆

C

2( EI )
θ B + 0.375EI∆ + 5 − − − (1)
4
(6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆
4( EI )
M BA =
θ B + 0.375EI∆ − 5 − − − (2)
C´
4
∆CD= 1.25 ∆
3(2 EI )
C
M BC =
θ B − 0.2813EI∆ − − − (3)
4
M AB =

M DC = 0.375EI∆ − − − (4)

A

D
0.75EI∆

6EI∆/(4)

2=

0.375EI∆

0.5625EI∆
B

B´
(1/2) 0.5625EI∆

C´
C

(1/2) 0.75EI∆

(6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆
∆BC= 0.75 ∆
78
• Horizontal reactions
B

2 EI

pin
C

10 kN
2m

4m

2.5 EI

EI

A

D
4m

3m
MBC

MBA

B

B
10 kN

C
MBC

MBC

4

4
C

A

Ax = (MBA+ MAB-20)/4 -----(5)
MAB
D

Dx= (MDC-(3/4)MBC)/4 ---(6)
MDC

MBC/4

79
Equilibrium Conditions:
M BA + M BC = 0 − − − (1*)

10 − Ax − Dx = 0 − − − (2*)
Slope-Deflection Equation:

• Solve equations
Substitute (2) and (3) in (1*)
2.5EIθ B + 0.0938 EI∆ − 5 = 0 − − − (7)

Substitute (5) and (6) in (2*)

2( EI )
6 EI∆
0.0938EIθ B + 0.334EI∆ − 5 = 0 − − − (8)
θB + 5 + 2
− − − (1)
4
4
From (7) and (8) can solve;
6 EI∆
4( EI )
M BA =
θB −5 + 2
− − − (2)
4
4
1.45
− 14.56
θB =
∆=
3(2 EI )
3(2 EI )(0.75∆)
EI
EI
M BC =
θB −
− − − (3)
2
4
4
1.45
− 14.56
3(2.5EI )(1.25∆)
Substituteθ B =
and ∆ =
in (1)to (6)
M DC =
− − − (4)
EI
EI
52
Horizontal reactions at supports:
MAB = 15.88 kN•m
MBA = 5.6 kN•m
( M BA + M AB − 20)
− − − (5)
Ax =
MBC = -5.6 kN•m
4
MDC = 8.42 kN•m
3
Ax = 7.9 kN
M DC − M BC
4
Dx =
− − − (6)
Dx = 2.1 kN
4
80
M AB =
1.91

1.91
B
2 EI

A

pin
C

10 kN
2m

MAB = 11.19 kN•m
MBA = 1.91 kN•m
MBC = -1.91 kN•m

2.5 EI
EI
11.19 kN•m
8.27 kN
0.478 kN
4m

5.46

4m
1.73

D

MDC = 5.46 kN•m
Ax = 8.28 kN•m
Dx = 1.72 kN•m

0.478 kN

3m

∆

∆
B
1.91

1.91

B

C

C

5.35
A

θB=1.45/EI

θB=1.45/EI
11.19

5.46
D

Bending-moment diagram

A

D
Deflected shape

81
Example 10
From the frame shown use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams, and
qualitative deflected curve.
3m

20 kN/m
B

pin
C

3EI
3m

2EI
4m

4EI
A
D

82
• Overview
• Unknowns

∆

∆

3m

20 kN/m

B
3EI
2EI

θB and ∆

C

• Boundary Conditions
4EI

θA = θD = 0

4m

• Equilibrium Conditions
- Joint B

A
[FEM]load

D

B

3m

MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 60 − Ax − Dx = 0 − − − (2*)

83
• Slope-Deflection Equation
B

20 kN/m

B

3m

6(2EI∆)/(3)
= 1.333EI∆

2

C

3EI
= 15

wL2/12
2EI

4EI

6(2EI∆)/(3) 2
= 1.333EI∆
A

A
[FEM]load

D

0

M BA

1.5EI∆

4m

wL2/12 = 15

M AB

∆
C

∆

3m

(1/2)(1.5EI∆)

6(4EI∆)/(4) 2
= 1.5EI∆

[FEM]∆

D
4(2 EI )
2(2 EI )
=
θA +
θ B + 15 + 1.333EI∆ = 1.333EIθ B + 15 + 1.333EI∆ ----------(1)
3
3
0
2( 2 EI )
4(2 EI )
=
θA +
θ B − 15 + 1.333EI∆ = 2.667 EIθ B − 15 + 1.333EI∆ ----------(2)
3
3
3(3EI )
θ B = 3EIθ B ----------(3)
3
0
3( 4 EI )
=
θ D + 0.75 EI∆ = 0.75 EI∆ ----------(4)
4

M BC =
M DC

84
• Horizontal reactions
MAB
C
B
1.5 m

+ ΣM B = 0 :

60 kN

4m
1.5 m

M BA + M AB + 60(1.5)
3
Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5)
Ax =

A
Ax
MBA

D

Dx
MDC

+ ΣMC = 0:
Dx =

M DC
= 0.188EI∆ − − − (6)
4

85
Equilibrium Conditions
M BA + M BC = 0 − − − (1*)

60 − Ax − Dx = 0 − − − (2*)
Equation of moment
M AB = 1.333EIθ B + 15 + 1.333EI∆ − − − (1)
M BA = 2.667 EIθ B − 15 + 1.333EI∆ − − − (2)
M BC = 3EIθ B

− − − (3)

M DC = 0.75 EI∆ − − − ( 4)

Horizontal reaction at support
Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5)

Dx = 0.188EI∆ − − − (6)

• Solve equation
Substitute (2) and (3) in (1*)
5.667 EIθ B + 1.333EI∆ = 15 − − − (7)

Substitute (5) and (6) in (2*)
− 1.333EIθ B − 1.077 EI∆ = −30 − − − (8)

From (7) and (8), solve equations;

θB =

− 5.51
EI

∆=

34.67
EI

34.67
− 5.51
and ∆ =
EI
EI
M AB = 53.87 kN • m
M BA = 16.52 kN • m
M BC = −16.52 kN • m

Substituteθ B =

in (1)to (6)

M DC = 26.0 kN • m

Ax = 53.48 kN
Dx = 6.52 kN

86
B

3m

20 kN/m

C
3m

M AB = 53.87 kN • m
M BA = 16.52 kN • m
M BC = −16.52 kN • m

53.87 kN•m 4m

M DC = 26.0 kN • m

16.52 kN•m

Ax = 53.48 kN

53.48 kN
A

D

5.55 kN

26 kN•m

Dx = 6.52 kN

6.52 kN

5.55 kN
∆

16.52

C

B

∆

B

16.52

C

53.87
A
Moment diagram

26.
D

A
Deflected shape
D

87

More Related Content

What's hot

Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimaliphysicsbook
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRobin Arthur Flores
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingAlessandro Palmeri
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangMOSES HADUN
 
Chapter 6-influence lines for statically determinate structures
Chapter 6-influence lines for statically  determinate structuresChapter 6-influence lines for statically  determinate structures
Chapter 6-influence lines for statically determinate structuresISET NABEUL
 
4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendiIgorTherik
 
Design for flexure and shear (rectangular & square section)
Design for flexure and shear (rectangular & square section)Design for flexure and shear (rectangular & square section)
Design for flexure and shear (rectangular & square section)Muhammad Bilal
 
Bài tập mẫu cơ học đất (dhxd)
Bài tập mẫu cơ học đất (dhxd)Bài tập mẫu cơ học đất (dhxd)
Bài tập mẫu cơ học đất (dhxd)Thanh Hải
 
NỀN MÓNG CAO PHI DH DL VĂN LANG 3 cột
NỀN MÓNG CAO PHI DH DL VĂN LANG  3 cộtNỀN MÓNG CAO PHI DH DL VĂN LANG  3 cột
NỀN MÓNG CAO PHI DH DL VĂN LANG 3 cộtĐoan Pac
 
89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokonOscarKonzult
 
Direct analysis method - Sap2000
Direct analysis method - Sap2000Direct analysis method - Sap2000
Direct analysis method - Sap2000Hassan Yamout
 
Chapter 3-analysis of statically determinate trusses
Chapter 3-analysis of statically determinate trussesChapter 3-analysis of statically determinate trusses
Chapter 3-analysis of statically determinate trussesISET NABEUL
 
Approximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfApproximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfAshrafZaman33
 
Chapter v 2. moment area method
Chapter v 2. moment area methodChapter v 2. moment area method
Chapter v 2. moment area methodMARTIN ATHIYO
 

What's hot (20)

Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
 
Lecture 1 design loads
Lecture 1   design loadsLecture 1   design loads
Lecture 1 design loads
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in Bending
 
Module 7
Module 7 Module 7
Module 7
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
 
Sni tiang pancang
Sni tiang pancangSni tiang pancang
Sni tiang pancang
 
Chapter 6-influence lines for statically determinate structures
Chapter 6-influence lines for statically  determinate structuresChapter 6-influence lines for statically  determinate structures
Chapter 6-influence lines for statically determinate structures
 
4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi
 
Design for flexure and shear (rectangular & square section)
Design for flexure and shear (rectangular & square section)Design for flexure and shear (rectangular & square section)
Design for flexure and shear (rectangular & square section)
 
Bài tập mẫu cơ học đất (dhxd)
Bài tập mẫu cơ học đất (dhxd)Bài tập mẫu cơ học đất (dhxd)
Bài tập mẫu cơ học đất (dhxd)
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
 
NỀN MÓNG CAO PHI DH DL VĂN LANG 3 cột
NỀN MÓNG CAO PHI DH DL VĂN LANG  3 cộtNỀN MÓNG CAO PHI DH DL VĂN LANG  3 cột
NỀN MÓNG CAO PHI DH DL VĂN LANG 3 cột
 
89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon
 
Direct analysis method - Sap2000
Direct analysis method - Sap2000Direct analysis method - Sap2000
Direct analysis method - Sap2000
 
Chapter 3-analysis of statically determinate trusses
Chapter 3-analysis of statically determinate trussesChapter 3-analysis of statically determinate trusses
Chapter 3-analysis of statically determinate trusses
 
Clase 04 teorema de castigliano
Clase 04   teorema de castiglianoClase 04   teorema de castigliano
Clase 04 teorema de castigliano
 
Lecture 7 strap footing
Lecture 7  strap  footingLecture 7  strap  footing
Lecture 7 strap footing
 
Approximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfApproximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdf
 
Chapter v 2. moment area method
Chapter v 2. moment area methodChapter v 2. moment area method
Chapter v 2. moment area method
 

Similar to easy step on how to solve slope deflection

Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineeringAshu Kushwaha
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2Salama Alsalama
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodnawalesantosh35
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2Jesthiger Cohil
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
structural analysis 2.pdf
structural analysis 2.pdfstructural analysis 2.pdf
structural analysis 2.pdfAuRevoir4
 
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...crush424
 
Slope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringNagma Modi
 
Analysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodAnalysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodnawalesantosh35
 
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptA(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptaymannasser12
 
Struc lec. no. 1
Struc lec. no. 1Struc lec. no. 1
Struc lec. no. 1LovelyRomio
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 

Similar to easy step on how to solve slope deflection (20)

Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineering
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
3 formulario para_vigas_y_porticos
3 formulario para_vigas_y_porticos3 formulario para_vigas_y_porticos
3 formulario para_vigas_y_porticos
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
structural analysis 2.pdf
structural analysis 2.pdfstructural analysis 2.pdf
structural analysis 2.pdf
 
Moment Distribution Method.ppt
Moment Distribution Method.pptMoment Distribution Method.ppt
Moment Distribution Method.ppt
 
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
 
Slope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineering
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
aaaa
aaaaaaaa
aaaa
 
perhitungan waffle slab
perhitungan waffle slab  perhitungan waffle slab
perhitungan waffle slab
 
Analysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodAnalysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection method
 
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptA(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
 
Struc lec. no. 1
Struc lec. no. 1Struc lec. no. 1
Struc lec. no. 1
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 

Recently uploaded

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 

Recently uploaded (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 

easy step on how to solve slope deflection

  • 1. DISPLACEMENT METHOD OF ANALYSIS: SLOPE DEFLECTION EQUATIONS ! ! ! ! ! ! ! ! ! General Case Stiffness Coefficients Stiffness Coefficients Derivation Fixed-End Moments Pin-Supported End Span Typical Problems Analysis of Beams Analysis of Frames: No Sidesway Analysis of Frames: Sidesway 1
  • 2. Slope – Deflection Equations P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 2
  • 3. Degrees of Freedom M θΑ B A 1 DOF: θΑ C 2 DOF: θΑ , θΒ L θΑ A P B θΒ 3
  • 4. Stiffness kAA kBA 1 B A L k AA = 4 EI L k BA = 2 EI L 4
  • 5. kBB kAB A B 1 L k BB = 4 EI L k AB = 2 EI L 5
  • 6. Fixed-End Forces Fixed-End Moments: Loads P L/2 PL 8 L/2 PL 8 L P 2 P 2 w wL2 12 wL 2 L wL2 12 wL 2 6
  • 7. General Case P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 7
  • 8. Mij P i j w Mji θi L θj ψ 4 EI 2 EI θi + θj = M ij L L Mji = 2 EI 4 EI θi + θj L L θj θi (MFij)∆ + (MFji)∆ settlement = ∆j + P (MFij)Load M ij = ( settlement = ∆j w (MFji)Load 4 EI 2 EI 2 EI 4 EI )θ i + ( )θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = ( )θ i + ( )θ j + ( M F ji ) ∆ + ( M F ji ) Load 8 L L L L
  • 9. Equilibrium Equations i P w j k Cj Cj M Mji Mji jk Mjk j + ΣM j = 0 : − M ji − M jk + C j = 0 9
  • 10. Stiffness Coefficients Mij i j Mji L θj θi kii = 4 EI L k ji = 2 EI L ×θ i k jj = 4 EI L ×θ j 1 kij = 2 EI L + 1 10
  • 11. Matrix Formulation M ij = ( 4 EI 2 EI )θ i + ( )θ j + ( M F ij ) L L M ji = ( 2 EI 4 EI )θ i + ( )θ j + ( M F ji ) L L  M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F   M  =   + (2 EI / L) ( 4 EI / L) θ j   M ji F    ji      kii k ji [k ] =  kij  k jj   Stiffness Matrix 11
  • 12. P i Mij w j Mji θi L [ M ] = [ K ][θ ] + [ FEM ] θj ψ ∆j ([ M ] − [ FEM ]) = [ K ][θ ] [θ ] = [ K ]−1[ M ] − [ FEM ] Mij Mji θj θi Fixed-end moment Stiffness matrix matrix + (MFij)∆ (MFji)∆ [D] = [K]-1([Q] - [FEM]) + (MFij)Load P w (MFji)Load Displacement matrix Force matrix 12
  • 13. Stiffness Coefficients Derivation: Fixed-End Support Mj θi Mi Real beam i j L Mi + M j L Mi + M j L/3 M jL 2 EI L Mj EI Conjugate beam Mi EI θι MiL 2 EI M j L 2L MiL L )( ) + ( )( ) = 0 2 EI 3 2 EI 3 M i = 2 M j − − − (1) + ΣM 'i = 0 : − ( + ↑ ΣFy = 0 : θ i − ( M L MiL ) + ( j ) = 0 − − − (2) 2 EI 2 EI From (1) and (2); 4 EI )θ i L 2 EI )θ i Mj =( L Mi = ( 13
  • 14. Stiffness Coefficients Derivation: Pinned-End Support Mi θi i L Mi L 2L 3 Mi EI θi + ΣM ' j = 0 : ( MiL 2 EI M i L 2L )( ) − θ i L = 0 2 EI 3 ML θi = ( i ) 3EI θi = 1 = ( θj j Real beam Mi L Conjugate beam θj + ↑ ΣFy = 0 : ( MiL ML ) − ( i ) +θ j = 0 3EI 2 EI θj =( MiL 3EI ) → Mi = L 3EI − MiL ) 6 EI 14
  • 15. Fixed end moment : Point Load P Real beam Conjugate beam A A B B L M EI M M M EI M EI ML 2 EI ML 2 EI P PL2 16 EI PL 4 EI M EI PL2 16 EI PL ML ML 2 PL2 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 16 EI 8 15
  • 17. Uniform load w Real beam Conjugate beam A A L B B M EI M M M EI M EI ML 2 EI ML 2 EI w wL3 24 EI wL2 8 EI M EI wL3 24 EI wL2 ML ML 2 wL3 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 24 EI 12 17
  • 18. Settlements Mi = Mj Real beam Mj Conjugate beam L Mi + M j M L A M EI B ∆ ∆ M EI Mi + M j L M EI ML 2 EI ML 2 EI M M EI ∆ + ΣM B = 0 : − ∆ − ( ML L ML 2 L )( ) + ( )( ) = 0, 2 EI 3 2 EI 3 M= 6 EI∆ L2 18
  • 19. Pin-Supported End Span: Simple Case P w B A L 2 EI 4 EI θA + θB L L 4 EI 2 EI θA + θB L L θA A θB + P B w (FEM)BA (FEM)AB A B = 0 = (4 EI / L)θ A + (2 EI / L)θ B + ( FEM ) AB − − − (1) M BA = 0 = (2 EI / L)θ A + (4 EI / L)θ B + ( FEM ) BA − − − ( 2) M AB 2(2) − (1) : 2 M BA = (6 EI / L)θ B + 2( FEM ) BA − ( FEM ) BA M BA = (3EI / L)θ B + ( FEM ) BA − ( FEM ) BA 2 19
  • 20. Pin-Supported End Span: With End Couple and Settlement P w MA B A L ∆ 2 EI 4 EI θA + θB L L 4 EI 2 EI θA + θB L L θA A P θB w B (MF BA)load (MF AB)load (MF AB)∆ A A B B (MF BA) ∆ 4 EI 2 EI F F θA + θ B + ( M AB )load + ( M AB ) ∆ − − − (1) L L 2 EI 4 EI F F θA + θ B + ( M BA )load + ( M BA ) ∆ − − − (2) M BA = L L 2(2) − (1) 3EI 1 1 M F F F : M BA = θ B + [( M BA )load − ( M AB )load ] + ( M BA ) ∆ + A 2 2 2 2 L M AB = M A = E lim inate θ A by 20
  • 21. Fixed-End Moments Fixed-End Moments: Loads P PL 8 L/2 L/2 PL 8 L/2 PL 1 PL 3PL + ( )[−(− )] = 8 2 8 16 P L/2 wL2 12 wL2 12 wL2 1 wL2 wL2 )] = + ( )[−( − 12 2 12 8 21
  • 22. Typical Problem CB w P1 P2 C A B L1 P PL 8 PL 8 L2 wL2 12 L 0 PL 4 EI 2 EI M AB = θA + θB + 0 + 1 1 8 L1 L1 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 P2 L2 wL2 4 EI 2 EI M BC = θB + θC + 0 + + L2 L2 8 12 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = 8 12 L2 L2 w wL2 12 L 22
  • 23. CB w P1 P2 C A B L1 L2 CB M BC MBA B M BA = M BC PL 2 EI 4 EI θA + θB + 0 − 1 1 8 L1 L1 P L wL 4 EI 2 EI = θB + θC + 0 + 2 2 + 2 L2 L2 8 12 2 + ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B 23
  • 24. P1 MAB CB w MBA A L1 B P2 MBC L2 C M CB Substitute θB in MAB, MBA, MBC, MCB 0 PL 4 EI 2 EI θA + θB + 0 + 1 1 M AB = L1 L1 8 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 4 EI 2 EI P2 L2 wL2 θB + θC + 0 + + M BC = 8 12 L2 L2 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = L2 L2 8 12 24
  • 25. P1 MAB A Ay CB w MBA B L1 P2 MCB MBC L2 Cy C By = ByL + ByR B P1 MAB B A Ay L1 MBA ByL P2 MBC ByR L2 C MCB Cy 25
  • 27. Example 1 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 6 kN/m C A 4m 4m B 6m 27
  • 28. 10 kN 6 kN/m C A 4m PL 8 4m P B 6m wL2 30 PL 8 wL2 20 w FEM MBA MBC [M] = [K][Q] + [FEM] 0 4 EI 2 EI (10)(8) θA + θB + 8 8 8 0 2 EI 4 EI (10)(8) M BA = θA + θB − 8 8 8 0 4 EI 2 EI (6)(6 2 ) θB + θC + M BC = 6 6 30 0 2 EI 4 EI (6)(6) 2 θB + θC − M CB = 6 6 20 M AB = B + ΣM B = 0 : − M BA − M BC = 0 4 EI 4 EI (6)(6 2 ) + =0 ( )θ B − 10 + 8 6 30 2.4 θB = EI Substitute θB in the moment equations: MAB = 10.6 kN•m, MBC = 8.8 kN•m MBA = - 8.8 kN•m, MCB = -10 kN•m 28
  • 29. 10 kN 8.8 kN•m 10.6 kN•m A 6 kN/m C 8.8 kN•m 4m B 4m MAB = 10.6 kN•m, 6m MBC = 8.8 kN•m MBA = - 8.8 kN•m, 10 kN•m MCB= -10 kN•m 2m 18 kN 10 kN 6 kN/m 10.6 kN•m A B 8.8 kN•m B 10 kN•m 8.8 kN•m Ay = 5.23 kN ByL = 4.78 kN ByR = 5.8 kN Cy = 12.2 kN 29
  • 30. 10 kN 10.6 kN•m 6 kN/m C A 4m 5.23 kN B 4m 6m 10 kN•m 12.2 kN 4.78 + 5.8 = 10.58 kN V (kN) 5.8 5.23 + + x (m) - 4.78 - 10.3 M (kN•m) -10.6 Deflected shape -12.2 + -8.8 2.4 θB = EI x (m) -10 x (m) 30
  • 31. Example 2 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 6 kN/m C A 4m 4m B 6m 31
  • 32. 10 kN 6 kN/m C A 4m PL 8 P 4m B 6m wL2 30 PL 8 w wL2 20 FEM 10 [M] = [K][Q] + [FEM] 0 4 EI 2 EI (10)(8) θA + θB + M AB = − − − (1) 8 8 8 10 2 EI 4 EI (10)(8) θA + θB − − − − (2) M BA = 8 8 8 4 EI 2 EI 0 (6)(6 2 ) θB + θC + − − − (3) M BC = 6 6 30 2 EI 4 EI 0 (6)(6) 2 θB + θC − − − − (4) M CB = 6 6 20 6 EI 2(2) − (1) : 2 M BA = θ B − 30 8 3EI θ B − 15 − − − (5) M BA = 8 32
  • 33. MBA MBC B M BC 4 EI (6)(6 2 ) = θB + 6 30 M CB = 2 EI (6)(6) θB − 6 20 2 − − − (3) Substitute θA and θB in (5), (3) and (4): MBA = - 12.19 kN•m − − − (4) 3EI θ B − 15 − − − (5) 8 + ΣM B = 0 : − M BA − M BC = 0 M BA = MBC = 12.19 kN•m MCB = - 8.30 kN•m 3EI 4 EI (6)(6 2 ) + = 0 − − − (6 ) ( )θ B − 15 + 8 6 30 7.488 θB = EI 4 EI 2 EI θA + θ B − 10 8 8 − 23.74 θA = EI Substitute θ B in (1) : 0 = 33
  • 34. 10 kN 12.19 kN•m A 4m 4m B 6 kN/m C 12.19 kN•m 6m 8.30 kN•m MBA = - 12.19 kN•m, MBC = 12.19 kN•m, MCB = - 8.30 kN•m 2m 10 kN A 18 kN B B 12.19 kN•m 6 kN/m C 8.30 kN•m 12.19 kN•m Ay = 3.48 kN ByL = 6.52 kN ByR = 6.65 kN Cy = 11.35 kN 34
  • 35. 10 kN 6 kN/m C A 3.48 kN 4m 4m B 6m 11.35 kN 6.52 + 6.65 = 13.17 kN V (kN) 6.65 3.48 x (m) - 6.52 -11.35 14 M (kN•m) x (m) -12.2 Deflected shape − 23.74 θA = EI θB = 7.49 EI -8.3 x (m) 35
  • 36. Example 3 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 4 kN/m C A 2EI 4m B 4m 3EI 6m 36
  • 37. 10 kN 4 kN/m C A 2EI (10)(8)/8 (10)(8)/8 4m 4m 0 M AB 3EI B (4)(62)/12 6m (4)(62)/12 10 4(2 EI ) 2(2 EI ) (10)(8) = θA + θB + − − − (1) 8 8 8 10 M BA = 2(2 EI ) 4(2 EI ) (10)(8) θA + θB − 8 8 15 8 − − − (2) 2(2) − (1) 3(2 EI ) (3 / 2)(10)(8) : M BA = θB − − − − ( 2a ) 2 8 8 12 4(3EI ) (4)(6 2 ) θB + − − − (3) M BC = 6 12 37
  • 38. 10 kN 4 kN/m C A 3EI 2EI (3/2)(10)(8)/8 B (4)(62)/12 4m 6m 4m (4)(62)/12 15 3(2 EI ) (3 / 2)(10)(8) M BA = θB − − − − ( 2a ) 8 8 12 2 4(3EI ) (4)(6 ) θB + − − − (3) M BC = 6 12 − M BA − M BC = 0 : 2.75EIθ B = −12 + 15 = 3 θ B = 1.091 / EI 3(2 EI ) 1.091 ( ) − 15 = −14.18 kN • m 8 EI 4(3EI ) 1.091 ( ) − 12 = 14.18 kN • m = 6 EI 2(3EI ) = θ B − 12 = −10.91 kN • m 6 M BA = M BC M CB 38
  • 39. 10 kN A 2EI 14.18 4m 4 kN/m C 10.91 B 14.18 3EI 6m 4m MBA = - 14.18 kN•m, MBC = 14.18 kN•m, MCB = -10.91 kN•m 10 kN A 24 kN B 4 kN/m 14.18 kN•m 140.18 kN•m 10.91 kN•m C Ay = 3.23 kN ByL = 6.73 kN ByR = 12.55 kN Cy = 11.46 kN 39
  • 40. 10 kN 4 kN/m C 10.91 kN•m A 2EI 3.23 kN 4m V (kN) 3.23 B 3EI 11.46 kN 6m 4m 6.77 + 12.55 = 19.32 kN 12.55 2.86 + -6.73 + x (m) -11.46 12.91 M (kN•m) 5.53 + + - -10.91 -14.18 Deflected shape - x (m) θB = 1.091/EI x (m) 40
  • 41. Example 4 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 12 kN•m 4 kN/m C A 2EI 4m B 4m 3EI 6m 41
  • 42. 10 kN 12 kN•m 4 kN/m C A 2EI 3EI 2/12 = 12 1.5PL/8 = 15 B wL wL2/12 = 12 4m 6m 4m M BA = 3(2 EI ) θ B − 15 − − − (1) 8 M BC = 4(3EI ) θ B + 12 − − − (2) 6 2(3EI ) θ B − 12 − − − (3) 6 12 kN•m MBA MBA M CB = B MBC MBC Jo int B : − M BA − M BC − 12 = 0 -3.273/EI 4(2 EI ) 2(3EI ) (10)(8) θA + θB + M AB = 8 8 8 7.21 θA = − EI 3.273 M BA = 0.75 EI ( − ) − 15 = −17.45 kN • m EI 3.273 M BC = 2 EI (− ) + 12 = 5.45 kN • m EI 3.273 M CB = EI (− ) − 12 = −15.27 kN • m EI 0 − (0.75 EI − 15) − (2 EIθ B + 12) − 12 = 0 θB = − 3.273 EI 42
  • 43. 3.273 ) − 15 = −17.45 kN • m EI 3.273 M BC = 2 EI (− ) + 12 = 5.45 kN • m EI 3.273 M CB = EI ( − ) − 12 = −15.27 kN • m EI M BA = 0.75EI ( − 24 kN 10 kN 4 kN/m A 5.45 kN•m B 2.82 kN 17.45 kN•m 7.18 kN C 10.36 kN 10 kN 12 kN•m 2.82 kN B 17.54 kN 13.64 kN 4 kN/m C A 15.27 kN•m 15.27 kN•m 13.64 kN 43
  • 44. 10 kN 12 kN•m 4 kN/m C 15.27 kN•m A 2.82 kN 4m 3EI 2EI 7.21 EI 3.273 θB = − EI B 17.54 kN 6m 4m 13.64 kN θ A = − 10.36 V (kN) 2.82 + + 3.41 m - - -7.18 M (kN•m) -13.64 11.28 7.98 + + - x (m) - -5.45 -15.27 -17.45 Deflected shape − 7.21 θA = EI x (m) x (m) θB = 3.273 EI 44
  • 45. Example 5 Draw the quantitative shear, bending moment diagrams, and qualitative deflected curve for the beam shown. Support B settles 10 mm, and EI is constant. Take E = 200 GPa, I = 200x106 mm4. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m 45
  • 46. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 6 EI∆ L2 4m 4m A P B 6 EI∆ L2 [FEM]∆ PL 8 6 EI∆ L2 6m 6 EI∆ L2 ∆ PL 8 10 mm 2 wL 30 ∆ B w C wL2 30 [FEM]load -12 4(2 EI ) 2(2 EI ) 6(2 EI )(0.01) (10)(8) M AB = θA + θB + + − − − (1) 8 8 82 8 2(2 EI ) 4(2 EI ) 6(2 EI )(0.01) (10)(8) M BA = θA + θB + − − − − ( 2) 8 8 82 8 0 4(3EI ) 2(3EI ) 6(3EI )(0.01) (6)(6 2 ) M BC = θB + θC − + − − − (3) 6 6 62 30 0 2(3EI ) 4(3EI ) 6(3EI )(0.01) (6)(6) 2 M CB = θB + θC − − − − − (4) 2 6 6 6 30 46
  • 47. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m 4(2 EI ) 2(2 EI ) 6(2 EI )(0.01) (10)(8) θA + θB + + − − − (1) 8 8 82 8 2(2 EI ) 4(2 EI ) 6(2 EI )(0.01) (10)(8) = θA + θB + − − − − ( 2) 8 8 82 8 M AB = M BA Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN• m2 : 4(2 EI ) 2(2 EI ) θA + θ B + 75 + 10 − − − (1) 8 8 2(2 EI ) 4(2 EI ) = θA + θ B + 75 − 10 − − − (2) 8 8 16.5 M AB = M BA 2(2) − (1) 3(2 EI ) : M BA = θ B + 75 − (75 / 2) − 10 − (10 / 2) − 12 / 2 − − − (2a ) 8 2 47
  • 48. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m MBA = (3/4)(2EI)θB + 16.5 MBC = (4/6)(3EI)θB - 192.8 + ΣMB = 0: - MBA - MBC = 0 MBA MBC B (3/4 + 2)EIθB + 16.5 - 192.8 = 0 θB = 64.109/ EI Substitute θB in (1): θA = -129.06/EI Substitute θA and θB in (5), (3), (4): MBA = 64.58 kN•m, MBC = -64.58 kN•m MCB = -146.69 kN•m 48
  • 49. 10 kN 12 kN•m 6 kN/m B 146.69 kN•m C A 64.58 kN•m 4m 4m 64.58 kN•m 6m MBA = 64.58 kN•m, MBC = -64.58 kN•m 2m MCB = -146.69 kN•m 12 kN•m 18 kN 10 kN A 64.58 kN•m B 146.69 kN•m B Ay = 11.57 kN ByL = -1.57 kN 6 kN/m 64.58 kN•m ByR = -29.21 kN C Cy = 47.21 kN 49
  • 50. 10 kN 12 kN•m 6 kN/m C A 2EI 11.57 kN 3EI B 4m 47.21 kN 6m 4m θA = -129.06/EI θB = 64.109/ EI 1.57 + 29.21 = 30.78 kN 11.57 + V (kN) 1.57 x (m) - -29.21 M (kN•m) 12 58.29 146.69 kN•m -47.21 64.58 + x (m) -146.69 Deflected shape x (m) θA = -129.06/EI 10 mm θB = 64.109/ EI 50
  • 51. Example 6 For the beam shown, support A settles 10 mm downward, use the slope-deflection method to (a)Determine all the slopes at supports (b)Determine all the reactions at supports (c)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. (3 points) Take E= 200 GPa, I = 50(106) mm4. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 51
  • 52. 6 kN/m B C 2EI 3m 6(32 ) = 4.5 12 6(1.5 × 200 × 50)(0.01) 32 = 100 kN • m 12 kN•m A 1.5EI 10 mm 3m 6 kN/m 4.5 C C MFw A 0.01 m MF∆ 100 kN • m A M CB = 4(2 EI ) θC 3 M CA = 4(1.5EI ) 2(1.5 EI ) θC + θ A + 4.5 + 100 − − − (2) 3 3 12 M AC = − − − (1) 2(1.5EI ) 4(1.5 EI ) θC + θ A − 4.5 + 100 − − − (3) 3 3 2(2) − (2) 3(1.5EI ) 3(4.5) 100 12 : M CA = θC + + + 3 2 2 2 2 − − − ( 2a ) 52
  • 53. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 4(2 EI ) θ C − − − (1) 3 3(1.5 EI ) 3(4.5) 100 12 = θC + + + 3 2 2 2 M CB = M CA MCB MCA − − − ( 2a ) • Equilibrium equation: M CB + M CA = 0 (8 + 4.5) EI 3(4.5) 100 12 θC + + + =0 C 3 2 2 2 − 15.06 θC = = −0.0015 rad EI 2(1.5 EI ) − 15.06 4(1.5 EI ) Substitute θC in eq.(3) 12 = ( )+ θ A − 4.5 + 100 − − − (3) EI 3 3 − 34.22 θA = = −0.0034 rad EI 53
  • 54. 6 kN/m B C 2EI 12 kN•m 1.5EI 3m A 10 mm 3m − 15.06 − 34.22 = −0.0015 rad θ A = = −0.0034 rad EI EI 2(2 EI ) 2( 2 EI ) − 15.06 = θC = ( ) = −20.08 kN • m 3 3 EI 4(2 EI ) 4(2 EI ) − 15.06 = θC = ( ) = −40.16 kN • m 3 3 EI θC = M BC M CB 20.08 kN•m B 20.08 kN C 40.16 kN•m 40.16 + 20.08 = 20.08 kN 3 18 kN 6 kN/m 40.16 kN•m C 26.39 kN 12 kN•m A 8.39 kN 54
  • 55. 12 kN•m 6 kN/m θ C = −0.0015 rad B θ A = −0.0034 rad C 2EI 3m B 40.16 kN•m C 20.08 kN 40.16 kN•m V (kN) 6 kN/m C 26.39 kN 26.39 12 kN•m A - Deflected shape -20.08 20.08 12 -40.16 θ C = 0.0015 rad 8.39 kN 8.39 x (m) + M (kN•m) 10 mm 3m 20.08 kN•m 20.08 kN A 1.5EI x (m) x (m) θ A = 0.0034 rad 55
  • 56. Example 7 For the beam shown, support A settles 10 mm downward, use the slope-deflection method to (a)Determine all the slopes at supports (b)Determine all the reactions at supports (c)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. Take E= 200 GPa, I = 50(106) mm4. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 56
  • 57. 12 kN•m 6 kN/m B C 2EI 3m C B ∆C 6( 2 EI )∆ C 4 EI∆ C = 2 3 3 M BC M CB M CA = 2(2 EI ) 4 EI = θC − ∆C 3 3 4(2 EI ) 4 EI = θC − ∆C 3 3 A 1.5EI 10 mm 3m EI∆ C C ∆C 4 EI∆ C 3 A 6 kN/m 4.5 100 − − − (1) C A C − − − (2) 0.01 m A 6(1.5 EI ) ∆ C = EI∆ C 2 3 6(32 ) = 4.5 12 6(1.5 × 200 × 50)(0.01) 32 = 100 kN • m 4(1.5 EI ) 2(1.5EI ) θC + θ A + EI∆ C + 4.5 + 100 − −(3) 3 3 12 2(1.5 EI ) 4(1.5 EI ) M AC = θC + θ A + EI∆ C − 4.5 + 100 − −(4) 3 3 2(3) − (4) 3(1.5 EI ) EI 3(4.5) 100 12 : M CA = θ C + ∆C + + + − − − (3a) 2 3 2 2 2 2 57
  • 58. 12 kN•m 6 kN/m B C 2EI 3m A 1.5EI 3m 18 kN • Equilibrium equation: 6 kN/m MBC B By C (C y ) CB = −( MCB MCA C M BC + M CB (C y ) CA ) 3 MCB MCA (Cy)CB 10 mm C 12 kN•m A Ay M + 12 + 18(1.5) M CA + 39 = CA = 3 3 ΣM C = 0 : M CB + M CA = 0 − − − (1*) ΣC y = 0 : (C y ) CB + (C y ) CA = 0 − − − (2*) (Cy)CA Substitute in (1*) 4.167 EIθ C − 0.8333EI∆ C = −62.15 − − − (5) Substitute in ( 2*) − 2.5 EIθ C + 3.167 EI∆ C = −101.75 − − − (6) From (5) and (6) θ C = −25.51 / EI = −0.00255 rad ∆ C = −52.27 / EI = −5.227 mm 58
  • 59. 6 kN/m B 2EI C 3m 1.5EI 12 kN•m A 10 mm 3m • Solve equation θC = − 25.51 = −0.00255 rad EI Substitute θC and ∆C in (1), (2) and (3a) M BC = 35.68 kN • m − 52.27 ∆C = = −5.227 mm EI M CB = 1.67 kN • m Substitute θC and ∆C in (4) θA = M CA = −1.67 kN • m − 2.86 = −0.000286 rad EI 6 kN/m 35.68 kN•m B B y = 18 − 5.55 = 12.45 kN 2EI 3m C 1.5EI 3m 12 kN•m A 18(4.5) − 12 − 35.68 6 = 5.55 kN Ay = 59
  • 60. 6 kN/m 35.68 kN•m B C 2EI 12.45 kN 3m 12 kN•m A 1.5EI 10 mm 5.55 kN 3m V (kN) 12.45 θ C = −0.00255 rad + 0.925 m x (m) ∆ C = −5.227 mm -5.55 θ A = −0.000286 rad M (kN•m) 1.67 14.57 + 12 - x (m) -35.68 Deflected shape ∆ C = 5.227 mm θ C = 0.00255 rad x (m) θ A = 0.000286 rad 60
  • 61. Example of Frame: No Sidesway 61
  • 62. Example 6 For the frame shown, use the slope-deflection method to (a) Determine the end moments of each member and reactions at supports (b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame. 10 kN 12 kN/m C 3m B 3EI 40 kN 3m 2EI A 1m 6m 62
  • 63. 10 kN 36/2 = 18 12 kN/m • Equilibrium equations C B 3m 40 kN 3m A 1m 2EI 2 36 (wL /12 ) =36 PL/8 = 30 3EI PL/8 = 30 6m • Slope-Deflection Equations M AB = M BA = M BC 10 MBC MBA 10 − M BA − M BC = 0 − − − (1*) Substitute (2) and (3) in (1*) 10 − 3EIθ B + 30 − 54 = 0 − 14 − 4.667 = (3EI ) EI 2(3EI ) θ B + 30 − − − (1) 6 θB = 4(3EI ) θ B − 30 − − − (2) 6 Substitute θ B = 3( 2 EI ) θ B + 36 + 18 − − − (3) = 6 − 4.667 in (1) to (3) EI M AB = 25.33 kN • m M BA = −39.33 kN • m M BC = 49.33 kN • m 63
  • 64. 10 kN 12 kN/m 20.58 C 3m B 49.33 39.33 3EI 40 kN 3m 25.33 A 1m 2EI 10 -39.3 -49.33 MAB = 25.33 kN•m 27.7 MBA = -39.33 kN•m -25.33 MBC = 49.33 kN•m 6m Bending moment diagram 12 kN/m B B C θB 49.33 39.33 27.78 kN θB θB = -4.667/EI 40 kN A 17.67 kN 25.33 Deflected curve 64
  • 65. Example 7 Draw the quantitative shear, bending moment diagrams and qualitative deflected curve for the frame shown. E = 200 GPa. 25 kN 5 kN/m B 240(106) mm4 5m 180(106) C 120(106) mm4 60(106) mm4 A E D 3m 3m 4m 65
  • 66. 25 kN PL/8 = 18.75 18.75 B 240(106) mm4 C 5m 5 kN/m 180(106) 6.667+ 3.333 120(106) mm4 (wL2/12 ) = 6.667 60(106) mm4 A E D 3m 3m 0 4(2 EI ) 2(2 EI ) M AB = θA + θB 5 5 0 2(2 EI ) 4(2 EI ) M BA = θA + θB 5 5 4( 4 EI ) 2(4 EI ) M BC = θB + θ C + 18.75 6 6 2(4 EI ) 4(4 EI ) M CB = θB + θ C − 18.75 6 6 3( EI ) θC M CD = 5 3(3EI ) M CE = θ C + 10 4 4m M BA + M BC = 0 8 16 8 ( + ) EIθ B + ( ) EIθ C = −18.75 − − − (1) 5 6 6 M CB + M CD + M CE = 0 16 3 9 8 ( ) EIθ B + ( + + ) EIθ C = 8.75 − − − (2) 6 5 4 6 From (1) and (2) : θ B = − 5.29 EI θC = 2.86 EI 66
  • 67. Substitute θB = -1.11/EI, θc = -20.59/EI below 4(2 EI ) 0 2(2 EI ) M AB = θA + θB 5 5 0 2(2 EI ) 4(2 EI ) M BA = θA + θB 5 5 4( 4 EI ) 2(4 EI ) M BC = θB + θ C + 18.75 6 6 2(4 EI ) 4(4 EI ) θB + θ C − 18.75 M CB = 6 6 3( EI ) θC M CD = 5 3(3EI ) θ C + 10 M CE = 4 MAB = −4.23 kN•m MBA = −8.46 kN•m MBC = 8.46 kN•m MCB = −18.18 kN•m MCD = 1.72 kN•m MCE = 16.44 kN•m 67
  • 68. MAB = -4.23 kN•m, MBA = -8.46 kN•m, MBC = 8.46 kN•m, MCB = -18.18 kN•m, MCD = 1.72 kN•m, MCE = 16.44 kN•m 20 kN 25 kN 16.44 kN•m 3m 3m C C 2.54 kN B 2.54 kN 2.54-0.34 =2.2 kN 8.46 kN•m 18.18 kN•m (20(2)+16.44)/4 (25(3)+8.46-18.18)/6 14.12 kN = 14.11 kN = 10.88 kN 10.88 kN B 8.46 kN•m (8.46 + 4.23)/5 = 2.54 kN 5m A E 2.2 kN 5.89 kN 14.12+14.11=28.23 kN 1.72 kN•m (1.72)/5 = 0.34 kN B 5m 2.54 kN A 0.34 kN 4.23 kN•m 10.88 kN 28.23 kN 68
  • 69. 24.18 1.29 m 2.33 m 14.11 10.88 1.18 m + + -2.54 2.82 m - -14.12 - -2.54 + 0.78 m - -8.46 -5.89 -8.46 + - -18.18 0.34 4.23 Shear diagram 0.78 m + 3.46 1.72 + - 1.18 m -16.44 1.67m Moment diagram 1.29 m 2.33 m θB = −5.29/EI 1.18 m θC = 2.86/EI 1.67m Deflected curve 69
  • 70. Example of Frames: Sidesway 70
  • 71. Example 8 Determine the moments at each joint of the frame and draw the quantitative bending moment diagrams and qualitative deflected curve . The joints at A and D are fixed and joint C is assumed pin-connected. EI is constant for each member 3m 1m B 10 kN C 3m A D 71
  • 72. • Overview • Unknowns C B 1m 10 kN θB and ∆ • Boundary Conditions 3m MAB Ax 3m A Ay θA = θD = 0 MDC D D • Equilibrium Conditions x - Joint B Dy B MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*) 72
  • 73. ∆ ∆ (0.375EI∆)∆ 1m B 10 kN (5.625)load MAB C (0.375EI∆)∆ 10 kN C B 4m 4m 3m (1.875)load A (0.375EI∆)∆ (1/2)(0.375EI∆)∆ (0.375EI∆)∆ A D Ax D Dx 3m MBA • Slope-Deflection Equations 5.625 0.375EI∆ 2( EI ) 10(3)(12 ) 6 EI∆ M AB = θB + + 2 − − − (1) 4 42 4 5.625 0.375EI∆ 2 4( EI ) 10(3 )(1) 6 EI∆ M BA = θB − + 2 − − − (2) 4 42 4 M BC = 3( EI ) θB 3 − − − (3) 1 M DC = 0.375EI∆ − 0.375EI∆ = 0.1875EI∆ − − − (4) 2 MDC + ΣM B = 0 : ( M AB + M BA ) 4 Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5) Ax = + ΣM C = 0 : Dx = M DC = 0.0468EI∆ − − − (6) 4 73
  • 74. Equilibrium Conditions: M BA + M BC = 0 − − − (1*) 10 − Ax − Dx = 0 − − − (2*) • Solve equation Substitute (2) and (3) in (1*) 2EI θB + 0.375EI ∆ = 5.625 ----(7) Slope-Deflection Equations: Substitute (5) and (6) in (2*) 2( EI ) M AB = θ B + 5.625 + 0.375EI∆ − − − (1) − 0.375EIθ B − 0.235EI∆ = −8.437 − − − (8) 4 4( EI ) M BA = θ B − 5.625 + 0.375EI∆ − − − (2) From (7) and (8) can solve; 4 − 5.6 44.8 3( EI ) θB = ∆= M BC = θ B − − − (3) EI EI 3 − 5.6 44.8 M DC = 0.1875EI∆ − − − (4) Substituteθ B = and ∆ = in (1)to (6) EI EI Horizontal reaction at supports: Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5) Dx = 0.0468EI∆ − − − (6) MAB = 15.88 kN•m MBA = 5.6 kN•m MBC = -5.6 kN•m MDC = 8.42 kN•m Ax = 7.9 kN Dx = 2.1 kN 74
  • 75. C B 1m 10 kN MAB = 15.88 kN•m, MBA = 5.6 kN•m, MBC = -5.6 kN•m, MDC = 8.42 kN•m, Ax = 7.9 kN, Dx = 2.1 kN, 5.6 3m 8.42 D 2.1 kN 15.88 7.9 kN 3m A 5.6 C B B 7.8 A ∆ = 44.8/EI C ∆ = 44.8/EI 5.6 15.88 D 8.42 Bending moment diagram A θB = -5.6/EI D Deflected curve 75
  • 76. Example 9 From the frame shown use the slope-deflection method to: (a) Determine the end moments of each member and reactions at supports (b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame. B C 2 EI 10 kN 2m pin 4m 2.5 EI EI A D 4m 3m 76
  • 77. • Overview B ∆ 2EI B´ 10 kN 2m A EI MAB Ax Ay 4m ∆ CD C C´ ∆BC ∆ 2.5EI • Unknowns θB and ∆ MDC • Boundary Conditions Dx D 3m 4m θA = θD = 0 Dy • Equilibrium Conditions - Joint B B MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*) 77
  • 78. • Slope-Deflection Equation C´ B ∆ ∆ CD ∆BC 5 B´ 2EI C ∆ 10 kN 36.87° 4m 2.5EI EI 2m PL/8 = 5 D A 4m 3m 0.375EI∆ B ∆´ B´ = ∆ / cos 36.87° = 1.25 ∆ C´ ∆CD ∆BC = ∆ tan 36.87° = 0.75 ∆ 36.87° ∆ C 2( EI ) θ B + 0.375EI∆ + 5 − − − (1) 4 (6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆ 4( EI ) M BA = θ B + 0.375EI∆ − 5 − − − (2) C´ 4 ∆CD= 1.25 ∆ 3(2 EI ) C M BC = θ B − 0.2813EI∆ − − − (3) 4 M AB = M DC = 0.375EI∆ − − − (4) A D 0.75EI∆ 6EI∆/(4) 2= 0.375EI∆ 0.5625EI∆ B B´ (1/2) 0.5625EI∆ C´ C (1/2) 0.75EI∆ (6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆ ∆BC= 0.75 ∆ 78
  • 79. • Horizontal reactions B 2 EI pin C 10 kN 2m 4m 2.5 EI EI A D 4m 3m MBC MBA B B 10 kN C MBC MBC 4 4 C A Ax = (MBA+ MAB-20)/4 -----(5) MAB D Dx= (MDC-(3/4)MBC)/4 ---(6) MDC MBC/4 79
  • 80. Equilibrium Conditions: M BA + M BC = 0 − − − (1*) 10 − Ax − Dx = 0 − − − (2*) Slope-Deflection Equation: • Solve equations Substitute (2) and (3) in (1*) 2.5EIθ B + 0.0938 EI∆ − 5 = 0 − − − (7) Substitute (5) and (6) in (2*) 2( EI ) 6 EI∆ 0.0938EIθ B + 0.334EI∆ − 5 = 0 − − − (8) θB + 5 + 2 − − − (1) 4 4 From (7) and (8) can solve; 6 EI∆ 4( EI ) M BA = θB −5 + 2 − − − (2) 4 4 1.45 − 14.56 θB = ∆= 3(2 EI ) 3(2 EI )(0.75∆) EI EI M BC = θB − − − − (3) 2 4 4 1.45 − 14.56 3(2.5EI )(1.25∆) Substituteθ B = and ∆ = in (1)to (6) M DC = − − − (4) EI EI 52 Horizontal reactions at supports: MAB = 15.88 kN•m MBA = 5.6 kN•m ( M BA + M AB − 20) − − − (5) Ax = MBC = -5.6 kN•m 4 MDC = 8.42 kN•m 3 Ax = 7.9 kN M DC − M BC 4 Dx = − − − (6) Dx = 2.1 kN 4 80 M AB =
  • 81. 1.91 1.91 B 2 EI A pin C 10 kN 2m MAB = 11.19 kN•m MBA = 1.91 kN•m MBC = -1.91 kN•m 2.5 EI EI 11.19 kN•m 8.27 kN 0.478 kN 4m 5.46 4m 1.73 D MDC = 5.46 kN•m Ax = 8.28 kN•m Dx = 1.72 kN•m 0.478 kN 3m ∆ ∆ B 1.91 1.91 B C C 5.35 A θB=1.45/EI θB=1.45/EI 11.19 5.46 D Bending-moment diagram A D Deflected shape 81
  • 82. Example 10 From the frame shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected curve. 3m 20 kN/m B pin C 3EI 3m 2EI 4m 4EI A D 82
  • 83. • Overview • Unknowns ∆ ∆ 3m 20 kN/m B 3EI 2EI θB and ∆ C • Boundary Conditions 4EI θA = θD = 0 4m • Equilibrium Conditions - Joint B A [FEM]load D B 3m MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 60 − Ax − Dx = 0 − − − (2*) 83
  • 84. • Slope-Deflection Equation B 20 kN/m B 3m 6(2EI∆)/(3) = 1.333EI∆ 2 C 3EI = 15 wL2/12 2EI 4EI 6(2EI∆)/(3) 2 = 1.333EI∆ A A [FEM]load D 0 M BA 1.5EI∆ 4m wL2/12 = 15 M AB ∆ C ∆ 3m (1/2)(1.5EI∆) 6(4EI∆)/(4) 2 = 1.5EI∆ [FEM]∆ D 4(2 EI ) 2(2 EI ) = θA + θ B + 15 + 1.333EI∆ = 1.333EIθ B + 15 + 1.333EI∆ ----------(1) 3 3 0 2( 2 EI ) 4(2 EI ) = θA + θ B − 15 + 1.333EI∆ = 2.667 EIθ B − 15 + 1.333EI∆ ----------(2) 3 3 3(3EI ) θ B = 3EIθ B ----------(3) 3 0 3( 4 EI ) = θ D + 0.75 EI∆ = 0.75 EI∆ ----------(4) 4 M BC = M DC 84
  • 85. • Horizontal reactions MAB C B 1.5 m + ΣM B = 0 : 60 kN 4m 1.5 m M BA + M AB + 60(1.5) 3 Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5) Ax = A Ax MBA D Dx MDC + ΣMC = 0: Dx = M DC = 0.188EI∆ − − − (6) 4 85
  • 86. Equilibrium Conditions M BA + M BC = 0 − − − (1*) 60 − Ax − Dx = 0 − − − (2*) Equation of moment M AB = 1.333EIθ B + 15 + 1.333EI∆ − − − (1) M BA = 2.667 EIθ B − 15 + 1.333EI∆ − − − (2) M BC = 3EIθ B − − − (3) M DC = 0.75 EI∆ − − − ( 4) Horizontal reaction at support Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5) Dx = 0.188EI∆ − − − (6) • Solve equation Substitute (2) and (3) in (1*) 5.667 EIθ B + 1.333EI∆ = 15 − − − (7) Substitute (5) and (6) in (2*) − 1.333EIθ B − 1.077 EI∆ = −30 − − − (8) From (7) and (8), solve equations; θB = − 5.51 EI ∆= 34.67 EI 34.67 − 5.51 and ∆ = EI EI M AB = 53.87 kN • m M BA = 16.52 kN • m M BC = −16.52 kN • m Substituteθ B = in (1)to (6) M DC = 26.0 kN • m Ax = 53.48 kN Dx = 6.52 kN 86
  • 87. B 3m 20 kN/m C 3m M AB = 53.87 kN • m M BA = 16.52 kN • m M BC = −16.52 kN • m 53.87 kN•m 4m M DC = 26.0 kN • m 16.52 kN•m Ax = 53.48 kN 53.48 kN A D 5.55 kN 26 kN•m Dx = 6.52 kN 6.52 kN 5.55 kN ∆ 16.52 C B ∆ B 16.52 C 53.87 A Moment diagram 26. D A Deflected shape D 87