DISPLACEMENT MEDTHOD OF ANALYSIS:
MOMENT DISTRIBUTION

  !   Member Stiffness Factor (K)
  !   Distribution Factor (DF)
  !   Carry-Over Factor
  !   Distribution of Couple at Node
  !   Moment Distribution for Beams
      !   General Beams
      !   Symmetric Beams
  !   Moment Distribution for Frames: No Sidesway
  !   Moment Distribution for Frames: Sidesway

                                                    1
Member Stiffness Factor (K) & Carry-Over Factor (COF)
                                         CB
                         P                                             w


                                                                  EI
            A                        B                     C                  D
                L1 /2        L1/2             L2                  L3



         Internal members and far-end member fixed at end support:
                                                           4 EI        COF = 0.5                2 EI
                                                   kCC   =                             k DC =
                                       4 EI                  L                                    L
                                    K=
                                         L                              1
                                                                  C                D
                                                                       COF = 0.5



                                                                   B               C



                K(BC) = 4EI/L2,           K(CD) = 4EI/L3
                                                                                                       2
CB
              P                                              w


                                                       EI
  A                       B                      C                    D
      L1 /2       L1/2             L2                  L3


Far-end member pinned or roller end support:
                                                            COF = 0
                                                 3EI
                            3EI         k AA   =                              0
                         K=                       L
                             L                               1
                                                        C                 D


       K(AB) = 3EI/L1,         K(BC) = 4EI/L2,         K(CD) = 4EI/L3




                                                                                  3
Joint Stiffness Factor (K)
                                           CB
                          P                                               w


                                                                     EI
             A                         B                      C                    D
                  L1 /2       L1/2              L2                   L3

                 K(AB) = 3EI/L1            K(BC) = 4EI/L2,        K(CD) = 4EI/L3


                                     Kjoint = KT = ΣKmember




                                                                                       4
Distribution Factor (DF)
                                            CB
                             P                                                 w


                                                                         EI
                 A                      B                     C                    D
                     L1 /2       L1/2            L2                      L3



                                                         K
                                                 DF =
                                                        ΣK

                                             Notes:
                                                        - far-end pined (DF = 1)
                                                        - far-end fixed (DF = 0)


             A       KAB/(K(AB) + K(BC) ) B KBC/(K(AB) + K(BC) )        C K(CD)/(K(BC) + K(CD) ) D

        DF       1                      DFBA) DFBC                 DFCB DFCD                   0

                                                      K(BC)/(K(BC) + K(CD) )
                                                                                                   5
Distribution of Couple at Node
                                             CB


                             (EI)1                     (EI)2           (EI)3
                 A                      B                      C                 D
                     L1 /2      L1/2              L2                   L3




             A                               B                         C                 D
        DF       1                     DFBA DFBC                   DFCA DFCD         0


                                        CB
             CO=0            CB(DFBC)                                   CO=0.5
                                                   CB( DFBC)

                       CB(DFBC)              B             CB( DFBC)




                                                                                         6
50 kN•m

                  2EI                      3EI                  3EI
     A                       B                      C                        D
             4m         4m                8m                    8m


 L1= L2 = L3

     A                               B                           C                      D
DF       1                    0.333 0.667                0.5          0.5           0


                                 50 kN•m
         CO=0                                                  CO=0.5
                                           50(.667) 50(.667)                16.67

                          50(.333)
                  50(.333)            B




                                                                                        7
Distribution of Fixed-End Moments
                               P                                               w


                            (EI)1 M                (EI)2             (EI)13
            A                       F     B                     C                  D
                    L1 /2          L1/2            L2                     L3


         L1= L2 = 8 m, L3 = 10 m
            A                                 B                         C                  D
       DF       1                         DFBA DFBC                 DFCB DFCD          0




                                   MF MF      B


                                              MF
                    0        MF(DFBC)               MF( DFBC)       0.5


                0                  MF(DFBC) B MF( DFBC)
                                                                                           8
P                                                    w
         EI

     A             1.5PL1/8=30 B            wL22/12=16      C     wL32/12=25   D
              L1 /2       L1/2                L2                      L3


 L1= L2 = 8 m, L3 = 10 m
     A                                  B                            C                 D
DF       1                        0.4       0.6                  0.5 0.5           0
                                        14



                      30         30     B     16       16

                                        14
               0       5.6       5.6                            0.5    4.2


         0                              B         8.4 8.4
                                                                                       9
Moment Distribution for Beams




                                10
Example 1

The support B of the beam shown (E = 200 GPa, I = 50x106 mm4 ).
Use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams,and qualitative
    deflected shape.


              20 kN                              3 kN/m


              2EI                         3EI
     A                          B                           C
         4m             4m                  8m




                                                                              11
20 kN                                             3 kN/m


                                2EI                                        3EI
                                               30               16                        16
                   A                                     B                                     C
             CO             0.5                         0             0.5                 0
                          4m               4m                               8m
                       K1 = 3(2EI)/8                                 K2 = 4(3EI)/8
                                          K1/(K1+ K2)        K2/(K1+ K2)

             DF    1                            0.333 0.667                                0

    [FEM]load                                       -30 16                                -16

     Dist.                                      4.662 9.338
    CO                                                                               4.669

     Σ                                        -25.34         25.34                   -11.33

                  20 kN                                                          24 kN
A                           B                                  B                          C
                                       25.34 kN•m                                                  11.33 kN•m
6.83 kN                         13.17 kN                           13.75 kN                    10.25 kN         12
Note : Using the Slope 20 kN                                    3 kN/m
      Deflection

                       2EI                                3EI
                                   20+10           16                    16
              A                               B                               C
                  4m                4m                     8m

                            3(2 EI )
                   M BA =            θ B − 30 − − − (1)
                               8
                            4(3EI )
                   M BC   =          θ B + 16 − − − (2)
                               8
    MBA             MBC
                                     + ΣMB = 0: -MBA -     MBC = 0

              B
                                        (0.75 + 1.5)EIθB - 30 + 16 = 0
                                                                θB = 6.22/EI
                                           MBA = -25.33 kN•m,
                                           MBC = 25.33 kN•m
                            2(3EI )
                   M CB =           θ B − 16 = −11.33 kN • m
                               8                                                  13
20 kN                              3 kN/m

         A                                                                  C
                                                          11.33
                                        B
   6.83 kN
                                        13.17 + 13.75 = 26.92 kN           10.25 kN
              4m               4m                 8m
                                        13.75
             6.83
V (kN)
                +                       +                                       x (m)
                                    -       4.58 m                 -       -10.25
                            -13.17
                            27.32
                                                     6.13
  M                    +                                +
(kN•m)
                                        -                              -     x (m)
                                                                           -11.33
                                        -25.33
Deflected
  shape                                                                      x (m)
                                                                                        14
Example 2

From the beam shown use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams,
    and qualitative deflected shape.



                10 kN        50 kN•m                      5 kN/m


              2EI                  3EI              3EI
     A                   B                 C                   D
         4m         4m          8m                  8m




                                                                   15
10 kN           50 kN•m                                      5 kN/m


                2EI 15
                                             26.67 26.67                    40 3EI
           A    0.5    B                        0.5                  C           0.5            D
             4m     4m                           8m                            8m
                   K1 = 3(2EI)/8           K2 = 4(3EI)/8                    K3 = 3(3EI)/8
                           K1/(K1+ K2)   K2/(K1+ K2)   K2/(K2+ K3)       K3/(K2+ K3)

     DF        1                  0.333 0.667                  0.571 0.428                       1
Joint couple                     -16.65 -33.35




                                             50 kN•m
                    CO=0                                                               CO=0.5
                                                           50(.667) 50(.667)

                                       50(.333)
                               50(.333)           B




                                                                                                     16
10 kN           50 kN•m                                     5 kN/m


                 2EI 15
                                            26.67 26.67                    40 3EI
            A    0.5    B                      0.5                  C           0.5        D
              4m     4m                         8m                            8m
                   K1 = 3(2EI)/8          K2 = 4(3EI)/8                    K3 = 3(3EI)/8
                          K1/(K1+ K2)   K2/(K1+ K2)   K2/(K2+ K3)       K3/(K2+ K3)

       DF      1                 0.333 0.667                  0.571 0.429                      1
Joint couple                    -16.65 -33.35
   CO                                                     -16.675
  FEM                              -15 26.667            -26.667        40
  Dist.                         -3.885 -7.782              1.905        1.437
   CO                                  0.953               -3.891
  Dist.                         -0.317 -0.636              2.218        1.673
   CO                                  1.109                -0.318
  Dist.                         -0.369 -0.740              0.181        0.137
   Σ                           -36.22    -13.78          -43.28         43.25


                                                                                                   17
10 kN          50 kN•m                           5 kN/m


                      2EI 36.22
                                      13.78    43.25        43.25 3EI
          A                       B                     C                    D
               4m         4m              8m                     8m

      10 kN
                                                                    40 kN
                 36.22 kN•m
A               B                         43.25 kN•m

                                                         C                   D
Ay = 0.47 kN        ByL = 9.53 kN                      CyR = 25.41 kN            Dy = 14.59 kN


                                       40 kN
           13.78 kN•m                               43.25 kN•m


                           B                    C
                         ByR = 12.87 kN             CyL= 27.13 kN
                                                                                            18
10 kN            50 kN•m                            5 kN/m

            A                                                                         D
                       2EI               B                    C       3EI
        0.47 kN                                                                       14.59 kN
                                9.53+12.87=22.4 kN 27.13+25.41=52.54 kN
                 4m          4m           8m                8m

                                        12.87        25.41                   2.92 m
   V (kN)       0.47
                                                                                       x (m)
                                    2.57 m
                        -9.53                                                         -14.59
                                             30.32           -27.13         21.29
                                13.78
M(kN•m)                 1.88
                                                                                       x (m)


                                        -36.22
                                                             -43.25
Deflected
                                                                                       x (m)
 shape
                                                                                                 19
Example 3

From the beam shown use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams, and
    qualitative deflected shape.



         2EI     40 kN        50 kN•m         10 kN/m              40 kN

   A                                                               D
                                         EI
                          B                           C
         3m         3m            9m                      3m




                                                                           20
120 kN•m      40 kN
                    2EI    40 kN                  50 kN•m     10 kN/m

            A                                                                              D
                    30           30                  101.25      EI
                                            B                                     C
                           0.5                                        0.5
                    3m           3m                      9m                           3m

                    K1 = 4(2EI)/6                 K2 = 3(EI)/9
                          K1/(K1+ K2)           K2/(K1+ K2)

       DF       0                 0.80 0.20                                   1
Joint couple                            40 10                               -120
   CO        20                             -60
  FEM        30                         -30 101.25
  Dist.

  Dist.                                  -9 -2.25
  CO            -4.5

   Σ            45.5                    1       49                          -120
                                                                                                   21
2EI       40 kN           50 kN•m             10 kN/m                 40 kN
                                  1
            A                                                                             D
                                              49                   120          120
                    45.5                                   EI
                                          B                                C
                    3m           3m                9m                           3m
            40 kN
                                                                                                  40 kN
45.5 kN•m                  1 kN•m
    A                     B                                          120 kN•m

                                                                                      C           D

  Ay = 27.75 kN            ByL = 12.25 kN                                         CyR = 40 kN
                                                   90 kN
                    49 kN•m                                     120 kN•m

                                      B                    C

                                    ByR = 37.11 kN             CyL = 52.89 kN


                                                                                                      22
2EI   40 kN          50 kN•m           10 kN/m              40 kN

        A                                                                   D
                                                  EI
                                 B                                 C
        27.75 kN
                             12.25+37.11 = 49.36 kN
                                                               52.89+40 = 92.89 kN
                3m         3m          9m                            3m

                                 37.11                             40
            27.75
   V (kN)     +                  +                                      +
                          -                                                 x (m)
                       -12.25        3.71 m                -
                      37.75                                        -52.89
                                              19.84
M(kN•m)                +         1             +                            x (m)
            -                    -
                                                               -
            -45.5                -49


                                                                   -120
Deflected                                                                   x (m)
 shape
                                                                                     23
Example 4

The support B of the beam shown (E = 200 GPa, I = 50x106 mm4 ) settles 10 mm.
Use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams,
    and qualitative deflected shape.


               20 kN           15 kN•m
12 kN•m                                            3 kN/m


               2EI                                   3EI
     A                           B                            C
          4m            4m                   8m




                                                                                24
20 kN                   15 kN•m
                  12 kN•m                                                            3 kN/m
                                                               B
                      A                                                                              C
                                    2EI               30               16    3EI
                                               0.5 4 m                                          16
                                   4m                                 10 mm 8 m
                                                                                              0.5
                          6(2 EI )∆ 6(2 EI )∆                                              6(3EI ) ∆
      A                            −          = 9.375              6(3EI ) ∆                         = 28.125
                             L 2
                                      2L 2                                   = 28.125         L2
                                                                      L2
                            ∆                   [FEM]∆                           ∆
                                   B                                      B
6(2 EI )∆                                                                                            C
   L2                           K1 = 3(2EI)/8                              K2 = 4(3EI)/8
                                                 K1/(K1+ K2)       K2/(K1+ K2)

                    DF 1                               0.333 0.667                               0
            Joint couple -12                                   5   10
             CO                                            -6                                   5
            [FEM]load                                     -30 16                               -16
            [FEM]∆                                     9.375 -28.125                       -28.125

              Dist.                                    12.90       25.85
             CO                                                                             12.92

             Σ               -12                       -8.72       23.72                   -26.20          25
Note : Using the                        20 kN   18.75-9.375   15 kN•m
                                                                                        3 kN/m
slope deflection 12 kN•m                            (9.375 )∆
                                                                B           (28.125)∆
                        A                                                                             C
                                     2EI                                          3EI 28.125
                                                  (20+10)load           (16)load                 16
                                   4m                4m             10 mm        8m
                                                                                      15 kN•m
     -12                                                                   MBA                 MBC
            4(2 EI )        2(2 EI )
   M AB =            θA +            θ B + 20 − 18.75 − − − (1)
               8               8
                                                                                       B
            2(2 EI )       4(2 EI )
   M BA =            θA +            θ B − 20 + 18.75 − − − (2)
               8              8                                       +   ΣMB = 0: - MBA - MBC + 15 = 0
( 2) − (1)           3(2 EI )
           : M BA =           θ B − 30 + 9.375 − 12 / 2 − − − (2a)
     2                   8                                              (0.75 + 1.5)EIθB - 38.75 - 15 = 0
            4(3EI )                                                                  θB = 23.9/EI
   M BC =            θ B + 16 − 28.125 − − − (3)
               8
                                                                                 MBA = -8.7 kN•m,
            2(3EI )
   M CB =            θ B − 16 − 28.125 − − − (4)
               8                                                                 MBC = 23.72 kN•m
                                                                                   2(3EI )
                                                                          M CB =           θ B − 16 − 28.125
                                                                                      8
                                                                                 = −26.2 kN • m              26
20 kN            15 kN•m
          12 kN•m                                              3 kN/m


                         2EI      8.725          23.7253EI      26.205
              A                              B                            C
                    4m            4m                      8m




              20 kN                                               24 kN
12 kN•m
                           8.725 kN•m                                             26.205 kN•m
     A                      B                         B                       C

                                        23.725 kN•m
    Ay = 7.41 kN            ByL = 12.59 kN            ByR = 11.69 kN          Cy = 12.31 kN




                                                                                           27
20 kN              15 kN•m
   12 kN•m                                                       3 kN/m


              A                                                                  C
                       2EI                   B           3EI      26.205
    7.41 kN
                                            12.59+11.69 = 24.28 kN             12.31 kN
                  4m              4m                   8m

              7.41                          11.69
V (kN)
                  +                          +                                       x (m)
                                   -             3.9 m                     -   -12.31
                               -12.59
                              41.64
         12
                        +
  M
(kN•m)                                                                           x (m)
                                   -8.725    -           -0.93            -
                                            -23.725                             -26.205
Deflected                        10 mm                    θB = 23.9/EI
shape                                                                            x (m)
                                                                                             28
Example 5

For the beam shown, support A settles 10 mm downward, use the moment
distribution method to
(a)Determine all the reactions at supports
(b)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape.
Take E= 200 GPa, I = 50(106) mm4.




                                                  12 kN•m
                                        6 kN/m
        B
                                                     A
                     2EI          C      1.5EI              10 mm
                    3m                 3m




                                                                           29
12 kN•m
                                  4.5+(4.5/2)              6 kN/m
                                  = 6.75
            B
                                                                          A
                                                               4.5               10 mm
                         2EI                 C       1.5EI
                         3m    0.5                      3 m 0.5

                 100-(100/2) = 50                                             6(1.5 × 200 × 50)(0.01)
                                                               0.01 m
                                             C                                          32
                                                      MF∆
                                                                          A   = 100 kN • m
                 K1 = 4(2EI)/3                     K2 = 3(1.5EI)/3
                               K1/(K1+ K2)   K2/(K1+ K2)

         DF 0                        0.64 0.36                        1
Joint couple                                                         12
    CO                                       6
  [FEM]load                                   6.75
   [FEM]∆                                     50

    Dist.                        -40.16 -22.59
   CO           -20.08

    Σ           -20.08           -40.16 40.16                        12                                 30
12 kN•m
                                                6 kN/m
             B
                                                                 A
                          2EI           C   1.5EI
                          3m                   3m



   ΣΜ            -20.08         -10.16 40.16                12



20.08 kN•m                                  40.16 kN•m
                    B               C
                                 40.16 + 20.08
         20.08 kN                              = 20.08 kN
                                       3
                                                       18 kN
                                                                      12 kN•m
                                                 6 kN/m
                                 40.16 kN•m
                                                  C                  A
                                                 26.39 kN                8.39 kN
                                                                                   31
12 kN•m
                                                          6 kN/m
             B
                                                                         A
                                 2EI             C         1.5EI                 10 mm
                             3m                          3m
20.08 kN•m                                           40.16 kN•m
                  B                      C
           20.08 kN                     20.08 kN                   12 kN•m
                                                         6 kN/m
                       40.16 kN•m
                                                 C                 A
                                                26.39 kN                 8.39 kN
        V (kN)                                   26.39
                                                     +                  8.39
                                                                            x (m)
                             -

     M (kN•m)       -20.08
                  20.08                                            12
                                                                             x (m)

Deflected shape                        -40.16
                                                                             x (m)
                                                                                         32
Example 6

For the beam shown, support A settles 10 mm downward, use the moment
distribution method to
(a)Determine all the reactions at supports
(b)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape.
Take E= 200 GPa, I = 50(106) mm4.




                                                  12 kN•m
                                        6 kN/m
        B
                                                     A
                     2EI          C      1.5EI              10 mm
                    3m                 3m




                                                                           33
• Overview                                           12 kN•m
                                            6 kN/m
             B
                                                       A
                                  C                            10 mm
                 2EI                    1.5EI
                 3m                        3m



                                                     12 kN•m
                                            6 kN/m
             B
                                                       A
                                                               10 mm
                                   C
                                   R


                                  ∆
             B                                             ×C
                                                       A

                                   R´

                       R + R ' C = 0 − − − (1*)
                                                                       34
• Artificial joint applied                                                 12 kN•m
                                        4.5+(4.5/2)              6 kN/m
                                        = 6.75
                  B
                                                                                A
                                                                     4.5               10 mm
                               2EI                 C       1.5EI
                               3m    0.5                      3 m 0.5

                       100-(100/2) = 50                                             6(1.5 × 200 × 50)(0.01)
                                                                     0.01 m
                                                   C                                          32
                                                            MF∆
                                                                                A   = 100 kN • m
                       K1 = 4(2EI)/3                     K2 = 3(1.5EI)/3
                                     K1/(K1+ K2)   K2/(K1+ K2)

              DF 0                         0.64 0.36                        1
     Joint couple                                                          12
          CO                                       6
        [FEM]load                                   6.75
         [FEM]∆                                     50

          Dist.                        -40.16 -22.59
         CO           -20.08

          Σ           -20.08           -40.16 40.16                        12                                 35
12 kN•m
                                                    6 kN/m
             B
                                                                  A
                          2EI             C     1.5EI
                          3m                       3m



       ΣΜ        -20.08           -40.16 40.16               12


20.08 kN•m                                 40.16 kN•m
              B                    C
                                40.16 + 20.08                     18 kN
         20.08 kN                             = 20.08 kN                    12 kN•m
                                      3                    6 kN/m
                                          40.16 kN•m
                                                            C              A
                                                           26.39 kN              8.39 kN
             40.16 kN•m
                                              40.16 kN•m

                          20.08     C 26.39 kN      + ↑ ΣFy = 0 : − 20.08 − 26.39 + R = 0
                                    R
                                                                  R = 46.47 kN              36
• Artificial joint removed
                                                     ∆
                        B
                                                                                A
                                                          C
                                      2EI 0.5            1.5EI 0.5
                                      3m              R´    3m
                                       C                  C
                                                                                                 75
          B                       ∆                           ∆                     6(1.5EI )(      )
                                           100                                                   EI = 75
                                                   75-(75/2)                    A        32
  6(2 EI ) ∆ C             75
               = 100 → ∆ =                         = 37.5
      32                   EI
                      DF 0                       0.64 0.36                  1
          [FEM]∆ -100                            -100 +37.5
              Dist.                               40 22.5
          CO                20
              Σ             -80                   -60 60

80 kN•m                                          60 kN•m          60 kN•m
                  B                    C                                     C                A
  46.67 kN                       46.67 kN                                   20 kN                  20 kN
                                                              C
                                                  46.67          20 kN + ↑ ΣFy = 0 : R' = 66.67 kN 37
                                                              R´
• Solve equation
          Substitute R = 46.47 kN and R ' = 66.67 kN in (1*)

                                  46.47 + 66.67C = 0
                                              C = −0.6970
                                                                12 kN•m
                                                     6 kN/m
                       B
     20.08 kN•m                                                    A
                                                                           10 mm
          20.08 kN                          C
                                           R = 46.47 kN        8.39 kN


                                          ∆
                       B
       80 kN•m                                                     A     × C = −0.6970

          46.67 kN                                                 20 kN
                                           R´ = 66.67 kN
                                                                12 kN•m
                                                     6 kN/m
   35.68 kN•m      B
                                                                   A
                               2EI             C     1.5EI
          12.45 kN                                                 5.55 kN               38
12 kN•m
                                                 6 kN/m
35.68 kN•m   B
                                                                A
                                2EI          C    1.5EI               10 mm
      12.45 kN                                                  5.55 kN
                            3m                   3m


         V (kN) 12.45                                 0.925 m
                            +
                                                                    x (m)
                                                            -5.55

      M (kN•m)                                   14.57      12
                                      1.67         +
                                                                    x (m)
                       -


                   -35.68
 Deflected shape
                                                                    x (m)

                                                                              39
Symmetric Beam
 • Symmetric Beam and Loading
                        P                                                     P

                                       θ                 θ

            A                      B                         C                            D
                            L´                  L                             L´
                                            real beam

V´B   L             L        V´C
                                                                              M       L
      2             2                      + ΣMC´ = 0:       − VB ' ( L ) +      ( L)( ) = 0
                                                                              EI      2
 B´                         C´
                                                                                   ML
                        M                                           VB ' = θ =
                M                                                                  2 EI
                 L EI
               EI
                                                                              2 EI
      conjugate beam                                                 M=            θ
                                                                                L
                                   The stiffness factor for the center span is, therefore,

                                                                               2 EI
                                                                      K=
                                                                                 L
                                                                                               40
• Symmetric Beam with Antisymmetric Loading

                             P
                                           θ
             A                                                                             D
                                       B                   θ     C
                                                                                P
                            L´                     L                       L´
                                               real beam
               1 M L M                                                      1 M L 2L
                 ( )( )                    + ΣMC´ = 0:         − VB ' ( L) + ( )( )( ) = 0
               2 EI 2 EI                                                    2 EI 2 3
V´B             2                                                                   ML
                  L                                                  VB ' = θ =
      B´        3                                                                   6 EI
                            C´
                                                                            6 EI
            1 M L                V´C                                  M=         θ
      M      ( )( )                                                           L
            2 EI 2
      EI                               The stiffness factor for the center span is, therefore,
           conjugate beam
                                                                            6 EI
                                                                       K=
                                                                              L                  41
Example 5a

Determine all the reactions at supports for the beam below. EI is constant.




                             15 kN/m

           A                                             D
                         B                 C
                  4m             6m             4m




                                                                              42
15 kN/m

                        A                                                      D
                         wL2/15 = 16 B       wL2/12 = 45 C wL2/15 = 16
                              4m               6m           4m
                          3EI 3EI                    2 EI 2 EI
                K ( AB ) =     =        , K ( BC ) =        =
                           L         4                 L         6
                            K ( AB )                       K ( AB )            (3EI / 4)
                ( DF ) AB =          = 1,( DF ) BA =                     =                        = 0.692,
                            K ( AB )                  K ( AB ) + K ( BC ) (3EI / 4) + ( 2 EI / 6)
                                                            K ( BC )            (2 EI / 6)
                                         ( DF ) BC =                     =                        = 0.308
                                                      K ( AB ) + K ( BC ) (3EI / 4) + (2 EI / 6)
                DF         1.0 0.692 0.308
          [FEM]load          0      -16 +45

              Dist.              -20.07 -8.93
               ΣΜ                -36.07 +36.07
              30 kN                                                                30 kN
          8                                        90 kN                                   8
                       36.07 kN•m                               36.07 kN•m
          3                                                                                3
     A                B          B                             C         C                      D
          4m                               3m        3m                              4m
0.98 kN               29.02 kN                                                     29.02 kN 0.98 kN 43
                                        45 kN                 45 kN
30 kN                                                            30 kN
          8                                             90 kN                          8
                       36.07 kN•m                                36.07 kN•m
          3                                                                            3
     A                B          B                              C         C                D
           4m                                3m          3m                      4m
0.98 kN               29.02 kN                                                 29.02 kN 0.98 kN
                                            45 kN               45 kN

                                             15 kN/m

                         A                                                 D
                                    B       74.02 kN          C 74.02 kN
                  0.98 kN                                                  0.98 kN
                               4m                 6m               4m
                                            45
                                                                 29.02
                    V        0.98
                  (kN)                                                      x (m)
                                                                           -0.98
                                -29.02                           -45
                                                        31.42
                  M                                 +
                (kN•m)                                                      x (m)
                                        -                       -
                                             -36.07              -36.07

      Deflected
       shape                                                                                      44
Example 5b

Determine all the reactions at supports for the beam below. EI is constant.




                             15 kN/m

            A                               C            D
                         B
                                   15 kN/m
                  4m         3m        3m       4m




                                                                              45
Fixed End Moment                    15 kN/m

                   A                               C         D
                   wL2/15 = 16 B 11wL2/192 5wL2/192
                                  = 30.938  = 14.063




                             5wL2/192 11wL2/192
                              = 14.063 = 30.938   wL2/15 = 16
                   A                            C          D
                                B
                                           15 kN/m




                                    15 kN/m
                                              16.875    16
                   A                                C        D
                        16      B 16.875
                                           15 kN/m

                                                                 46
15 kN/m
                                                   16.875    16
                      A                                  C           D
                               16     B 16.875
                                                  15 kN/m
                               4m            3m    3m        4m

                  3EI 3EI                       6 EI 6 EI
     K ( AB ) =      =    = 0.75EI , K ( BC ) =     =     = EI
                   L   4                          L    6
                                        0.75                                   1
          ( DF ) AB = 1,       ( DF ) BA =     = 0.429,       ( DF ) BC =            = 0.571
                                      0.75 + 1                              0.75 + 1
              DF           1.0 0.429 0.571
          [FEM]load        0        -16 16.875

           Dist.               -0.375 -0.50
            ΣΜ         -16.375 16.375
                                                                      8
              30 kN
            8                          45 kN                          3
                    16.375 kN•m                   16.375 kN•m      4m
            3
     A              B           B                 C          C            D
             4m
5.91 kN             24.09 kN                      27.96 kN                5.91 kN
                                   27.96 kN 45 kN         24.09 kN  30 kN         47
8
              30 kN
          8                                   45 kN                           3
                          16.375 kN•m                      16.375 kN•m      4m
          3
     A                    B           B                    C         C            D
           4m
5.91 kN                   24.09 kN                       27.96 kN                 5.91 kN
                                          27.96 kN 45 kN         24.09 kN 30 kN

                                          15 kN/m

                      A                                C            D
                                      B
                                          15 kN/m
                 5.91 kN         52.05 kN           52.05 kN     5.91 kN
                                     27.96              27.96
                V         5.91                                    5.91
              (kN)                                                  x (m)
                                     -24.09             -24.09
             M                                          16.375
           (kN•m)                                                   x (m)
                                     -16.375
   Deflected shape
                                                                                            48
Moment Distribution Frames: No Sidesway




                                          49
Example 6

From the frame shown use the moment distribution method to:
(a) Determine all the reactions at supports
(b) Draw its quantitative shear and bending moment diagrams,
and qualitative deflected shape.
                      40 kN•m
                48 kN             8 kN/m
                          B                  C
   A
            2.5EI                  2.5EI

                                                 4m
                    3EI


             5m               D     5m




                                                               50
40 kN•m
                                  48 kN                  8 kN/m
                                          B                             C
                   A
                            2.5EI   45             25     2.5EI
                              0.5                             0.5
                                                                             4m
KAB = KBC = 3(2.5EI)/5 = 1.5 EI     3EI           0.5

KBD = 4(3EI)/4 = 3EI
                              5m              D            5m

                             A                      B               D         C

                 Member AB            BA           BC        BD     DB        CB
                  DF          1      0.25         0.25      0.5         0         1
               Joint load             -10          -10       -20
                 CO                                                 -10
                 FEM                  -45         25
                  Dist.               5           5         10
                 CO                                                 5
                   Σ          0       -50         20         -10        -5        0   51
40 kN•m
               48 kN                8 kN/m
                        B                             C
A
                                   20
            2.5EI 50                     2.5EI
    14 kN                     10                 16 kN
                 3EI
                    5                                Member           AB          BA   BC   BD    DB    CB
                             D                                 Σ       0      -50      20   -10   -5     0

                                               40 kN•m
                            58 kN            34     24 3.75
                                        50                                   20
               48 kN                                           3.75                           40 kN
A                       B 0        50 kN•m                58
                                                           10                 B                        C 3.75
                                                     58                20 3.75
    14 kN               34 kN                              10 kN•m                                     16 kN
                                                                                   24 kN
                                                                   3.75 kN


                                                 5
                                                                   3.75 kN
                                                          58
                                                                                                             52
40 kN•m
                           48 kN                    8 kN/m
                                      B                            C
           A
                       2.5EI                        20    2.5EI
               14 kN             50                               16 kN
                               3EI             10                      4m
                                      5
                                           D
                        5m                               5m

                                          58 kN

35
                  16
          10

     20

     50    Moment diagram                                              Deflected shape

     5
                                                                                         53
Moment Distribution for Frames: Sidesway




                                           54
Single Frames


        P                       P
    ∆           ∆
                                            C                                C      R´
B               C   B                                  R B



                                                                                 x C1

A               D   A                              D     A                       D

                        Artificial joint applied         Artificial joint removed
                            (no sidesway)                       (sidesway)




                               0 = R + C1R´


                                                                                         55
Multistory Frames              ∆2       P3
                         P2

                                             P4
                         P1        ∆1




       P3
                                                                    ∆´´   ∆´´
P2                                                                              R2´´
                    R2                                       R2´
                              ∆´                  ∆´
            P4
                                                             x C1                x C2
P1                                                     R1´
                    R1                                                             R1´´




                              0 =R2 + C1R2´ + C2R2´´

                              0 =R1 + C1R1´ + C2R2´´
                                                                                        56
Example 7

From the frame shown use the moment distribution method to:
          (a) Determine all the reactions at supports, and also
          (b) Draw its quantitative shear and bending moment diagrams, and
              qualitative deflected shape.
EI is constant.
                         16 kN
                      1m      4m
                  B                     C


            5m


                  A                      D




                                                                             57
• Overview
      16 kN                           16 kN
     1m       4m                                        C                                       C      R´
 B                      C       B                                     R B


5m                 5m       =                                       +                                 x C1

 A                      D       A                              D          A                           D

                                    artificial joint applied               artificial joint removed
                                         (no sidesway)                            ( sidesway)



                                         R + C1R´ = 0              ---------(1)




                                                                                                          58
• Artificial joint applied (no sidesway)

    Fixed end moment:


                                  16 kN
                          b=1m          a=4m   C
                            B                           R
                                  Pa2b/L2 Pb2a/L2
                                  = 10.24 = 2.56


                             A                      D


              Equilibrium condition :

                      + ΣF = 0: A + D + R = 0
                          x      x   x




                                                            59
16 kN
  1m           4m       C
                                   R            A             B                  C            D
 B
               0.5                      DF      0         0.50 0.50           0.50 0.50
       10.24         2.56                                                                    0
                                       FEM                      10.24         -2.56
5m                          5m         Dist.              -5.12 -5.12         1.28 1.28
     0.5              0.5
                                       CO -2.56                 0.64          -2.56        0.64
 A                          D          Dist.              -0.32 -0.32         1.28 1.28
                                       CO -0.16                 0.64          -0.16        0.64
5.78 kN•m                              Dist.              -0.32 -0.32         0.08 0.08
                      2.72 kN•m
                                       CO -0.16                 0.04          -0.16        0.04
                                       Dist.              -0.02 -0.02         0.08 0.08
B                     C                  Σ      -2.88     -5.78 5.78          -2.72 2.72   1.32

     5m                     5m                      Equilibrium condition :
                                                          + ΣF = 0: 1.73 - 0.81 + R = 0
                                                              x
A    Ax = 1.73 kN D
                                 Dx = 0.81 kN                           R = - 0.92 kN

2.88 kN•m            1.32 kN•m
                                                                                              60
• Artificial joint removed ( sidesway)

    Fixed end moment:
         Since both B and C happen to be displaced the same amount ∆, and AB and DC
         have the same E, I, and L so we will assume fixed-end moment to be 100 kN•m.


                                     ∆               ∆

                                 B        5m     C
                     100 kN•m                              R´
                                                      100 kN•m

                             5m                      5m
                                     100 kN•m        100 kN•m
                             A
                                                         D

              Equilibrium condition :

                     + ΣF = 0: A + D + R´ = 0
                         x      x   x


                                                                                        61
∆                    ∆

    B           5m       C
                                     R´        A              B                  C                  D
                0.5                                       0.50 0.50
            100 kN•m             100 kN•m DF    0                            0.50 0.50              0
                                          FEM 100          100                     100            100
5m                           5m           Dist.             -50 -50            -50 -50
        0.5            0.5
        100 kN•m             100 kN•m     CO -25.0             -25.0         -25.0            -25.0
A                                         Dist.           12.5 12.5          12.5 12.5
                                 D
                                          CO 6.5               6.5            6.5             6.5
                                          Dist.          -3.125 -3.125      -3.125 -3.125
     60 kN•m               60 kN•m        CO -1.56             -1.56         -1.56            -1.56
                                          Dist.            0.78 0.78         0.78 0.78
                                          CO 0.39              0.39          0.39             0.39
B                      C
                                          Dist.          -0.195 -0.195      -0.195 -0.195
                                           Σ   80          60 -60              -60 60             80
        5m                   5m

                                          Equilibrium condition: + ΣFx = 0:
A       Ax = 28 kN     D
                                  Dx = 28 kN                           -28 - 28 + R´ = 0

        80 kN•m              80 kN•m                                                 R´ = 56 kN
                                                                                                    62
Substitute R = -0.92 and R´= 56 in (1) :

                                           R + C1R´ = 0
                                     -0.92 + C1(56) = 0
                                                             0.92
                                                     C1 =
                                                             56

    16 kN                                                                                    16 kN
B                     C                                          C       R´                1m          4m     C
                                     R B                                               B
        5.78   2.72                             60          60                                  4.79   3.71
                          2.72              60                       60                                           3.71
    5.78                                                                                    4.79
                                 +                                       x C1      =        5m               5m
    2.88                                   80                        80                     1.57                  2.63
                          1.32
           1.73 kN            0.81                   28                       28                   1.27 kN
    A                     D                A                         D                      A                 D 1.27



                                                                                                                         63
8.22
         16 kN
                                                                   3.71
        1m          4m      C
    B                                                       4.79
             4.79   3.71                                                  3.71
                                                 4.79
         4.79                   3.71
         5m               5m
         1.57                   2.63

                1.27 kN                1.27 kN   1.57                         2.63
A                          D 2.99 kN                    Bending moment
         13.01 kN                                        diagram (kN•m)
                                                        ∆                 ∆




                                                        Deflected shape              64
Example 8

From the frame shown use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams, and
qualitative deflected shape.


               20 kN/m             3m
                     B                             pin
                                               C
                                   3EI

              3m             2EI
                                         4EI         4m


                         A
                                               D



                                                                   65
• Overview


      20 kN/m
B             3m, 3EI               B                      C            B                        C
                            C
                                                                       R                               R´

         3 m , 2EI
                 4m , 4EI
                                =                                  +                                   x C1


     A                                  A                                   A
                            D                                  D                                     D

                                    artificial joint applied                artificial joint removed
                                         (no sidesway)                             (sidesway)




                                            R + C1R´ = 0           ----------(1)

                                                                                                         66
• Artificial joint applied (no sidesway)
   20 kN/m                                A                   B                   C                D
B              3m , 3EI C     R                         0.471 0.529
                                     DF 0                                     1.00 1.00           0
            0.5
    15                              FEM 15.00           -15.00
       0.5                          Dist.               7.065 7.935
                    0.5
                                     CO 3.533
     3 m , 2EI            4m, 4EI
       15                            Σ 18.53            -7.94     7.94

    A
                           D        7.94 kN•m

KBA = 4(2EI)/3 = 2.667EI
                                B                  C               + ΣF = 0:
                                                                       x
KBC = 3(3EI)/3 = 3EI
                                                                         60 - 33.53 - 0 + R = 0
                           60
KCD = 3(4EI)/4 = 3EI                 3m                   4m
                                                                                      R = - 26.47 kN

                                A     Ax = 33.53 kN D     Dx = 0


                                      18.53 kN•m          0
                                                                                                  67
• Artificial joint removed ( sidesway)

     • Fixed end moment
                ∆                        ∆                    ∆                    ∆
           B                3m, 3EI C                    B               3m, 3EI C
                                             R´                                        R´
100 kN•m
6(2EI∆)/(3) 2          6(4EI)∆/(4) 2               100 kN•m
                    3 m, 2EI
                         100 kN•m        4m, 4EI                  3 m, 2EI         4m, 4EI
                     6(2EI∆)/(3) 2                                  100 kN•m
                                         3(4EI∆)/(4) 2                             3(4EI)(75/EI)/(4) 2
                A                                             A                      = 56.25 kN•m

                                     D                                         D
 Assign a value of (FEM)AB = (FEM)BA = 100 kN•m

                6(2 EI ) ∆
                     2
                           = 100
                   3
                  ∆AB = 75/EI
                                                                                                  68
∆                        ∆
                                                 A           B                 C                   D
B                 3m         C      R´
                 0.5                        DF   0       0.471 0.529       1.00 1.00           0
100
                                           FEM 100        100                              56.25
           0.5
                                           Dist.         -47.1 -52.9                           0
                       0.5
          3m                   4m          CO -28.55
           100
                                            Σ    76.45   52.9 -52.9                        56.25
                               56.25
      A


                           D
          52.9. kN•m
                                                           + ΣF = 0:
                                       C                       x

      B                                                          -43.12 - 14.06 + R´ = 0
            3m                             4m                                R´ = 57.18 kN
      A     Ax = 43.12kN
                                       D   14.06 kN

            76.45 kN•m
                                           56.25 kN•m                                          69
Substitute R = -26.37 and R´= 57.18 in (1) :

                                       R + C1R´ = 0

                       -26.47 + C1(57.18) = 0
                                                        26.47
                                              C1 =
                                                        57.18
                                                                                    20 kN/m
B                                  B         52.9 kN•m                          B
                       C                                        C                         3m
                                   R                                                                    C
         7.94 kN•m                                                   R´               16.55 kN•m
        7.94 kN•m              52.9
                                                                            =       3m
                           +               76.45 kN•m
                                                                    x C1                           4m
        18.53 kN•m                                                                   53.92 kN•m

            33.53 kN                           43.12 kN                                  53.49 kN
    A                                  A                            56.25
                           0                                                    A          26.04 kN•m
                                                                                    5.52 kN kN
                                                                                           6.51
                               0
                       D                                        D 14.06                             D
                                                                                                    5.52 kN
                                                                                                        70
20 kN/m
                                                        16.55
B         3m                                    16.55
                        C                                   B                C
      16.55 kN•m

    3m
     53.92 kN•m    4m
                                                                53.92
         53.49 kN
A          26.04 kN•m                                   A
    5.52 kN kN
           6.51                                                                  26.04
                                                        Moment diagram
                               ∆                    ∆                    D
                    D
                    5.52 kN
                                B                   C




                              A
                              Deflected shape
                                                                                         71
                                                D
Example 8

From the frame shown use the moment distribution method to:
          (a) Determine all the reactions at supports, and also
          (b) Draw its quantitative shear and bending moment diagrams,
              and qualitative deflected shape.
EI is constant.

          10 kN B
                                   C

                                               4m

             A                          D
                        4m         3m




                                                                         72
• Overview
                     10 kN B
                                                  C

                                                                   4m

                         A                             D
                                         4m       3m

                                                                        R + C1R´ = 0       ---------(1)




                                              =
10 kN B                   C                                    B                C
                                     R                                                    R´


                                              +                                                x C1


   A                            D                          A                           D
          artificial joint applied                             artificial joint removed
               (no sidesway)                                          (sidesway)
                                                                                                          73
• Artificial joint applied (no sidesway)




                      10 kN B                   C
                                                             R




                                     0                           0
                          A                              D




          Equilibrium condition :   + ΣF = 0:
                                          x
                                    10 + R = 0
                                           R = - 10 kN



                                                                     74
• Artificial joint removed (sidesway)

   • Fixed end moment             6EI∆BC/(4) 2
                              B
                                                       R´
               6EI∆AB/(4) 2
                                             C        3EI∆CD/(5) 2
           100 kN•m                 100 kN•m
                                                          6EI∆CD/(5) 2 4 m
                                  6EI∆AB/(4) 2
                        A                             D
                                      4m         3m

  Assign a value of (FEM)AB = (FEM)BA = 100 kN•m : 6 EI∆ AB = 100
                                                         42
                                                          ∆AB = 266.667/EI
                      ∆ CD ∆BC
    B∆                    C´
                             R´
                          ∆              ∆CD = ∆ / cos 36.87° = 1.25 ∆ = 1.25(266.667/EI)
         B´         C                        = 333.334/EI
                              36.87°                        C´
                                     4m          ∆CD
                                                            ∆BC = ∆ tan 36.87° = 0.75 ∆
                                                   36.87°        = 0.75(266.667/EI)
 A                          D            C        ∆AB = ∆        = 200/EI
            4m           3m
                                                                                        75
∆BC= 200/EI, ∆CD = 333.334/EI




                     6EI∆BC/(4) 2 = 6(200)/42 = 75 kN•m
                 B
                                        R´
      100 kN•m
                                  C    3EI∆CD/(5) 2 = 3(333.334)/52 = 40 kN•m


                     100 kN•m
            A                          D


        Equilibrium condition :

                + ΣF = 0: A + D + R´ = 0
                    x      x   x




                                                                                76
75                                            A                 B              C         D
       B                        75
                                           R´             DF       0        0.50 0.50       0.625 0.375   1
                      0.5      C
100                                                   FEM 100               100 -75        -75 40
                                   40
                                                   4 m Dist.               -12.5 -12.5 21.875 13.125
           0.5                      0.5
100                                                      CO -6.25                 10.938 -6.25
A                                          D             Dist.             -5.469 -5.469 3.906 2.344
                  4m                  3m                  CO -2.735               1.953 -2.735
                                                         Dist.             -0.977 -0.977 1.709 1.026
KBA = 4EI/4 = EI, KBC = 4EI/4 = EI,
KCD = 3EI/5 = 0.6EI                                       Σ        91.02   81.05 -81.05 -56.48 56.48

34.38 kN                                                            34.38 kN
       81.05                81.05 B                  C                   56.48
B                                                          56.48 C
                              34.38 kN            34.38 kN

                                   + ΣF = 0:                                         39.91 kN
 A          43.02 kN                     x                                  D
           91.02                   -43.02 - 39.91 + R´ = 0
     34.38 kN                                  R´ = 82.93 kN                    34.38 kN
                                                                                                          77
Substitute R = -10 kN and R´= 82.93 kN in (1) : -10 + C1(82.93) = 0
      R + C1R´ = 0   ---------(1)                                      C1 = 10/82.93

                                                                    81.05
10 kN B              C                                          B                  C
                                  R                                                        R´
                                                    81.05                   56.48
                                                                                               x C1= 10/82.93
                                             +                                  56.48
           0                                 0                      91.02                          39.91 kN
  A            0              D                        A              43.02 kN             D
                                  0


                                         =
                                                                                                34.38 kN
       0                                                    34.38 kN
                                      9.77
                     10 kN B
                                                            C
                       9.77                      6.81
                                                     6.81                   4m
                                      10.98                                      4.81 kN
                         A              5.19 kN
                                                             D
                     4.15 kN                                          4.15 kN
                                         4m                 3m
                                                                                                                78
9.77
                     10 kN B
                                                         C
                      9.77                    6.81
                                                  6.81            4m
                                     10.98
                           A           5.19 kN                    4.81 kN
                                                          D
                     4.15 kN                                  4.15 kN
                                         4m              3m

           9.77
       B                                                          B
9.77                             C                                                  C

                          6.81


   A              10.98                                       A
                                     D                                                  D

           Bending moment diagram                                       Deflected shape
                   (kN•m)

                                                                                            79
Example 9

From the frame shown use the moment distribution method to:
          (a) Determine all the reactions at supports, and also
          (b) Draw its quantitative shear and bending moment diagrams,and
qualitative deflected shape.
EI is constant.
                                     40 kN
                20 kN B
                                         C
                              3EI
          3m
                        4EI
                                      4EI         4m

               A
                                             D
                   2m           3m          2m




                                                                            80
40 kN
• Overview
                           20 kN B
                                                              C
                                            3EI
                    3m
                                      4EI
                                                      4EI                   4m

                           A
                                                                  D
                                 2m           3m              2m

                                                                          R + C1R´ = 0       ----------(1)
                   40 kN




                                             =
 20 kN B                   C                                          B                  C
                                      R                                                            R´


                                            +                                                        x C1
      artificial joint applied                                    artificial joint removed
      (no sidesway)                                                     (no sidesway)
A                                                         A
                                  D                                                              D
    2m           3m              2m                           2m                 3m           2m
                                                                                                             81
• Artificial joint applied (no sidesway)

    Fixed end moments:


                                   40 kN
                                        PL/8 = 15
                             B                 C
                20 kN                                R
                             15+(15/2)
                             = 22.5 kN•m


                   A
                                                    D
                        2m          3m          2m


              Equilibrium condition :

                       + ΣF = 0: A + D + R = 0
                           x      x   x


                                                         82
A           B             C            D
                          40 kN
    20 kN B                       C                         DF 0          0.60 0.40 1.00 1.00            0
                                           R
                   22.5                                   FEM                   22.5
                             15
                   0.5                                    Dist.           -13.5 -9.0
           0.5                    0.5                      CO -6.75

                                                            Σ     -6.75   -13.5 13.5
    A
                                          D
         2m           3m              2m            KBA = 4(4EI)/3.6 = 4.444EI, KBC = 3(3EI)/3 = 3EI,


         24.5 kN                                        15.5 kN
                   13.5 kN•m
                                                    C                       + ΣF = 0:
            B                                                                     x

                                        40 kN                               23.08 + 20 -7.75 + R´ = 0
                    13.5 B                      C                                      R´ = - 35.33 kN

A                                                                     7.75 kN
        23.08 kN
                          24.5 kN               15.5 kN      D
    6.75 kN•m                                                         0
24.5 kN                                                           15.5 kN
                                                                                                         83
• Artificial joint removed (sidesway)

    Fixed end moments:                   3m
                                B                     C
                                                           R´




                       m
                                        3EI



                    06




                                                                   4. 4
                 3.6




                                                                    72
                                                                       m
                             4EI
                                                  4EI
                    A
                                                          D
                           3(3EI)∆BC/(3) 2 6(3EI)∆BC/(3) 2
       100 kN•m
                                                           R´
      6(4EI)∆AB/(3.606) 2           B             C
                                                          6(4EI)∆CD/(4.47) 2
                                 100 kN•m
                             6(4EI)∆AB/(3.61) 2
                                                              3(4EI)∆CD/(4.472) 2
                    A
                                                          D

Assign a value of (FEM)AB = (FEM)BA = 100 kN•m : 6(4 EI ) ∆ AB = 100,          ∆AB = 54.18/EI
                                                    3.612                                       84
CC´                      ∆ = ∆ABcos 33.69° = 45.08/EI
              B BB´           C   C´
                                    R´                                           C´
                   B´                                           ∆ CD
   .69 o                                            C                             ∆ tan 26.57 = 22.54/EI




                                         26.57°
                                                                    26.57°
 33

                                                    B∆               33.69o
                                                          AB
                                                               =5                 ∆ tan 33.69 = 30.05/EI
                                                                    4.3
A                                                                         /E I
                                     D
                                                                           B´
                                                  ∆ BC   = B' C ' = 22.54 / EI + 30.05 / EI = 52.59 / EI
                                                  ∆CD = ∆/cos 26.57°= 50.4/EI

           3(3EI)∆BC/(3) 2 = 3(3EI)(52.59/EI) /(3) 2 = 52.59 kN•m
                                             R´
100 kN•m          B             C



             100 kN•m
                                           3(4EI)∆CD/(4.472) 2
    A                                           = 3(4EI)(50.4/EI)/(4.472) 2
                                         D
                                                = 30.24 kN•m
                                                                                                       85
A              B                C              D
                 3EI
           B 52.59          C                       DF 0        0.60 0.40        1.00   1.00       0
                                       R´
    100           0.5                          FEM 100           100 -52.59                    30.24
3m                                              Dist.         -28.45 -18.96
100 0.5                      0.5       4m       CO -14.223
     4EI                                            Σ   85.78 71.55 -71.55
                            4EI                                                                30.24
 A                                          30.24
                                   D
    2m               3m           2m
          23.85 kN                                          23.85 kN
                71.55 kN•m                                                   + ΣF = 0:
                                                                                   x
                                                        C
              B                                                              -68.34 - 19.49 + R´ = 0
                        71.55 B                C                                      R´ = 87.83 kN


A    68.34 kN             23.85              23.85                         19.49 kN
                                                                 D
   85.78kN•m                                                               30.24 kN•m
23.85 kN
                                                                     23.85 kN
                                                                                                       86
Substitute R = -35.33 and R´= 87.83 in (1) :          -35.33 + C1(87.83) = 0
                    40 kN                                                   C1 = 35.33/87.83
   20 kN B                  C                                B                    C
                                    35.33 kN                                              90.59 kN

             13.5 kN•m                                           71.55 kN•m
                                    +85.78 kN•m                                           x C1
       6.75 kN•m
        23.08 kN                                           68.34 kN
                                           0                                                30.24 kN•m
A 24.5 kN                                      A     23.85 kN
                                               7.75 kN                                           19.485 kN
                                D                                                     D
                                          15.5 kN                                           23.85 kN




                                                          =
                                                40 kN
                          20 kN B
                                                           C
                                    15.28 kN•m

             27.76 kN•m
                                4.41 kN
                                                                      12.16 kN•m
                     A      14.91 kN
                                                                          15.59 kN
                                                               D
                                                                       25.09 kN                          87
40 kN
                       20 kN B
                                                       C
                                     15.28 kN•m
               27.76 kN•m
                                 4.41 kN
                                                                12.16 kN•m
                   A        14.91 kN
                                                                      15.59 kN
                                                           D
               37.65                                               25.09 kN

      15.28

                             C                                                   C
          B                                                    B




A      27.76                                       A
                                           12.16               Deflected shape
    Bending moment diagram       D                                                   D


                                                                                         88

Moment Distribution Method

  • 1.
    DISPLACEMENT MEDTHOD OFANALYSIS: MOMENT DISTRIBUTION ! Member Stiffness Factor (K) ! Distribution Factor (DF) ! Carry-Over Factor ! Distribution of Couple at Node ! Moment Distribution for Beams ! General Beams ! Symmetric Beams ! Moment Distribution for Frames: No Sidesway ! Moment Distribution for Frames: Sidesway 1
  • 2.
    Member Stiffness Factor(K) & Carry-Over Factor (COF) CB P w EI A B C D L1 /2 L1/2 L2 L3 Internal members and far-end member fixed at end support: 4 EI COF = 0.5 2 EI kCC = k DC = 4 EI L L K= L 1 C D COF = 0.5 B C K(BC) = 4EI/L2, K(CD) = 4EI/L3 2
  • 3.
    CB P w EI A B C D L1 /2 L1/2 L2 L3 Far-end member pinned or roller end support: COF = 0 3EI 3EI k AA = 0 K= L L 1 C D K(AB) = 3EI/L1, K(BC) = 4EI/L2, K(CD) = 4EI/L3 3
  • 4.
    Joint Stiffness Factor(K) CB P w EI A B C D L1 /2 L1/2 L2 L3 K(AB) = 3EI/L1 K(BC) = 4EI/L2, K(CD) = 4EI/L3 Kjoint = KT = ΣKmember 4
  • 5.
    Distribution Factor (DF) CB P w EI A B C D L1 /2 L1/2 L2 L3 K DF = ΣK Notes: - far-end pined (DF = 1) - far-end fixed (DF = 0) A KAB/(K(AB) + K(BC) ) B KBC/(K(AB) + K(BC) ) C K(CD)/(K(BC) + K(CD) ) D DF 1 DFBA) DFBC DFCB DFCD 0 K(BC)/(K(BC) + K(CD) ) 5
  • 6.
    Distribution of Coupleat Node CB (EI)1 (EI)2 (EI)3 A B C D L1 /2 L1/2 L2 L3 A B C D DF 1 DFBA DFBC DFCA DFCD 0 CB CO=0 CB(DFBC) CO=0.5 CB( DFBC) CB(DFBC) B CB( DFBC) 6
  • 7.
    50 kN•m 2EI 3EI 3EI A B C D 4m 4m 8m 8m L1= L2 = L3 A B C D DF 1 0.333 0.667 0.5 0.5 0 50 kN•m CO=0 CO=0.5 50(.667) 50(.667) 16.67 50(.333) 50(.333) B 7
  • 8.
    Distribution of Fixed-EndMoments P w (EI)1 M (EI)2 (EI)13 A F B C D L1 /2 L1/2 L2 L3 L1= L2 = 8 m, L3 = 10 m A B C D DF 1 DFBA DFBC DFCB DFCD 0 MF MF B MF 0 MF(DFBC) MF( DFBC) 0.5 0 MF(DFBC) B MF( DFBC) 8
  • 9.
    P w EI A 1.5PL1/8=30 B wL22/12=16 C wL32/12=25 D L1 /2 L1/2 L2 L3 L1= L2 = 8 m, L3 = 10 m A B C D DF 1 0.4 0.6 0.5 0.5 0 14 30 30 B 16 16 14 0 5.6 5.6 0.5 4.2 0 B 8.4 8.4 9
  • 10.
  • 11.
    Example 1 The supportB of the beam shown (E = 200 GPa, I = 50x106 mm4 ). Use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams,and qualitative deflected shape. 20 kN 3 kN/m 2EI 3EI A B C 4m 4m 8m 11
  • 12.
    20 kN 3 kN/m 2EI 3EI 30 16 16 A B C CO 0.5 0 0.5 0 4m 4m 8m K1 = 3(2EI)/8 K2 = 4(3EI)/8 K1/(K1+ K2) K2/(K1+ K2) DF 1 0.333 0.667 0 [FEM]load -30 16 -16 Dist. 4.662 9.338 CO 4.669 Σ -25.34 25.34 -11.33 20 kN 24 kN A B B C 25.34 kN•m 11.33 kN•m 6.83 kN 13.17 kN 13.75 kN 10.25 kN 12
  • 13.
    Note : Usingthe Slope 20 kN 3 kN/m Deflection 2EI 3EI 20+10 16 16 A B C 4m 4m 8m 3(2 EI ) M BA = θ B − 30 − − − (1) 8 4(3EI ) M BC = θ B + 16 − − − (2) 8 MBA MBC + ΣMB = 0: -MBA - MBC = 0 B (0.75 + 1.5)EIθB - 30 + 16 = 0 θB = 6.22/EI MBA = -25.33 kN•m, MBC = 25.33 kN•m 2(3EI ) M CB = θ B − 16 = −11.33 kN • m 8 13
  • 14.
    20 kN 3 kN/m A C 11.33 B 6.83 kN 13.17 + 13.75 = 26.92 kN 10.25 kN 4m 4m 8m 13.75 6.83 V (kN) + + x (m) - 4.58 m - -10.25 -13.17 27.32 6.13 M + + (kN•m) - - x (m) -11.33 -25.33 Deflected shape x (m) 14
  • 15.
    Example 2 From thebeam shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. 10 kN 50 kN•m 5 kN/m 2EI 3EI 3EI A B C D 4m 4m 8m 8m 15
  • 16.
    10 kN 50 kN•m 5 kN/m 2EI 15 26.67 26.67 40 3EI A 0.5 B 0.5 C 0.5 D 4m 4m 8m 8m K1 = 3(2EI)/8 K2 = 4(3EI)/8 K3 = 3(3EI)/8 K1/(K1+ K2) K2/(K1+ K2) K2/(K2+ K3) K3/(K2+ K3) DF 1 0.333 0.667 0.571 0.428 1 Joint couple -16.65 -33.35 50 kN•m CO=0 CO=0.5 50(.667) 50(.667) 50(.333) 50(.333) B 16
  • 17.
    10 kN 50 kN•m 5 kN/m 2EI 15 26.67 26.67 40 3EI A 0.5 B 0.5 C 0.5 D 4m 4m 8m 8m K1 = 3(2EI)/8 K2 = 4(3EI)/8 K3 = 3(3EI)/8 K1/(K1+ K2) K2/(K1+ K2) K2/(K2+ K3) K3/(K2+ K3) DF 1 0.333 0.667 0.571 0.429 1 Joint couple -16.65 -33.35 CO -16.675 FEM -15 26.667 -26.667 40 Dist. -3.885 -7.782 1.905 1.437 CO 0.953 -3.891 Dist. -0.317 -0.636 2.218 1.673 CO 1.109 -0.318 Dist. -0.369 -0.740 0.181 0.137 Σ -36.22 -13.78 -43.28 43.25 17
  • 18.
    10 kN 50 kN•m 5 kN/m 2EI 36.22 13.78 43.25 43.25 3EI A B C D 4m 4m 8m 8m 10 kN 40 kN 36.22 kN•m A B 43.25 kN•m C D Ay = 0.47 kN ByL = 9.53 kN CyR = 25.41 kN Dy = 14.59 kN 40 kN 13.78 kN•m 43.25 kN•m B C ByR = 12.87 kN CyL= 27.13 kN 18
  • 19.
    10 kN 50 kN•m 5 kN/m A D 2EI B C 3EI 0.47 kN 14.59 kN 9.53+12.87=22.4 kN 27.13+25.41=52.54 kN 4m 4m 8m 8m 12.87 25.41 2.92 m V (kN) 0.47 x (m) 2.57 m -9.53 -14.59 30.32 -27.13 21.29 13.78 M(kN•m) 1.88 x (m) -36.22 -43.25 Deflected x (m) shape 19
  • 20.
    Example 3 From thebeam shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. 2EI 40 kN 50 kN•m 10 kN/m 40 kN A D EI B C 3m 3m 9m 3m 20
  • 21.
    120 kN•m 40 kN 2EI 40 kN 50 kN•m 10 kN/m A D 30 30 101.25 EI B C 0.5 0.5 3m 3m 9m 3m K1 = 4(2EI)/6 K2 = 3(EI)/9 K1/(K1+ K2) K2/(K1+ K2) DF 0 0.80 0.20 1 Joint couple 40 10 -120 CO 20 -60 FEM 30 -30 101.25 Dist. Dist. -9 -2.25 CO -4.5 Σ 45.5 1 49 -120 21
  • 22.
    2EI 40 kN 50 kN•m 10 kN/m 40 kN 1 A D 49 120 120 45.5 EI B C 3m 3m 9m 3m 40 kN 40 kN 45.5 kN•m 1 kN•m A B 120 kN•m C D Ay = 27.75 kN ByL = 12.25 kN CyR = 40 kN 90 kN 49 kN•m 120 kN•m B C ByR = 37.11 kN CyL = 52.89 kN 22
  • 23.
    2EI 40 kN 50 kN•m 10 kN/m 40 kN A D EI B C 27.75 kN 12.25+37.11 = 49.36 kN 52.89+40 = 92.89 kN 3m 3m 9m 3m 37.11 40 27.75 V (kN) + + + - x (m) -12.25 3.71 m - 37.75 -52.89 19.84 M(kN•m) + 1 + x (m) - - - -45.5 -49 -120 Deflected x (m) shape 23
  • 24.
    Example 4 The supportB of the beam shown (E = 200 GPa, I = 50x106 mm4 ) settles 10 mm. Use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. 20 kN 15 kN•m 12 kN•m 3 kN/m 2EI 3EI A B C 4m 4m 8m 24
  • 25.
    20 kN 15 kN•m 12 kN•m 3 kN/m B A C 2EI 30 16 3EI 0.5 4 m 16 4m 10 mm 8 m 0.5 6(2 EI )∆ 6(2 EI )∆ 6(3EI ) ∆ A − = 9.375 6(3EI ) ∆ = 28.125 L 2 2L 2 = 28.125 L2 L2 ∆ [FEM]∆ ∆ B B 6(2 EI )∆ C L2 K1 = 3(2EI)/8 K2 = 4(3EI)/8 K1/(K1+ K2) K2/(K1+ K2) DF 1 0.333 0.667 0 Joint couple -12 5 10 CO -6 5 [FEM]load -30 16 -16 [FEM]∆ 9.375 -28.125 -28.125 Dist. 12.90 25.85 CO 12.92 Σ -12 -8.72 23.72 -26.20 25
  • 26.
    Note : Usingthe 20 kN 18.75-9.375 15 kN•m 3 kN/m slope deflection 12 kN•m (9.375 )∆ B (28.125)∆ A C 2EI 3EI 28.125 (20+10)load (16)load 16 4m 4m 10 mm 8m 15 kN•m -12 MBA MBC 4(2 EI ) 2(2 EI ) M AB = θA + θ B + 20 − 18.75 − − − (1) 8 8 B 2(2 EI ) 4(2 EI ) M BA = θA + θ B − 20 + 18.75 − − − (2) 8 8 + ΣMB = 0: - MBA - MBC + 15 = 0 ( 2) − (1) 3(2 EI ) : M BA = θ B − 30 + 9.375 − 12 / 2 − − − (2a) 2 8 (0.75 + 1.5)EIθB - 38.75 - 15 = 0 4(3EI ) θB = 23.9/EI M BC = θ B + 16 − 28.125 − − − (3) 8 MBA = -8.7 kN•m, 2(3EI ) M CB = θ B − 16 − 28.125 − − − (4) 8 MBC = 23.72 kN•m 2(3EI ) M CB = θ B − 16 − 28.125 8 = −26.2 kN • m 26
  • 27.
    20 kN 15 kN•m 12 kN•m 3 kN/m 2EI 8.725 23.7253EI 26.205 A B C 4m 4m 8m 20 kN 24 kN 12 kN•m 8.725 kN•m 26.205 kN•m A B B C 23.725 kN•m Ay = 7.41 kN ByL = 12.59 kN ByR = 11.69 kN Cy = 12.31 kN 27
  • 28.
    20 kN 15 kN•m 12 kN•m 3 kN/m A C 2EI B 3EI 26.205 7.41 kN 12.59+11.69 = 24.28 kN 12.31 kN 4m 4m 8m 7.41 11.69 V (kN) + + x (m) - 3.9 m - -12.31 -12.59 41.64 12 + M (kN•m) x (m) -8.725 - -0.93 - -23.725 -26.205 Deflected 10 mm θB = 23.9/EI shape x (m) 28
  • 29.
    Example 5 For thebeam shown, support A settles 10 mm downward, use the moment distribution method to (a)Determine all the reactions at supports (b)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. Take E= 200 GPa, I = 50(106) mm4. 12 kN•m 6 kN/m B A 2EI C 1.5EI 10 mm 3m 3m 29
  • 30.
    12 kN•m 4.5+(4.5/2) 6 kN/m = 6.75 B A 4.5 10 mm 2EI C 1.5EI 3m 0.5 3 m 0.5 100-(100/2) = 50 6(1.5 × 200 × 50)(0.01) 0.01 m C 32 MF∆ A = 100 kN • m K1 = 4(2EI)/3 K2 = 3(1.5EI)/3 K1/(K1+ K2) K2/(K1+ K2) DF 0 0.64 0.36 1 Joint couple 12 CO 6 [FEM]load 6.75 [FEM]∆ 50 Dist. -40.16 -22.59 CO -20.08 Σ -20.08 -40.16 40.16 12 30
  • 31.
    12 kN•m 6 kN/m B A 2EI C 1.5EI 3m 3m ΣΜ -20.08 -10.16 40.16 12 20.08 kN•m 40.16 kN•m B C 40.16 + 20.08 20.08 kN = 20.08 kN 3 18 kN 12 kN•m 6 kN/m 40.16 kN•m C A 26.39 kN 8.39 kN 31
  • 32.
    12 kN•m 6 kN/m B A 2EI C 1.5EI 10 mm 3m 3m 20.08 kN•m 40.16 kN•m B C 20.08 kN 20.08 kN 12 kN•m 6 kN/m 40.16 kN•m C A 26.39 kN 8.39 kN V (kN) 26.39 + 8.39 x (m) - M (kN•m) -20.08 20.08 12 x (m) Deflected shape -40.16 x (m) 32
  • 33.
    Example 6 For thebeam shown, support A settles 10 mm downward, use the moment distribution method to (a)Determine all the reactions at supports (b)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. Take E= 200 GPa, I = 50(106) mm4. 12 kN•m 6 kN/m B A 2EI C 1.5EI 10 mm 3m 3m 33
  • 34.
    • Overview 12 kN•m 6 kN/m B A C 10 mm 2EI 1.5EI 3m 3m 12 kN•m 6 kN/m B A 10 mm C R ∆ B ×C A R´ R + R ' C = 0 − − − (1*) 34
  • 35.
    • Artificial jointapplied 12 kN•m 4.5+(4.5/2) 6 kN/m = 6.75 B A 4.5 10 mm 2EI C 1.5EI 3m 0.5 3 m 0.5 100-(100/2) = 50 6(1.5 × 200 × 50)(0.01) 0.01 m C 32 MF∆ A = 100 kN • m K1 = 4(2EI)/3 K2 = 3(1.5EI)/3 K1/(K1+ K2) K2/(K1+ K2) DF 0 0.64 0.36 1 Joint couple 12 CO 6 [FEM]load 6.75 [FEM]∆ 50 Dist. -40.16 -22.59 CO -20.08 Σ -20.08 -40.16 40.16 12 35
  • 36.
    12 kN•m 6 kN/m B A 2EI C 1.5EI 3m 3m ΣΜ -20.08 -40.16 40.16 12 20.08 kN•m 40.16 kN•m B C 40.16 + 20.08 18 kN 20.08 kN = 20.08 kN 12 kN•m 3 6 kN/m 40.16 kN•m C A 26.39 kN 8.39 kN 40.16 kN•m 40.16 kN•m 20.08 C 26.39 kN + ↑ ΣFy = 0 : − 20.08 − 26.39 + R = 0 R R = 46.47 kN 36
  • 37.
    • Artificial jointremoved ∆ B A C 2EI 0.5 1.5EI 0.5 3m R´ 3m C C 75 B ∆ ∆ 6(1.5EI )( ) 100 EI = 75 75-(75/2) A 32 6(2 EI ) ∆ C 75 = 100 → ∆ = = 37.5 32 EI DF 0 0.64 0.36 1 [FEM]∆ -100 -100 +37.5 Dist. 40 22.5 CO 20 Σ -80 -60 60 80 kN•m 60 kN•m 60 kN•m B C C A 46.67 kN 46.67 kN 20 kN 20 kN C 46.67 20 kN + ↑ ΣFy = 0 : R' = 66.67 kN 37 R´
  • 38.
    • Solve equation Substitute R = 46.47 kN and R ' = 66.67 kN in (1*) 46.47 + 66.67C = 0 C = −0.6970 12 kN•m 6 kN/m B 20.08 kN•m A 10 mm 20.08 kN C R = 46.47 kN 8.39 kN ∆ B 80 kN•m A × C = −0.6970 46.67 kN 20 kN R´ = 66.67 kN 12 kN•m 6 kN/m 35.68 kN•m B A 2EI C 1.5EI 12.45 kN 5.55 kN 38
  • 39.
    12 kN•m 6 kN/m 35.68 kN•m B A 2EI C 1.5EI 10 mm 12.45 kN 5.55 kN 3m 3m V (kN) 12.45 0.925 m + x (m) -5.55 M (kN•m) 14.57 12 1.67 + x (m) - -35.68 Deflected shape x (m) 39
  • 40.
    Symmetric Beam •Symmetric Beam and Loading P P θ θ A B C D L´ L L´ real beam V´B L L V´C M L 2 2 + ΣMC´ = 0: − VB ' ( L ) + ( L)( ) = 0 EI 2 B´ C´ ML M VB ' = θ = M 2 EI L EI EI 2 EI conjugate beam M= θ L The stiffness factor for the center span is, therefore, 2 EI K= L 40
  • 41.
    • Symmetric Beamwith Antisymmetric Loading P θ A D B θ C P L´ L L´ real beam 1 M L M 1 M L 2L ( )( ) + ΣMC´ = 0: − VB ' ( L) + ( )( )( ) = 0 2 EI 2 EI 2 EI 2 3 V´B 2 ML L VB ' = θ = B´ 3 6 EI C´ 6 EI 1 M L V´C M= θ M ( )( ) L 2 EI 2 EI The stiffness factor for the center span is, therefore, conjugate beam 6 EI K= L 41
  • 42.
    Example 5a Determine allthe reactions at supports for the beam below. EI is constant. 15 kN/m A D B C 4m 6m 4m 42
  • 43.
    15 kN/m A D wL2/15 = 16 B wL2/12 = 45 C wL2/15 = 16 4m 6m 4m 3EI 3EI 2 EI 2 EI K ( AB ) = = , K ( BC ) = = L 4 L 6 K ( AB ) K ( AB ) (3EI / 4) ( DF ) AB = = 1,( DF ) BA = = = 0.692, K ( AB ) K ( AB ) + K ( BC ) (3EI / 4) + ( 2 EI / 6) K ( BC ) (2 EI / 6) ( DF ) BC = = = 0.308 K ( AB ) + K ( BC ) (3EI / 4) + (2 EI / 6) DF 1.0 0.692 0.308 [FEM]load 0 -16 +45 Dist. -20.07 -8.93 ΣΜ -36.07 +36.07 30 kN 30 kN 8 90 kN 8 36.07 kN•m 36.07 kN•m 3 3 A B B C C D 4m 3m 3m 4m 0.98 kN 29.02 kN 29.02 kN 0.98 kN 43 45 kN 45 kN
  • 44.
    30 kN 30 kN 8 90 kN 8 36.07 kN•m 36.07 kN•m 3 3 A B B C C D 4m 3m 3m 4m 0.98 kN 29.02 kN 29.02 kN 0.98 kN 45 kN 45 kN 15 kN/m A D B 74.02 kN C 74.02 kN 0.98 kN 0.98 kN 4m 6m 4m 45 29.02 V 0.98 (kN) x (m) -0.98 -29.02 -45 31.42 M + (kN•m) x (m) - - -36.07 -36.07 Deflected shape 44
  • 45.
    Example 5b Determine allthe reactions at supports for the beam below. EI is constant. 15 kN/m A C D B 15 kN/m 4m 3m 3m 4m 45
  • 46.
    Fixed End Moment 15 kN/m A C D wL2/15 = 16 B 11wL2/192 5wL2/192 = 30.938 = 14.063 5wL2/192 11wL2/192 = 14.063 = 30.938 wL2/15 = 16 A C D B 15 kN/m 15 kN/m 16.875 16 A C D 16 B 16.875 15 kN/m 46
  • 47.
    15 kN/m 16.875 16 A C D 16 B 16.875 15 kN/m 4m 3m 3m 4m 3EI 3EI 6 EI 6 EI K ( AB ) = = = 0.75EI , K ( BC ) = = = EI L 4 L 6 0.75 1 ( DF ) AB = 1, ( DF ) BA = = 0.429, ( DF ) BC = = 0.571 0.75 + 1 0.75 + 1 DF 1.0 0.429 0.571 [FEM]load 0 -16 16.875 Dist. -0.375 -0.50 ΣΜ -16.375 16.375 8 30 kN 8 45 kN 3 16.375 kN•m 16.375 kN•m 4m 3 A B B C C D 4m 5.91 kN 24.09 kN 27.96 kN 5.91 kN 27.96 kN 45 kN 24.09 kN 30 kN 47
  • 48.
    8 30 kN 8 45 kN 3 16.375 kN•m 16.375 kN•m 4m 3 A B B C C D 4m 5.91 kN 24.09 kN 27.96 kN 5.91 kN 27.96 kN 45 kN 24.09 kN 30 kN 15 kN/m A C D B 15 kN/m 5.91 kN 52.05 kN 52.05 kN 5.91 kN 27.96 27.96 V 5.91 5.91 (kN) x (m) -24.09 -24.09 M 16.375 (kN•m) x (m) -16.375 Deflected shape 48
  • 49.
  • 50.
    Example 6 From theframe shown use the moment distribution method to: (a) Determine all the reactions at supports (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. 40 kN•m 48 kN 8 kN/m B C A 2.5EI 2.5EI 4m 3EI 5m D 5m 50
  • 51.
    40 kN•m 48 kN 8 kN/m B C A 2.5EI 45 25 2.5EI 0.5 0.5 4m KAB = KBC = 3(2.5EI)/5 = 1.5 EI 3EI 0.5 KBD = 4(3EI)/4 = 3EI 5m D 5m A B D C Member AB BA BC BD DB CB DF 1 0.25 0.25 0.5 0 1 Joint load -10 -10 -20 CO -10 FEM -45 25 Dist. 5 5 10 CO 5 Σ 0 -50 20 -10 -5 0 51
  • 52.
    40 kN•m 48 kN 8 kN/m B C A 20 2.5EI 50 2.5EI 14 kN 10 16 kN 3EI 5 Member AB BA BC BD DB CB D Σ 0 -50 20 -10 -5 0 40 kN•m 58 kN 34 24 3.75 50 20 48 kN 3.75 40 kN A B 0 50 kN•m 58 10 B C 3.75 58 20 3.75 14 kN 34 kN 10 kN•m 16 kN 24 kN 3.75 kN 5 3.75 kN 58 52
  • 53.
    40 kN•m 48 kN 8 kN/m B C A 2.5EI 20 2.5EI 14 kN 50 16 kN 3EI 10 4m 5 D 5m 5m 58 kN 35 16 10 20 50 Moment diagram Deflected shape 5 53
  • 54.
    Moment Distribution forFrames: Sidesway 54
  • 55.
    Single Frames P P ∆ ∆ C C R´ B C B R B x C1 A D A D A D Artificial joint applied Artificial joint removed (no sidesway) (sidesway) 0 = R + C1R´ 55
  • 56.
    Multistory Frames ∆2 P3 P2 P4 P1 ∆1 P3 ∆´´ ∆´´ P2 R2´´ R2 R2´ ∆´ ∆´ P4 x C1 x C2 P1 R1´ R1 R1´´ 0 =R2 + C1R2´ + C2R2´´ 0 =R1 + C1R1´ + C2R2´´ 56
  • 57.
    Example 7 From theframe shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. EI is constant. 16 kN 1m 4m B C 5m A D 57
  • 58.
    • Overview 16 kN 16 kN 1m 4m C C R´ B C B R B 5m 5m = + x C1 A D A D A D artificial joint applied artificial joint removed (no sidesway) ( sidesway) R + C1R´ = 0 ---------(1) 58
  • 59.
    • Artificial jointapplied (no sidesway) Fixed end moment: 16 kN b=1m a=4m C B R Pa2b/L2 Pb2a/L2 = 10.24 = 2.56 A D Equilibrium condition : + ΣF = 0: A + D + R = 0 x x x 59
  • 60.
    16 kN 1m 4m C R A B C D B 0.5 DF 0 0.50 0.50 0.50 0.50 10.24 2.56 0 FEM 10.24 -2.56 5m 5m Dist. -5.12 -5.12 1.28 1.28 0.5 0.5 CO -2.56 0.64 -2.56 0.64 A D Dist. -0.32 -0.32 1.28 1.28 CO -0.16 0.64 -0.16 0.64 5.78 kN•m Dist. -0.32 -0.32 0.08 0.08 2.72 kN•m CO -0.16 0.04 -0.16 0.04 Dist. -0.02 -0.02 0.08 0.08 B C Σ -2.88 -5.78 5.78 -2.72 2.72 1.32 5m 5m Equilibrium condition : + ΣF = 0: 1.73 - 0.81 + R = 0 x A Ax = 1.73 kN D Dx = 0.81 kN R = - 0.92 kN 2.88 kN•m 1.32 kN•m 60
  • 61.
    • Artificial jointremoved ( sidesway) Fixed end moment: Since both B and C happen to be displaced the same amount ∆, and AB and DC have the same E, I, and L so we will assume fixed-end moment to be 100 kN•m. ∆ ∆ B 5m C 100 kN•m R´ 100 kN•m 5m 5m 100 kN•m 100 kN•m A D Equilibrium condition : + ΣF = 0: A + D + R´ = 0 x x x 61
  • 62.
    ∆ B 5m C R´ A B C D 0.5 0.50 0.50 100 kN•m 100 kN•m DF 0 0.50 0.50 0 FEM 100 100 100 100 5m 5m Dist. -50 -50 -50 -50 0.5 0.5 100 kN•m 100 kN•m CO -25.0 -25.0 -25.0 -25.0 A Dist. 12.5 12.5 12.5 12.5 D CO 6.5 6.5 6.5 6.5 Dist. -3.125 -3.125 -3.125 -3.125 60 kN•m 60 kN•m CO -1.56 -1.56 -1.56 -1.56 Dist. 0.78 0.78 0.78 0.78 CO 0.39 0.39 0.39 0.39 B C Dist. -0.195 -0.195 -0.195 -0.195 Σ 80 60 -60 -60 60 80 5m 5m Equilibrium condition: + ΣFx = 0: A Ax = 28 kN D Dx = 28 kN -28 - 28 + R´ = 0 80 kN•m 80 kN•m R´ = 56 kN 62
  • 63.
    Substitute R =-0.92 and R´= 56 in (1) : R + C1R´ = 0 -0.92 + C1(56) = 0 0.92 C1 = 56 16 kN 16 kN B C C R´ 1m 4m C R B B 5.78 2.72 60 60 4.79 3.71 2.72 60 60 3.71 5.78 4.79 + x C1 = 5m 5m 2.88 80 80 1.57 2.63 1.32 1.73 kN 0.81 28 28 1.27 kN A D A D A D 1.27 63
  • 64.
    8.22 16 kN 3.71 1m 4m C B 4.79 4.79 3.71 3.71 4.79 4.79 3.71 5m 5m 1.57 2.63 1.27 kN 1.27 kN 1.57 2.63 A D 2.99 kN Bending moment 13.01 kN diagram (kN•m) ∆ ∆ Deflected shape 64
  • 65.
    Example 8 From theframe shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. 20 kN/m 3m B pin C 3EI 3m 2EI 4EI 4m A D 65
  • 66.
    • Overview 20 kN/m B 3m, 3EI B C B C C R R´ 3 m , 2EI 4m , 4EI = + x C1 A A A D D D artificial joint applied artificial joint removed (no sidesway) (sidesway) R + C1R´ = 0 ----------(1) 66
  • 67.
    • Artificial jointapplied (no sidesway) 20 kN/m A B C D B 3m , 3EI C R 0.471 0.529 DF 0 1.00 1.00 0 0.5 15 FEM 15.00 -15.00 0.5 Dist. 7.065 7.935 0.5 CO 3.533 3 m , 2EI 4m, 4EI 15 Σ 18.53 -7.94 7.94 A D 7.94 kN•m KBA = 4(2EI)/3 = 2.667EI B C + ΣF = 0: x KBC = 3(3EI)/3 = 3EI 60 - 33.53 - 0 + R = 0 60 KCD = 3(4EI)/4 = 3EI 3m 4m R = - 26.47 kN A Ax = 33.53 kN D Dx = 0 18.53 kN•m 0 67
  • 68.
    • Artificial jointremoved ( sidesway) • Fixed end moment ∆ ∆ ∆ ∆ B 3m, 3EI C B 3m, 3EI C R´ R´ 100 kN•m 6(2EI∆)/(3) 2 6(4EI)∆/(4) 2 100 kN•m 3 m, 2EI 100 kN•m 4m, 4EI 3 m, 2EI 4m, 4EI 6(2EI∆)/(3) 2 100 kN•m 3(4EI∆)/(4) 2 3(4EI)(75/EI)/(4) 2 A A = 56.25 kN•m D D Assign a value of (FEM)AB = (FEM)BA = 100 kN•m 6(2 EI ) ∆ 2 = 100 3 ∆AB = 75/EI 68
  • 69.
    ∆ A B C D B 3m C R´ 0.5 DF 0 0.471 0.529 1.00 1.00 0 100 FEM 100 100 56.25 0.5 Dist. -47.1 -52.9 0 0.5 3m 4m CO -28.55 100 Σ 76.45 52.9 -52.9 56.25 56.25 A D 52.9. kN•m + ΣF = 0: C x B -43.12 - 14.06 + R´ = 0 3m 4m R´ = 57.18 kN A Ax = 43.12kN D 14.06 kN 76.45 kN•m 56.25 kN•m 69
  • 70.
    Substitute R =-26.37 and R´= 57.18 in (1) : R + C1R´ = 0 -26.47 + C1(57.18) = 0 26.47 C1 = 57.18 20 kN/m B B 52.9 kN•m B C C 3m R C 7.94 kN•m R´ 16.55 kN•m 7.94 kN•m 52.9 = 3m + 76.45 kN•m x C1 4m 18.53 kN•m 53.92 kN•m 33.53 kN 43.12 kN 53.49 kN A A 56.25 0 A 26.04 kN•m 5.52 kN kN 6.51 0 D D 14.06 D 5.52 kN 70
  • 71.
    20 kN/m 16.55 B 3m 16.55 C B C 16.55 kN•m 3m 53.92 kN•m 4m 53.92 53.49 kN A 26.04 kN•m A 5.52 kN kN 6.51 26.04 Moment diagram ∆ ∆ D D 5.52 kN B C A Deflected shape 71 D
  • 72.
    Example 8 From theframe shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected shape. EI is constant. 10 kN B C 4m A D 4m 3m 72
  • 73.
    • Overview 10 kN B C 4m A D 4m 3m R + C1R´ = 0 ---------(1) = 10 kN B C B C R R´ + x C1 A D A D artificial joint applied artificial joint removed (no sidesway) (sidesway) 73
  • 74.
    • Artificial jointapplied (no sidesway) 10 kN B C R 0 0 A D Equilibrium condition : + ΣF = 0: x 10 + R = 0 R = - 10 kN 74
  • 75.
    • Artificial jointremoved (sidesway) • Fixed end moment 6EI∆BC/(4) 2 B R´ 6EI∆AB/(4) 2 C 3EI∆CD/(5) 2 100 kN•m 100 kN•m 6EI∆CD/(5) 2 4 m 6EI∆AB/(4) 2 A D 4m 3m Assign a value of (FEM)AB = (FEM)BA = 100 kN•m : 6 EI∆ AB = 100 42 ∆AB = 266.667/EI ∆ CD ∆BC B∆ C´ R´ ∆ ∆CD = ∆ / cos 36.87° = 1.25 ∆ = 1.25(266.667/EI) B´ C = 333.334/EI 36.87° C´ 4m ∆CD ∆BC = ∆ tan 36.87° = 0.75 ∆ 36.87° = 0.75(266.667/EI) A D C ∆AB = ∆ = 200/EI 4m 3m 75
  • 76.
    ∆BC= 200/EI, ∆CD= 333.334/EI 6EI∆BC/(4) 2 = 6(200)/42 = 75 kN•m B R´ 100 kN•m C 3EI∆CD/(5) 2 = 3(333.334)/52 = 40 kN•m 100 kN•m A D Equilibrium condition : + ΣF = 0: A + D + R´ = 0 x x x 76
  • 77.
    75 A B C D B 75 R´ DF 0 0.50 0.50 0.625 0.375 1 0.5 C 100 FEM 100 100 -75 -75 40 40 4 m Dist. -12.5 -12.5 21.875 13.125 0.5 0.5 100 CO -6.25 10.938 -6.25 A D Dist. -5.469 -5.469 3.906 2.344 4m 3m CO -2.735 1.953 -2.735 Dist. -0.977 -0.977 1.709 1.026 KBA = 4EI/4 = EI, KBC = 4EI/4 = EI, KCD = 3EI/5 = 0.6EI Σ 91.02 81.05 -81.05 -56.48 56.48 34.38 kN 34.38 kN 81.05 81.05 B C 56.48 B 56.48 C 34.38 kN 34.38 kN + ΣF = 0: 39.91 kN A 43.02 kN x D 91.02 -43.02 - 39.91 + R´ = 0 34.38 kN R´ = 82.93 kN 34.38 kN 77
  • 78.
    Substitute R =-10 kN and R´= 82.93 kN in (1) : -10 + C1(82.93) = 0 R + C1R´ = 0 ---------(1) C1 = 10/82.93 81.05 10 kN B C B C R R´ 81.05 56.48 x C1= 10/82.93 + 56.48 0 0 91.02 39.91 kN A 0 D A 43.02 kN D 0 = 34.38 kN 0 34.38 kN 9.77 10 kN B C 9.77 6.81 6.81 4m 10.98 4.81 kN A 5.19 kN D 4.15 kN 4.15 kN 4m 3m 78
  • 79.
    9.77 10 kN B C 9.77 6.81 6.81 4m 10.98 A 5.19 kN 4.81 kN D 4.15 kN 4.15 kN 4m 3m 9.77 B B 9.77 C C 6.81 A 10.98 A D D Bending moment diagram Deflected shape (kN•m) 79
  • 80.
    Example 9 From theframe shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams,and qualitative deflected shape. EI is constant. 40 kN 20 kN B C 3EI 3m 4EI 4EI 4m A D 2m 3m 2m 80
  • 81.
    40 kN • Overview 20 kN B C 3EI 3m 4EI 4EI 4m A D 2m 3m 2m R + C1R´ = 0 ----------(1) 40 kN = 20 kN B C B C R R´ + x C1 artificial joint applied artificial joint removed (no sidesway) (no sidesway) A A D D 2m 3m 2m 2m 3m 2m 81
  • 82.
    • Artificial jointapplied (no sidesway) Fixed end moments: 40 kN PL/8 = 15 B C 20 kN R 15+(15/2) = 22.5 kN•m A D 2m 3m 2m Equilibrium condition : + ΣF = 0: A + D + R = 0 x x x 82
  • 83.
    A B C D 40 kN 20 kN B C DF 0 0.60 0.40 1.00 1.00 0 R 22.5 FEM 22.5 15 0.5 Dist. -13.5 -9.0 0.5 0.5 CO -6.75 Σ -6.75 -13.5 13.5 A D 2m 3m 2m KBA = 4(4EI)/3.6 = 4.444EI, KBC = 3(3EI)/3 = 3EI, 24.5 kN 15.5 kN 13.5 kN•m C + ΣF = 0: B x 40 kN 23.08 + 20 -7.75 + R´ = 0 13.5 B C R´ = - 35.33 kN A 7.75 kN 23.08 kN 24.5 kN 15.5 kN D 6.75 kN•m 0 24.5 kN 15.5 kN 83
  • 84.
    • Artificial jointremoved (sidesway) Fixed end moments: 3m B C R´ m 3EI 06 4. 4 3.6 72 m 4EI 4EI A D 3(3EI)∆BC/(3) 2 6(3EI)∆BC/(3) 2 100 kN•m R´ 6(4EI)∆AB/(3.606) 2 B C 6(4EI)∆CD/(4.47) 2 100 kN•m 6(4EI)∆AB/(3.61) 2 3(4EI)∆CD/(4.472) 2 A D Assign a value of (FEM)AB = (FEM)BA = 100 kN•m : 6(4 EI ) ∆ AB = 100, ∆AB = 54.18/EI 3.612 84
  • 85.
    CC´ ∆ = ∆ABcos 33.69° = 45.08/EI B BB´ C C´ R´ C´ B´ ∆ CD .69 o C ∆ tan 26.57 = 22.54/EI 26.57° 26.57° 33 B∆ 33.69o AB =5 ∆ tan 33.69 = 30.05/EI 4.3 A /E I D B´ ∆ BC = B' C ' = 22.54 / EI + 30.05 / EI = 52.59 / EI ∆CD = ∆/cos 26.57°= 50.4/EI 3(3EI)∆BC/(3) 2 = 3(3EI)(52.59/EI) /(3) 2 = 52.59 kN•m R´ 100 kN•m B C 100 kN•m 3(4EI)∆CD/(4.472) 2 A = 3(4EI)(50.4/EI)/(4.472) 2 D = 30.24 kN•m 85
  • 86.
    A B C D 3EI B 52.59 C DF 0 0.60 0.40 1.00 1.00 0 R´ 100 0.5 FEM 100 100 -52.59 30.24 3m Dist. -28.45 -18.96 100 0.5 0.5 4m CO -14.223 4EI Σ 85.78 71.55 -71.55 4EI 30.24 A 30.24 D 2m 3m 2m 23.85 kN 23.85 kN 71.55 kN•m + ΣF = 0: x C B -68.34 - 19.49 + R´ = 0 71.55 B C R´ = 87.83 kN A 68.34 kN 23.85 23.85 19.49 kN D 85.78kN•m 30.24 kN•m 23.85 kN 23.85 kN 86
  • 87.
    Substitute R =-35.33 and R´= 87.83 in (1) : -35.33 + C1(87.83) = 0 40 kN C1 = 35.33/87.83 20 kN B C B C 35.33 kN 90.59 kN 13.5 kN•m 71.55 kN•m +85.78 kN•m x C1 6.75 kN•m 23.08 kN 68.34 kN 0 30.24 kN•m A 24.5 kN A 23.85 kN 7.75 kN 19.485 kN D D 15.5 kN 23.85 kN = 40 kN 20 kN B C 15.28 kN•m 27.76 kN•m 4.41 kN 12.16 kN•m A 14.91 kN 15.59 kN D 25.09 kN 87
  • 88.
    40 kN 20 kN B C 15.28 kN•m 27.76 kN•m 4.41 kN 12.16 kN•m A 14.91 kN 15.59 kN D 37.65 25.09 kN 15.28 C C B B A 27.76 A 12.16 Deflected shape Bending moment diagram D D 88