Residue integration Hanpen Robot 2015/02/12
★Formula 01
∫ 𝑓(𝑒 𝑗𝜃
2𝜋
0
)𝑑𝜃 = ∫ 𝑓(𝑧)
𝑑𝑧
𝑗𝑧𝐶
, (𝐶: 𝑧(𝑡) = 𝑒 𝑗𝜃
, 0 ≤ 𝜃 < 2𝜋)
∴ ∫ 𝑓(𝑒 𝑗𝜃
2𝜋
0
)𝑑𝜃 = ∑ Res [
𝑓(𝑧)
𝑗𝑧
, 𝛼𝑖]
Where 𝑓(𝑧) is rational function.
★Proof: Obvious by definition of a line integral.
★Problem 01: Calculate the definite integral of the following:
∫ cos2𝑛(𝜃)
𝜋
0
𝑑𝜃, (𝑛 = 1,2,3, … )
★Answer: Using Formula 01,
∫ cos2𝑛(𝜃)
𝜋
0
𝑑𝜃 =
1
2
∫ cos2𝑛(𝜃)
2𝜋
0
𝑑𝜃 =
1
2
∫ (
𝑧 + 𝑧−1
2
)
2𝑛
𝑑𝑧
𝑗𝑧𝐶
=
1
𝑗22𝑛+1
∫ (𝑧 +
1
𝑧
)
2𝑛
𝑑𝑧
𝑧𝐶
=
1
𝑗22𝑛+1
∫ (
𝑧2
+ 1
𝑧
)
2𝑛
𝑑𝑧
𝑧𝐶
=
1
𝑗22𝑛+1
∫
(𝑧2
+ 1)2𝑛
𝑧2𝑛+1
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
∫
1
𝑧2𝑛+1
∑ (
2𝑛
𝑘
) 𝑧2(2𝑛−𝑘)
2𝑛
𝑘=0
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
∫
1
𝑧2𝑛+1
∑ (
2𝑛
𝑘
) 𝑧4𝑛−2𝑘
2𝑛
𝑘=0
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
∫ ∑ (
2𝑛
𝑘
) 𝑧4𝑛−2𝑘−2𝑛−1
2𝑛
𝑘=0
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
∫ ∑ (
2𝑛
𝑘
) 𝑧2𝑛−2𝑘−1
2𝑛
𝑘=0
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
∫ (
2𝑛
𝑛
) 𝑧−1
𝑑𝑧
𝐶
=
1
𝑗22𝑛+1
(
2𝑛
𝑛
) ∫
𝑑𝑧
𝑧𝐶
=
1
𝑗22𝑛+1
(
2𝑛
𝑛
) 2𝜋𝑗 =
𝜋
22𝑛
(
2𝑛
𝑛
)
∴ ∫ cos2𝑛(𝜃)
𝜋
0
𝑑𝜃 =
𝜋
22𝑛
(
2𝑛
𝑛
)

Residue integration 01

  • 1.
    Residue integration HanpenRobot 2015/02/12 ★Formula 01 ∫ 𝑓(𝑒 𝑗𝜃 2𝜋 0 )𝑑𝜃 = ∫ 𝑓(𝑧) 𝑑𝑧 𝑗𝑧𝐶 , (𝐶: 𝑧(𝑡) = 𝑒 𝑗𝜃 , 0 ≤ 𝜃 < 2𝜋) ∴ ∫ 𝑓(𝑒 𝑗𝜃 2𝜋 0 )𝑑𝜃 = ∑ Res [ 𝑓(𝑧) 𝑗𝑧 , 𝛼𝑖] Where 𝑓(𝑧) is rational function. ★Proof: Obvious by definition of a line integral. ★Problem 01: Calculate the definite integral of the following: ∫ cos2𝑛(𝜃) 𝜋 0 𝑑𝜃, (𝑛 = 1,2,3, … ) ★Answer: Using Formula 01, ∫ cos2𝑛(𝜃) 𝜋 0 𝑑𝜃 = 1 2 ∫ cos2𝑛(𝜃) 2𝜋 0 𝑑𝜃 = 1 2 ∫ ( 𝑧 + 𝑧−1 2 ) 2𝑛 𝑑𝑧 𝑗𝑧𝐶 = 1 𝑗22𝑛+1 ∫ (𝑧 + 1 𝑧 ) 2𝑛 𝑑𝑧 𝑧𝐶 = 1 𝑗22𝑛+1 ∫ ( 𝑧2 + 1 𝑧 ) 2𝑛 𝑑𝑧 𝑧𝐶 = 1 𝑗22𝑛+1 ∫ (𝑧2 + 1)2𝑛 𝑧2𝑛+1 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ∫ 1 𝑧2𝑛+1 ∑ ( 2𝑛 𝑘 ) 𝑧2(2𝑛−𝑘) 2𝑛 𝑘=0 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ∫ 1 𝑧2𝑛+1 ∑ ( 2𝑛 𝑘 ) 𝑧4𝑛−2𝑘 2𝑛 𝑘=0 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ∫ ∑ ( 2𝑛 𝑘 ) 𝑧4𝑛−2𝑘−2𝑛−1 2𝑛 𝑘=0 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ∫ ∑ ( 2𝑛 𝑘 ) 𝑧2𝑛−2𝑘−1 2𝑛 𝑘=0 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ∫ ( 2𝑛 𝑛 ) 𝑧−1 𝑑𝑧 𝐶 = 1 𝑗22𝑛+1 ( 2𝑛 𝑛 ) ∫ 𝑑𝑧 𝑧𝐶 = 1 𝑗22𝑛+1 ( 2𝑛 𝑛 ) 2𝜋𝑗 = 𝜋 22𝑛 ( 2𝑛 𝑛 ) ∴ ∫ cos2𝑛(𝜃) 𝜋 0 𝑑𝜃 = 𝜋 22𝑛 ( 2𝑛 𝑛 )