SlideShare a Scribd company logo
1 of 50
INTEGRAL CALCULUS
Integration
or
Anti-derivatives
Definition Indefinite Integral
The set of all antiderivatives of a function f(x) is the
indefinite integral of f with respect to x and is denoted by

∫ f ( x)dx
∫ f ( x)dx = F ( x) + C
Definite Integration
b

f
∫
a

'

(x )dx

=f (b ) −f (a )
Antiderivatives with Slope Fields
1. ∫ x dx =
n

dx
2. ∫ =
x

x n+1
+ C , n ≠ −1
n +1

ln x + C

3. ∫ e dx = e + C
x

x

4. ∫ sin x dx = − cos x + C
Antiderivatives with Slope Fields
5. ∫ cos x dx =

sin x + C

6. ∫ sec x dx =

tan x + C

7. ∫ csc 2 x dx =

− cot x + C

8. ∫ sec x tan x dx =

sec x + C

2

9. ∫ csc x cot x dx = − csc x + C
Antiderivatives with Slope Fields

∫ (x

∫x

3

3

− 2 x + 3)dx

x dx

1

∫  t 2 − cos t  dt



4

x
2
− x + 3x + C
4
9
2

2
x +C
9
1
− − sin t + C
t
Antiderivatives with Slope Fields

∫ sec x(tan x + cos x)dx

sec x + x + C

∫ (1 + sin x csc x) dx

x − cos x + C

(e 2t + t 2 ) dt
∫

e2t t 3
+ +C
2 3

2
Antiderivatives with Slope Fields
Find the position function for v(t) = t3 - 2t2 + t s(0) = 1
4

3

2

t
2t
t
s (t ) = −
+ +C
4
3
2
4

3

2

0 2( 0) ( 0)
1= −
+
+C
4
3
2
4

3

2

t
2t t
s (t ) = −
+ +1
4
3
2

C=1
Anti-derivatives with Slope
Fields

∫

d (cabin)
=
cabin
log cabin + C

log cabin

houseboat
Integration by Substitution
The chain rule allows us to differentiate a
wide variety of functions, but we are able
to find antiderivatives for only a limited
range of functions. We can sometimes
use substitution to rewrite functions in a
form that we can integrate.
Integration by Substitution

∫ ( x + 2)

5

dx

∫ u du
5

1 6
u +C
6

( x + 2)
6

6

+C

Let u = x + 2
du = dx
The variable of integration must match
the variable in the expression.

Don’t forget to substitute the
value for u back into the
problem!
Integration by Substitution

∫

1 + x 2 ⋅ 2 x dx

∫u

1
2

One of the clues that we look for is if we can
find a function and its derivative in the
integrand.
The derivative of

du

Let u = 1 + x
du = 2 x dx

3
2

2
u +C
3
2
(1+ x
3

3
2 2

)

1 + x2

+C

is

.
2 x dx

2

Note that this only worked because of the 2x in
the original.
Many integrals can not be done by substitution.
Integration by Substitution

∫

4 x − 1 dx

∫u

1
2

1
⋅ du
4

3
2

2
1
u ⋅ +C
3
4
3
2

1
u +C
6

Let u = 4 x − 1
du = 4 dx
1
du = dx
4

3
1
( 4 x − 1) 2 + C
6

Solve for dx.
Integration by Substitution

∫ cos ( 7 x + 5) dx
1
∫ cos u ⋅ 7 du
1
sin u + C
7
1
sin ( 7 x + 5 ) + C
7

Let u = 7 x + 5
du = 7 dx
1
du = dx
7
Integration by Substitution
x 2 sin ( x 3 ) dx
∫

Let u = x 3

1
∫ sin u du
3

du = 3 x 2 dx

1
− cos u + C
3
1
3
− cos x + C
3

1
du = x 2 dx
3
2
We solve forx dx because

we can find it in the integrand.
Integration by Substitution
sin 4 x ⋅ cos x dx
∫

Let u = sin x

∫ ( sin x ) cos x dx

du = cos x dx

4

u 4 du
∫

1 5
u +C
5

1 5
sin x + C
5
Integration by Substitution
π
4
0

∫

2

tan x sec x dx
new limit
1

∫ u du
0

new limit

1

1 2
u
2 0
1
2

The technique is a little different for definite
integrals.

Let u = tan x
2
du = sec x dx
u ( 0 ) = tan 0 = 0

π
π 
u   = tan = 1
4
4

We can find new
limits, and then
we don’t have to
substitute back.

We could have substituted back and used the original
limits.
Integration by Substitution
π
4
0

∫

π
4
0

∫

Using the original limits:

tan x sec 2 x dx

Let u = tan x
du = sec x dx
2

u du

∫ u du

2

Leave the
limits out until
you substitute
back.

1 2
= u
π
2
1
2 4
= ( tan x )
2
0

1
π 1
2
=  tan  − ( tan 0 )
2
Wrong! 4  2

This is usually
more work than
finding new
limits

The limits don’t 1
match!
1 2 1 2
= ⋅1 − ⋅ 0 =
2
2
2
Integration by Substitution

∫

1

−1

∫

2

0

3x

2

x + 1 dx
3

3 2
2

2
⋅2
3

du = 3 x dx
2

1
2

u du

2
u
3

Let u = x 3 + 1

u ( 1) = 2

Don’t forget to use the new limits.

0
3
2

u ( −1) = 0

2
= ⋅2 2
3

4 2
=
3
Integration by Substitution

∫ 2 x 1 + x dx

∫ tan t dt

∫

sin 3 θ cosθ dθ
∫

2

3 x + 4 dx

∫ t (5 + 3t ) dt
2 8

∫

cot θ csc 2 θ dθ
Integration by Substitution

∫

x−2
dx
x −1

5

2

π
4
π
−
2

∫

−

∫

e2

e

5x

e
∫ 3 + e5 x dx

cos x sin 2 x dx

∫

dx

dx
x ln x

∫

1 − x x 2 dx

1

0

x

e
2. Find
x = sin u

∫

∫

(1 − x 2 ) dx. Let u = sin−1 x
dx = cos u du

Substituting gives,

(1 − x 2 ) dx = ∫ 1 − sin2 u cos u du
= ∫ cos2 u du

We can not integrate this yet. Let us use trig.

1
cos2 u = (1 + cos 2u )
2
1 1
u 1
= ∫ + cos 2u du = + sin2u + c
2 2
2 4
u 1
1
= + .2sin u cos u + c = ( u + sin u cos u ) + c
2 4
2
1
= ( u + sin u cos u ) + c
2

Now for some trig play…..

x = sin u, but what does cos u equal?
sin2 u + cos2 u = 1
cos2 u = 1 − sin2

cos u = 1 − sin2 u

∫

1
(1 − x ) dx = ( u + sin u cos u ) + c
2
2

(

)

1
= sin−1 x + x 1 − x 2 + c
2
3. Find

∫

x2
4−x

2

dx. Let x = 2 sin θ

dx = 2cos θ dθ

∫

x2
4−x

2

dx = ∫
=∫

4 sin2 θ
4 − 4 sin θ
2

2 sin2 θ
cos θ
2

.2cos θ dθ = ∫

4 sin2 θ
2 1 − sin θ
2

.2cos θ dθ

.2cos θ dθ

= ∫ 4 sin θ dθ
2

1 1
 2

sin θ = − cos 2θ ÷

2 2



= ∫ 2 − 2cos 2θ dθ
= 2θ − sin2θ + c
= 2θ − 2 sinθ cosθ + c

We now need to substitute theta
in terms of x.
x 2 = 4 sin2 θ

x = 2sinθ
x
sinθ =  ÷
2

−1  x 
θ = sin  ÷
2

= 4 − 4 cos2 θ
4 cos2 θ = 4 − x 2
2cos θ = 4 − x 2
1
cosθ =
4 − x2
2

∫

x2
4−x

2

dx = 2θ − 2 sinθ cos θ + c
x 1
x
= 2 sin  ÷ − 2. .
4 − x2 + c
2 2
2
−1

x x
= 2 sin  ÷ −
4 − x2 + c
2 2
−1
Now for some not very obvious substitutions……………….

1. Find

sin5 x dx
∫

sin5 x = sin x sin4 x = sin x (sin2 x )2 = sin x (1 − cos2 x )2
sin5 x dx = ∫ sin x (1 − cos2 x )2 dx
∫

Let u = cos x

du = − sin x dx

sin5 x dx = ∫ −(1 − u 2 )2 du = ∫ −(1 − 2u 2 + u 4 ) du = ∫ −1 + 2u 2 − u 4 du
∫
2 3 1 5
= u − u −u +c
3
5
2
1
3
= cos x − cos5 x − cos x + c
3
5
1
2. Find ∫
dx
1− x

Let u = 1 − x
1

1
1 −2
du = − x dx ⇒ dx = −2 x 2 du ⇒ dx = −2 ( 1 − u ) du
2

1
2(u − 1)
2
dx = ∫
du = ∫ 2 − du
∫ 1− x
u
u
= 2u − 2ln u + c
= 2 − 2 x − 2ln 1 − x + c
Integration by Parts
Integration By Parts
Start with the product rule:

d
dv
du
( uv ) = u + v
dx
dx
dx
d ( uv ) = u dv + v du
d ( uv ) − v du = u dv
u dv = d ( uv ) − v du

∫ u dv = ∫ ( d ( uv ) − v du )
∫ u dv = ∫ ( d ( uv ) ) − ∫ v du

∫ uv′ dx = uv − ∫ u′v dx
This is the Integration by Parts formula.

→
∫ uv′ dx = uv − ∫ u′v dx
u differentiates to zero

v’ is easy to integrate.

(usually).
The Integration by Parts formula is a “product rule” for integration.

Choose u in this order:

LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig

→
Example 1:

∫ x cos x dx
polynomial factor

∫ uv′ dx = uv − ∫ u′v dx

∫ uv′ dx = uv − ∫ u′v dx
LIPET

u=x

v′ = cos x

u′ = 1

v = sin x

x ⋅ sin x − ∫ sin x dx

∫ x cos x dx = x sin x + cos x + c
→
Example 2:

∫ uv′ dx = uv − ∫ u′v dx

∫ ln x dx

LIPET
logarithmic factor

∫ uv′ dx = uv − ∫ u′v dx

u = ln x
1
u′ =
x

v′ = 1

v=x

1
ln x ⋅ x − ∫ x ⋅ dx
x

∫ ln x ⋅1dx = x ln x − x + c
→
∫ uv′ dx = uv − ∫ u′v dx

Example 3:

x 2 e x dx
∫

u = x2

= x 2 e x − ∫ e x 2 x dx
x

(

= x e − 2 xe − ∫ e dx

∫x e

2 x

x

v = ex

This is still a product, so we need to use
integration by parts again.
x

= x e − 2 ∫ xe dx
2 x

v′ = e x

u′ = 2 x

= uv − ∫ u′v dx
2 x

LIPET

x

)

u=x

v′ = e

u′ = 1

v = ex

dx = x e − 2 xe + 2e + c
2 x

x

x

→
uv′ dx = uv − ∫ u′v dx
∫
The Integration by Parts formula can be written as:

u dv = uv − ∫ v du
∫
Example 4:

LIPET

e x cos x dx
∫
u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

u = e x dv = cos x dx
du = e x dx v = sin x
dv = sin x dx
u=e
x
du = e dx v = − cos x
x

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

uv

v du

e x sin x + e x cos x − ∫ e x cos x dx

)
This is the
expression we
started with!

→
Example 4 continued …

e x cos x dx
∫

LIPET

u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

u = e x dv = cos x dx
du = e x dx v = sin x
dv = sin x dx
u=e
x
du = e dx v = − cos x
x

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

)

e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx
∫
2 ∫ e x cos x dx = e x sin x + e x cos x
e x sin x + e x cos x
e x cos x dx =
+C
∫
2
Example 4 continued …

e x cos x dx
∫
u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

This is called “solving for the
unknown integral.”

It works when both factors
integrate and differentiate
forever.

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

)

e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx
∫
2 ∫ e x cos x dx = e x sin x + e x cos x
e x sin x + e x cos x
e x cos x dx =
+C
∫
2

→
A Shortcut: Tabular Integration
Tabular integration works for integrals of the form:

∫ f ( x ) g ( x ) dx
where:

Differentiates to zero
in several steps.

Integrates
repeatedly.

→
x 2 e x dx
∫
f ( x ) & deriv. g ( x ) & integrals
2

e

− 2x

ex

+ x
+ 2
0

x

e

x

e

Compare this with the
same problem done the
other way:

x

x 2 e x −2 xe x +2e x +C
∫ x e dx =
2 x

→
∫ uv′ dx = uv − ∫ u′v dx

Example 3:

x 2 e x dx
∫

u = x2

= x 2 e x − ∫ e x 2 x dx
x

(

= x e − 2 xe − ∫ e dx

∫x e

2 x

x

v = ex

This is still a product, so we need to use
integration by parts again.
x

= x e − 2 ∫ xe dx
2 x

v′ = e x

u′ = 2 x

= uv − ∫ u′v dx
2 x

LIPET

x

)

u=x

v′ = e

u′ = 1

v = ex

dx = x e − 2 xe + 2e + c
2 x

x

x

This is easier and quicker to do with
tabular integration!

→
x3 sin x dx
∫

x3
+

sin x

− 3x 2

− cos x

+ 6x
− 6

− sin x

0

sin x

cos x

− x3 cos x + 3 x 2 sin x + 6 x cos x − 6sin x + C

π
Properties of the Definite Integral
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
Substitution and definite integrals
Assuming the function is continuous over the interval, then exchanging the limits for
x by the corresponding limits for u will save you having to substitute back after the
integration process.
2

(2x+4)(x 2 + 4 x )3 dx
∫

1. Evaluate

1

Let u = x 2 + 4 x

∫

2
1

du = 2 x + 4 dx When x = 2, u = 12; x = 1, u = 5

(2x+4)(x + 4 x ) dx = ∫
2

3

12
5

u 3du
12

1 
=  u4 
 4 5

= 5027.75
Special (common) forms
Some substitutions are so common that they can be treated as standards and, when
their form is established, their integrals can be written down without further ado.

1
∫ f (ax + b)dx = a F (ax + b) + c
f `( x )
∫ f ( x ) dx = ln f ( x ) + c
1
f `( x )f ( x )dx = (f ( x ))2 + c
∫
2
Area under a curve
y = f(x)
b

A = ∫ f ( x ) dx
a

a

b

a

b
b

A = − ∫ f ( x ) dx
a

y = f(x)
Area between the curve and y - axis
y = f(x)
b
a

b

A = ∫ f ( y ) dy
a
1. Calculate the area shown in the diagram below.
y = x2 + 1
5
2

5

1
2

A = ∫ ( y − 1) dy
2

y = x2 + 1
x2 = y − 1
x = y −1

5

2

=  ( y − 1) 
3
2
3
2

=

14
units squared.
3

More Related Content

What's hot

Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.Kartikey Rohila
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial DifferentiationDeep Dalsania
 
partial fractions calculus integration
partial fractions calculus integrationpartial fractions calculus integration
partial fractions calculus integrationstudent
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Osama Zahid
 
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soal
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soalPowerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soal
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soalAlfi Nurfazri
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minimasudersana viswanathan
 
Ideals and factor rings
Ideals and factor ringsIdeals and factor rings
Ideals and factor ringsdianageorge27
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Bindu Cm
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivativesmath265
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 

What's hot (20)

Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial Differentiation
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Contoh soal integral
Contoh soal integralContoh soal integral
Contoh soal integral
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Introduction to differential equation
Introduction to differential equationIntroduction to differential equation
Introduction to differential equation
 
partial fractions calculus integration
partial fractions calculus integrationpartial fractions calculus integration
partial fractions calculus integration
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)
 
Parametric Equations
Parametric EquationsParametric Equations
Parametric Equations
 
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soal
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soalPowerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soal
Powerpoint Kalkulus Tentang Integral tentu beserta contoh dan soal soal
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
Ideals and factor rings
Ideals and factor ringsIdeals and factor rings
Ideals and factor rings
 
Application of derivative
Application of derivativeApplication of derivative
Application of derivative
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10
 
1001 soal pembahasan kalkulus
1001 soal pembahasan kalkulus1001 soal pembahasan kalkulus
1001 soal pembahasan kalkulus
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 

Viewers also liked

Integration formulas
Integration formulasIntegration formulas
Integration formulasKrishna Gali
 
Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1davidmiles100
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagneticFathur Rozaq
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definidaeducacao f
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Integral SMA Kelas XII IPA
Integral SMA Kelas XII IPAIntegral SMA Kelas XII IPA
Integral SMA Kelas XII IPAEka Haryati
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integrationLawrence De Vera
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulationAkanksha_Seth
 
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALSoal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALNurul Shufa
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulationHattori Sidek
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)Nigel Simmons
 

Viewers also liked (20)

Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definida
 
Obs Exam Questions
Obs Exam QuestionsObs Exam Questions
Obs Exam Questions
 
Integration
IntegrationIntegration
Integration
 
Integral
IntegralIntegral
Integral
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Integral SMA Kelas XII IPA
Integral SMA Kelas XII IPAIntegral SMA Kelas XII IPA
Integral SMA Kelas XII IPA
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Problems in mathematical analysis
Problems in mathematical analysisProblems in mathematical analysis
Problems in mathematical analysis
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALSoal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRAL
 
Solucionario calculo leithold 7ma edicion
Solucionario calculo leithold 7ma edicionSolucionario calculo leithold 7ma edicion
Solucionario calculo leithold 7ma edicion
 
Aplicaciones del calculo integral
Aplicaciones del calculo integralAplicaciones del calculo integral
Aplicaciones del calculo integral
 
solucionario calculo de leithold
solucionario calculo de leitholdsolucionario calculo de leithold
solucionario calculo de leithold
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulation
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)
 

Similar to 11365.integral 2

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Safen D Taha
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts xmath266
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Trig substitution
Trig substitutionTrig substitution
Trig substitutiondynx24
 
Integration
IntegrationIntegration
IntegrationRipaBiba
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
6.3 integration by substitution
6.3 integration by substitution6.3 integration by substitution
6.3 integration by substitutiondicosmo178
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integrationKamel Attar
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-xmath266
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivativescanalculus
 

Similar to 11365.integral 2 (20)

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
125 5.2
125 5.2125 5.2
125 5.2
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
Derivatives
DerivativesDerivatives
Derivatives
 
Integration
IntegrationIntegration
Integration
 
Section 7.1
Section 7.1Section 7.1
Section 7.1
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
6.3 integration by substitution
6.3 integration by substitution6.3 integration by substitution
6.3 integration by substitution
 
Integration
IntegrationIntegration
Integration
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-x
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
 

11365.integral 2

  • 2. Integration or Anti-derivatives Definition Indefinite Integral The set of all antiderivatives of a function f(x) is the indefinite integral of f with respect to x and is denoted by ∫ f ( x)dx ∫ f ( x)dx = F ( x) + C
  • 4. Antiderivatives with Slope Fields 1. ∫ x dx = n dx 2. ∫ = x x n+1 + C , n ≠ −1 n +1 ln x + C 3. ∫ e dx = e + C x x 4. ∫ sin x dx = − cos x + C
  • 5. Antiderivatives with Slope Fields 5. ∫ cos x dx = sin x + C 6. ∫ sec x dx = tan x + C 7. ∫ csc 2 x dx = − cot x + C 8. ∫ sec x tan x dx = sec x + C 2 9. ∫ csc x cot x dx = − csc x + C
  • 6. Antiderivatives with Slope Fields ∫ (x ∫x 3 3 − 2 x + 3)dx x dx 1  ∫  t 2 − cos t  dt   4 x 2 − x + 3x + C 4 9 2 2 x +C 9 1 − − sin t + C t
  • 7. Antiderivatives with Slope Fields ∫ sec x(tan x + cos x)dx sec x + x + C ∫ (1 + sin x csc x) dx x − cos x + C (e 2t + t 2 ) dt ∫ e2t t 3 + +C 2 3 2
  • 8. Antiderivatives with Slope Fields Find the position function for v(t) = t3 - 2t2 + t s(0) = 1 4 3 2 t 2t t s (t ) = − + +C 4 3 2 4 3 2 0 2( 0) ( 0) 1= − + +C 4 3 2 4 3 2 t 2t t s (t ) = − + +1 4 3 2 C=1
  • 9. Anti-derivatives with Slope Fields ∫ d (cabin) = cabin log cabin + C log cabin houseboat
  • 10. Integration by Substitution The chain rule allows us to differentiate a wide variety of functions, but we are able to find antiderivatives for only a limited range of functions. We can sometimes use substitution to rewrite functions in a form that we can integrate.
  • 11. Integration by Substitution ∫ ( x + 2) 5 dx ∫ u du 5 1 6 u +C 6 ( x + 2) 6 6 +C Let u = x + 2 du = dx The variable of integration must match the variable in the expression. Don’t forget to substitute the value for u back into the problem!
  • 12. Integration by Substitution ∫ 1 + x 2 ⋅ 2 x dx ∫u 1 2 One of the clues that we look for is if we can find a function and its derivative in the integrand. The derivative of du Let u = 1 + x du = 2 x dx 3 2 2 u +C 3 2 (1+ x 3 3 2 2 ) 1 + x2 +C is . 2 x dx 2 Note that this only worked because of the 2x in the original. Many integrals can not be done by substitution.
  • 13. Integration by Substitution ∫ 4 x − 1 dx ∫u 1 2 1 ⋅ du 4 3 2 2 1 u ⋅ +C 3 4 3 2 1 u +C 6 Let u = 4 x − 1 du = 4 dx 1 du = dx 4 3 1 ( 4 x − 1) 2 + C 6 Solve for dx.
  • 14. Integration by Substitution ∫ cos ( 7 x + 5) dx 1 ∫ cos u ⋅ 7 du 1 sin u + C 7 1 sin ( 7 x + 5 ) + C 7 Let u = 7 x + 5 du = 7 dx 1 du = dx 7
  • 15. Integration by Substitution x 2 sin ( x 3 ) dx ∫ Let u = x 3 1 ∫ sin u du 3 du = 3 x 2 dx 1 − cos u + C 3 1 3 − cos x + C 3 1 du = x 2 dx 3 2 We solve forx dx because we can find it in the integrand.
  • 16. Integration by Substitution sin 4 x ⋅ cos x dx ∫ Let u = sin x ∫ ( sin x ) cos x dx du = cos x dx 4 u 4 du ∫ 1 5 u +C 5 1 5 sin x + C 5
  • 17. Integration by Substitution π 4 0 ∫ 2 tan x sec x dx new limit 1 ∫ u du 0 new limit 1 1 2 u 2 0 1 2 The technique is a little different for definite integrals. Let u = tan x 2 du = sec x dx u ( 0 ) = tan 0 = 0 π π  u   = tan = 1 4 4 We can find new limits, and then we don’t have to substitute back. We could have substituted back and used the original limits.
  • 18. Integration by Substitution π 4 0 ∫ π 4 0 ∫ Using the original limits: tan x sec 2 x dx Let u = tan x du = sec x dx 2 u du ∫ u du 2 Leave the limits out until you substitute back. 1 2 = u π 2 1 2 4 = ( tan x ) 2 0 1 π 1 2 =  tan  − ( tan 0 ) 2 Wrong! 4  2 This is usually more work than finding new limits The limits don’t 1 match! 1 2 1 2 = ⋅1 − ⋅ 0 = 2 2 2
  • 19. Integration by Substitution ∫ 1 −1 ∫ 2 0 3x 2 x + 1 dx 3 3 2 2 2 ⋅2 3 du = 3 x dx 2 1 2 u du 2 u 3 Let u = x 3 + 1 u ( 1) = 2 Don’t forget to use the new limits. 0 3 2 u ( −1) = 0 2 = ⋅2 2 3 4 2 = 3
  • 20. Integration by Substitution ∫ 2 x 1 + x dx ∫ tan t dt ∫ sin 3 θ cosθ dθ ∫ 2 3 x + 4 dx ∫ t (5 + 3t ) dt 2 8 ∫ cot θ csc 2 θ dθ
  • 21. Integration by Substitution ∫ x−2 dx x −1 5 2 π 4 π − 2 ∫ − ∫ e2 e 5x e ∫ 3 + e5 x dx cos x sin 2 x dx ∫ dx dx x ln x ∫ 1 − x x 2 dx 1 0 x e
  • 22. 2. Find x = sin u ∫ ∫ (1 − x 2 ) dx. Let u = sin−1 x dx = cos u du Substituting gives, (1 − x 2 ) dx = ∫ 1 − sin2 u cos u du = ∫ cos2 u du We can not integrate this yet. Let us use trig. 1 cos2 u = (1 + cos 2u ) 2 1 1 u 1 = ∫ + cos 2u du = + sin2u + c 2 2 2 4 u 1 1 = + .2sin u cos u + c = ( u + sin u cos u ) + c 2 4 2
  • 23. 1 = ( u + sin u cos u ) + c 2 Now for some trig play….. x = sin u, but what does cos u equal? sin2 u + cos2 u = 1 cos2 u = 1 − sin2 cos u = 1 − sin2 u ∫ 1 (1 − x ) dx = ( u + sin u cos u ) + c 2 2 ( ) 1 = sin−1 x + x 1 − x 2 + c 2
  • 24. 3. Find ∫ x2 4−x 2 dx. Let x = 2 sin θ dx = 2cos θ dθ ∫ x2 4−x 2 dx = ∫ =∫ 4 sin2 θ 4 − 4 sin θ 2 2 sin2 θ cos θ 2 .2cos θ dθ = ∫ 4 sin2 θ 2 1 − sin θ 2 .2cos θ dθ .2cos θ dθ = ∫ 4 sin θ dθ 2 1 1  2  sin θ = − cos 2θ ÷  2 2   = ∫ 2 − 2cos 2θ dθ = 2θ − sin2θ + c = 2θ − 2 sinθ cosθ + c We now need to substitute theta in terms of x.
  • 25. x 2 = 4 sin2 θ x = 2sinθ x sinθ =  ÷ 2 −1  x  θ = sin  ÷ 2 = 4 − 4 cos2 θ 4 cos2 θ = 4 − x 2 2cos θ = 4 − x 2 1 cosθ = 4 − x2 2 ∫ x2 4−x 2 dx = 2θ − 2 sinθ cos θ + c x 1 x = 2 sin  ÷ − 2. . 4 − x2 + c 2 2 2 −1 x x = 2 sin  ÷ − 4 − x2 + c 2 2 −1
  • 26. Now for some not very obvious substitutions………………. 1. Find sin5 x dx ∫ sin5 x = sin x sin4 x = sin x (sin2 x )2 = sin x (1 − cos2 x )2 sin5 x dx = ∫ sin x (1 − cos2 x )2 dx ∫ Let u = cos x du = − sin x dx sin5 x dx = ∫ −(1 − u 2 )2 du = ∫ −(1 − 2u 2 + u 4 ) du = ∫ −1 + 2u 2 − u 4 du ∫ 2 3 1 5 = u − u −u +c 3 5 2 1 3 = cos x − cos5 x − cos x + c 3 5
  • 27. 1 2. Find ∫ dx 1− x Let u = 1 − x 1 1 1 −2 du = − x dx ⇒ dx = −2 x 2 du ⇒ dx = −2 ( 1 − u ) du 2 1 2(u − 1) 2 dx = ∫ du = ∫ 2 − du ∫ 1− x u u = 2u − 2ln u + c = 2 − 2 x − 2ln 1 − x + c
  • 29. Integration By Parts Start with the product rule: d dv du ( uv ) = u + v dx dx dx d ( uv ) = u dv + v du d ( uv ) − v du = u dv u dv = d ( uv ) − v du ∫ u dv = ∫ ( d ( uv ) − v du ) ∫ u dv = ∫ ( d ( uv ) ) − ∫ v du ∫ uv′ dx = uv − ∫ u′v dx This is the Integration by Parts formula. →
  • 30. ∫ uv′ dx = uv − ∫ u′v dx u differentiates to zero v’ is easy to integrate. (usually). The Integration by Parts formula is a “product rule” for integration. Choose u in this order: LIPET Logs, Inverse trig, Polynomial, Exponential, Trig →
  • 31. Example 1: ∫ x cos x dx polynomial factor ∫ uv′ dx = uv − ∫ u′v dx ∫ uv′ dx = uv − ∫ u′v dx LIPET u=x v′ = cos x u′ = 1 v = sin x x ⋅ sin x − ∫ sin x dx ∫ x cos x dx = x sin x + cos x + c →
  • 32. Example 2: ∫ uv′ dx = uv − ∫ u′v dx ∫ ln x dx LIPET logarithmic factor ∫ uv′ dx = uv − ∫ u′v dx u = ln x 1 u′ = x v′ = 1 v=x 1 ln x ⋅ x − ∫ x ⋅ dx x ∫ ln x ⋅1dx = x ln x − x + c →
  • 33. ∫ uv′ dx = uv − ∫ u′v dx Example 3: x 2 e x dx ∫ u = x2 = x 2 e x − ∫ e x 2 x dx x ( = x e − 2 xe − ∫ e dx ∫x e 2 x x v = ex This is still a product, so we need to use integration by parts again. x = x e − 2 ∫ xe dx 2 x v′ = e x u′ = 2 x = uv − ∫ u′v dx 2 x LIPET x ) u=x v′ = e u′ = 1 v = ex dx = x e − 2 xe + 2e + c 2 x x x →
  • 34. uv′ dx = uv − ∫ u′v dx ∫ The Integration by Parts formula can be written as: u dv = uv − ∫ v du ∫
  • 35. Example 4: LIPET e x cos x dx ∫ u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( u = e x dv = cos x dx du = e x dx v = sin x dv = sin x dx u=e x du = e dx v = − cos x x e sin x − e ×− cos x − ∫ − cos x ×e dx x x x uv v du e x sin x + e x cos x − ∫ e x cos x dx ) This is the expression we started with! →
  • 36. Example 4 continued … e x cos x dx ∫ LIPET u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( u = e x dv = cos x dx du = e x dx v = sin x dv = sin x dx u=e x du = e dx v = − cos x x e sin x − e ×− cos x − ∫ − cos x ×e dx x x x ) e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx ∫ 2 ∫ e x cos x dx = e x sin x + e x cos x e x sin x + e x cos x e x cos x dx = +C ∫ 2
  • 37. Example 4 continued … e x cos x dx ∫ u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( This is called “solving for the unknown integral.” It works when both factors integrate and differentiate forever. e sin x − e ×− cos x − ∫ − cos x ×e dx x x x ) e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx ∫ 2 ∫ e x cos x dx = e x sin x + e x cos x e x sin x + e x cos x e x cos x dx = +C ∫ 2 →
  • 38. A Shortcut: Tabular Integration Tabular integration works for integrals of the form: ∫ f ( x ) g ( x ) dx where: Differentiates to zero in several steps. Integrates repeatedly. →
  • 39. x 2 e x dx ∫ f ( x ) & deriv. g ( x ) & integrals 2 e − 2x ex + x + 2 0 x e x e Compare this with the same problem done the other way: x x 2 e x −2 xe x +2e x +C ∫ x e dx = 2 x →
  • 40. ∫ uv′ dx = uv − ∫ u′v dx Example 3: x 2 e x dx ∫ u = x2 = x 2 e x − ∫ e x 2 x dx x ( = x e − 2 xe − ∫ e dx ∫x e 2 x x v = ex This is still a product, so we need to use integration by parts again. x = x e − 2 ∫ xe dx 2 x v′ = e x u′ = 2 x = uv − ∫ u′v dx 2 x LIPET x ) u=x v′ = e u′ = 1 v = ex dx = x e − 2 xe + 2e + c 2 x x x This is easier and quicker to do with tabular integration! →
  • 41. x3 sin x dx ∫ x3 + sin x − 3x 2 − cos x + 6x − 6 − sin x 0 sin x cos x − x3 cos x + 3 x 2 sin x + 6 x cos x − 6sin x + C π
  • 42. Properties of the Definite Integral 1: 2: 3: 4: 5: 6:
  • 43. 7:
  • 45. 12:
  • 46. Substitution and definite integrals Assuming the function is continuous over the interval, then exchanging the limits for x by the corresponding limits for u will save you having to substitute back after the integration process. 2 (2x+4)(x 2 + 4 x )3 dx ∫ 1. Evaluate 1 Let u = x 2 + 4 x ∫ 2 1 du = 2 x + 4 dx When x = 2, u = 12; x = 1, u = 5 (2x+4)(x + 4 x ) dx = ∫ 2 3 12 5 u 3du 12 1  =  u4   4 5 = 5027.75
  • 47. Special (common) forms Some substitutions are so common that they can be treated as standards and, when their form is established, their integrals can be written down without further ado. 1 ∫ f (ax + b)dx = a F (ax + b) + c f `( x ) ∫ f ( x ) dx = ln f ( x ) + c 1 f `( x )f ( x )dx = (f ( x ))2 + c ∫ 2
  • 48. Area under a curve y = f(x) b A = ∫ f ( x ) dx a a b a b b A = − ∫ f ( x ) dx a y = f(x)
  • 49. Area between the curve and y - axis y = f(x) b a b A = ∫ f ( y ) dy a
  • 50. 1. Calculate the area shown in the diagram below. y = x2 + 1 5 2 5 1 2 A = ∫ ( y − 1) dy 2 y = x2 + 1 x2 = y − 1 x = y −1 5 2  =  ( y − 1)  3 2 3 2 = 14 units squared. 3

Editor's Notes

  1. {"50":"This has been Printed. \n"}