Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
EN
Uploaded by
HanpenRobot
PDF, PPTX
1,524 views
Noether環上の有限生成加群の有限表示
有限生成加群の有限表示を解説しました. 加群の有限表示を理解すると,単因子論による行列のジョルダン標準形の理論が理解できるようになりますよ!
Education
◦
Related topics:
Linear Algebra Concepts
•
Read more
0
Save
Share
Embed
Embed presentation
Download
Download as PDF, PPTX
1
/ 6
2
/ 6
3
/ 6
4
/ 6
5
/ 6
6
/ 6
Most read
More Related Content
DOC
Cover, daftar isi , kata pengantar
by
alankinata
PPTX
NOSQL
by
akbarashaikh
PDF
Oracle GoldenGate 12c CDR Presentation for ECO
by
Bobby Curtis
PDF
MongoDB 하루만에 끝내기
by
Seongkuk Park
PPTX
MongoDB_Dasar.pptx
by
YarhambravoShahabi
PDF
Duality of laplace transform
by
HanpenRobot
PPTX
Greatest science discovery till now 2017
by
YouQue ™
PDF
Cauchy riemann equations
by
HanpenRobot
Cover, daftar isi , kata pengantar
by
alankinata
NOSQL
by
akbarashaikh
Oracle GoldenGate 12c CDR Presentation for ECO
by
Bobby Curtis
MongoDB 하루만에 끝내기
by
Seongkuk Park
MongoDB_Dasar.pptx
by
YarhambravoShahabi
Duality of laplace transform
by
HanpenRobot
Greatest science discovery till now 2017
by
YouQue ™
Cauchy riemann equations
by
HanpenRobot
More from HanpenRobot
PDF
集合の直積に関するメモ 𝐴×𝐵={(𝑎,𝑏) | 𝑎∈𝐴, 𝑏∈𝐵}, 𝑝_1 ((𝑎,𝑏))=𝑎,𝑝_2 ((𝑎,𝑏))=𝑏
by
HanpenRobot
PDF
圏論メモ_対角関手.pdf 任意の圏𝑪の任意の対象は 圏𝟏からの関手であり、そして対象間の射は自然変換とみなせることの説明
by
HanpenRobot
PDF
fermat's little theorem and …
by
HanpenRobot
PDF
Campbell hasudorff formula
by
HanpenRobot
PDF
構造定数が随伴表現になることの証明
by
HanpenRobot
PPTX
Log complex
by
HanpenRobot
PDF
代数幾何memo_2020March30_1337
by
HanpenRobot
PDF
金利スワップのメモ
by
HanpenRobot
PDF
Conditional expectation projection 2018 feb 18
by
HanpenRobot
PDF
集合の上極限,下極限
by
HanpenRobot
PDF
確率微分方程式の基礎
by
HanpenRobot
PDF
微分演算子と多項式の剰余環の関係 2016 october 12
by
HanpenRobot
PDF
位相空間の開集合の成す圏 2016 august 30
by
HanpenRobot
PDF
Fourier transform on real-valued function over symmetric group
by
HanpenRobot
PDF
置換族の一様分布
by
HanpenRobot
PDF
Fourier analysis on symmetric group
by
HanpenRobot
PDF
Conjugate cyclic permutation
by
HanpenRobot
PDF
ベイズ識別 一般化逆行列
by
HanpenRobot
PDF
電子光波Memo
by
HanpenRobot
PDF
Minimize quadratic form
by
HanpenRobot
集合の直積に関するメモ 𝐴×𝐵={(𝑎,𝑏) | 𝑎∈𝐴, 𝑏∈𝐵}, 𝑝_1 ((𝑎,𝑏))=𝑎,𝑝_2 ((𝑎,𝑏))=𝑏
by
HanpenRobot
圏論メモ_対角関手.pdf 任意の圏𝑪の任意の対象は 圏𝟏からの関手であり、そして対象間の射は自然変換とみなせることの説明
by
HanpenRobot
fermat's little theorem and …
by
HanpenRobot
Campbell hasudorff formula
by
HanpenRobot
構造定数が随伴表現になることの証明
by
HanpenRobot
Log complex
by
HanpenRobot
代数幾何memo_2020March30_1337
by
HanpenRobot
金利スワップのメモ
by
HanpenRobot
Conditional expectation projection 2018 feb 18
by
HanpenRobot
集合の上極限,下極限
by
HanpenRobot
確率微分方程式の基礎
by
HanpenRobot
微分演算子と多項式の剰余環の関係 2016 october 12
by
HanpenRobot
位相空間の開集合の成す圏 2016 august 30
by
HanpenRobot
Fourier transform on real-valued function over symmetric group
by
HanpenRobot
置換族の一様分布
by
HanpenRobot
Fourier analysis on symmetric group
by
HanpenRobot
Conjugate cyclic permutation
by
HanpenRobot
ベイズ識別 一般化逆行列
by
HanpenRobot
電子光波Memo
by
HanpenRobot
Minimize quadratic form
by
HanpenRobot
Noether環上の有限生成加群の有限表示
1.
Noether環上の 有限生成加群の有限表示 2017 March 23
Thursday M1 Tamura Takumi Age 23
2.
加群の有限表示を理解すると, 単因子論を使った,行列のJordan標準形 の理論が理解できるようになりますよ!
3.
𝑅:Noether環 𝑀: 𝑅上の有限生成加群 𝑀 = 𝑖=1 𝑛 𝑅𝑚𝑖
, 𝑚1, 𝑚2, … , 𝑚 𝑛 : 𝑀の生成系 𝜑: 𝑅 𝑛 → 𝑀 (全射) ∈ ∈ 𝕖𝑖 ↦ 𝑚𝑖 𝜑 𝕖𝑖 = 𝑚𝑖, 𝕖1 = 1 0 ⋮ 0 , 𝕖2 = 0 1 ⋮ 0 , … , 𝕖 𝑛 = 0 0 ⋮ 1 𝑛 𝕖𝑖が𝑛次元列ベクトルである事に注意.
4.
全射準同型写像𝜑の核ker 𝜑 に注目する. 𝑅
𝑛 ⊃ ker 𝜑 = 𝑟1 ⋮ 𝑟𝑛 ∈ 𝑅 𝑛 𝑖=1 𝑛 𝑟𝑖 𝑚𝑖 = 𝑖=1 𝑚 𝑅 𝑎1𝑖 𝑎2𝑖 ⋮ 𝑎 𝑛𝑖 ∵ 𝑅 𝑛 の部分加群ker 𝜑 も有限生成に なることが知られているから. 𝑟𝑖 ∈ 𝑅
5.
𝜓: 𝑅 𝑚 →
ker 𝜑 = 𝑖=1 𝑚 𝑅 𝑎1𝑖 ⋮ 𝑎 𝑛𝑖 (全射) ∈ ∈ 𝕖′𝑖 ↦ 𝑎1𝑖 ⋮ 𝑎 𝑛𝑖 𝜓 𝕖′ 𝑖 = 𝕧𝑖 = 𝑎1𝑖 ⋮ 𝑎 𝑛𝑖 𝕖′1 = 1 0 ⋮ 0 , 𝕖′2 = 0 1 ⋮ 0 , … , 𝕖′ 𝑚 = 0 0 ⋮ 1 𝑚 𝕖′𝑖は𝑚次元列ベクトル! 𝜓の表現行列は𝑛 × 𝑚行列 𝔸 = 𝕧1 … 𝕧 𝑚 となる. 𝕧𝑖は ker 𝜑 の生成元 また,明らかにI𝑚 𝜓 = ker 𝜑
6.
ゆえに,以下の完全列(有限表示)が得られる. 𝑅 𝑚 → 𝜓 𝑅 𝑛 → 𝜑 𝑀
→ 0 I𝑚 𝜓 = ker 𝜑 ∴ 𝑀 ≅ 𝑅 𝑛 /Im 𝜓
Download