SlideShare a Scribd company logo
1 of 62
INTEGRALS
Symbol/Terms/Phrases Meaning
𝑓 𝑥 ⅆ𝑥 Integral of f with respect to 𝑥
𝑓(𝑥) in 𝑓 𝑥 ⅆ𝑥 Integrand
𝑥 in 𝑓 𝑥 ⅆ𝑥 Variable of integration
Integrate Find the integral
An integral of 𝑓 A function F such that 𝐹′(𝑥) = 𝑓 (𝑥)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as constant function
INTEGRATION
Integrals of the Form 𝒇 𝒂𝒙 + 𝒃 𝒅𝒙
𝑑 sin(𝑥+𝑘)
𝑑𝑥
= cos(𝑥 + 𝑘)
⟹ cos 𝑥 + 𝑘 ⅆ𝑥 = sin 𝑥 + 𝑘 + 𝑐
It is clear that whenever a constant is added or subtracted with the independent variable x, the fundamental formulae remain the same.
Here, if any constant is multiplied with the independent variable x, then the same fundamental formula can be used after dividing it by the
coefficient of x
INTEGRALS
• Integration of algebraic function
• 𝑎𝑥 + 𝑏 𝑛
ⅆ𝑥
•
1
1+𝑥2 ⅆ𝑥
•
1
1−𝑥2
ⅆ𝑥
•
1
𝑥 𝑥2−1
ⅆ𝑥
• Evaluate
• sin3
𝑥 ⅆ𝑥
• cos4 𝑥 ⅆ𝑥
• 1 + sin 𝑥 ⅆ𝑥
• Find the value of a and b.
•
𝑑𝑥
1+sin 𝑥
= tan
𝑥
2
+ 𝑎 + 𝑏
• 1 + sin
𝑥
2
ⅆ𝑥
INTEGRALS
• Integration of Exponential Function
• Express 𝑎𝑚𝑥+𝑛
𝑎𝑠 𝑏𝑒𝑘𝑥
and then find the integral
• 𝑎𝑥
= 𝑒𝑥 log 𝑎
= 𝑒log 𝑎𝑥
• 𝑒𝑘𝑥
ⅆ𝑥 =
𝑒𝑘𝑥
𝑘
• Example
• 𝑎3𝑥+3
ⅆ𝑥
INTEGRALS
• Integration of the algebraic function which are in the form
• 𝑃 𝑥 𝑎𝑥 + 𝑏 𝑛
ⅆ𝑥
•
𝑃 𝑥
𝑎𝑥+𝑏 𝑛 ⅆ𝑥
• Put 𝑎𝑥 + 𝑏 = 𝑧
• Example
• 𝑥2
𝑎𝑥 + 𝑏 ⅆ𝑥
•
𝑥+2
𝑥+1 2 ⅆ𝑥
•
𝑥2
𝑎+𝑏𝑥 2 ⅆ𝑥
•
2𝑥−1
𝑥−1 2 ⅆ𝑥
•
𝑥2
1−𝑥
ⅆ𝑥
•
𝑥2
1+𝑥
ⅆ𝑥
INTEGRALS
• Integration of the form 𝐬𝐢𝐧𝒎
𝒎 𝐜𝐨𝐬𝒏
𝒏 𝒅𝒙
• If power of sin 𝑥 is odd positive integer put 𝑧 = cos 𝑥
• If power of both sin 𝑥 and cos 𝑥 are odd positive integer put 𝑧 = sin 𝑥 or 𝑧 = cos 𝑥
• If power of neither cos 𝑥 𝑛𝑜𝑟 sin 𝑥 is odd positive integer , see the sum of power of sin 𝑥 & cos 𝑥
• If the sum of power is even negative integer put 𝑧 = tan 𝑥
• If power of is even positive integer & m and n are integer
• Express the integrand as the algebraic sum of sin & cos of multiple angle
• Examole
• cos3
𝑥 sin 𝑥 ⅆ𝑥
• sin3
𝑥 cos3
𝑥 ⅆ𝑥
INTEGRALS
• Integration of the form 𝐭𝐚𝐧𝒎
𝒙 𝐬𝐞𝐜𝒏
𝒙 𝒅𝒙
• If the power of sec 𝑥 is the even positive integer put 𝑧 = tan 𝑥
• If the power of sec 𝑥 is not even positive integer then see power of tan 𝑥
• If the power of tan 𝑥 is odd positive integer put 𝑧 = sec 𝑥
• If the power of sec 𝑥 is even positive integer put sec2
𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 tan2
𝑥 & the substitute 𝑧 = tan 𝑥
• If the power of tan 𝑥 is zero & power of sec 𝑥 odd positive integer greater than 1 , then method of integration by part is used. put 𝑧 = sec 𝑥
• sec3
𝑥 ⅆ𝑥
• sec5
𝑥 ⅆ𝑥
INTEGRALS
• Integration of the form cot𝒎
𝒙 cosec𝒏
𝒙 𝒅𝒙
• If the power of cosec 𝑥 is the even positive integer put 𝑧 = cot 𝑥
• If the power of cosec 𝑥 is not even positive integer then see power of cot 𝑥
• If the power of cot 𝑥 is odd positive integer put 𝑧 = cosec 𝑥
• If the power of cot 𝑥 is even positive integer put cosec2
𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 cot2
𝑥& the substitute 𝑧 = cot 𝑥
• If the power of cot 𝑥 is zero & power of cosec 𝑥 odd positive integer greater than 1 , then method of integration by part is used. put 𝑧 = sec 𝑥
INTEGRALS
• Find
• tan𝑛
𝑥 sec2
𝑥 ⅆ𝑥
• tan 𝑥 ⅆ𝑥
• tan2
𝑥 ⅆ𝑥
• tan3
𝑥 ⅆ𝑥
• tan4
𝑥 ⅆ𝑥
• tan6
𝑥 ⅆ𝑥
• csc𝑛
𝑥 cot 𝑥 ⅆ𝑥
INTEGRALS
2 Integration using trigonometric identities
When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the
following example.
Example 7 Find (i) 2 cos x dx ∫
(ii) sin 2 cos 3 x x dx ∫
(iii) 3 sin x dx
• Integration of Trigonometrical Function
• sin 𝑘𝑥 ⅆ𝑥
• cos 𝑘𝑥 ⅆ𝑥
• sec 𝑥 tan 𝑥 ⅆ𝑥
• sec2
𝑥 ⅆ𝑥
• cosec2 𝑥 ⅆ𝑥
• cosec 𝑥 cot 𝑥 ⅆ𝑥
INTEGRALS
• #Use the formula whichever re applicable
• sin2 𝑥 =
• cos2 𝑥 =
• tan2 𝑥 =
• cot2 𝑥 =
• sin3 𝑥 =
• cos3 𝑥 =
• tan3 𝑥 =
• cot3 𝑥 =
INTEGRALS
• If 𝑦 =
𝑑𝑥
1+𝑥2
3
2
& 𝑦 = 0 , 𝑤ℎ𝑒𝑛 𝑥 = 0 Find the value of 𝑦 when 𝑥 = 1.
1 − 𝑥2 ⅆ𝑥
1+𝑥2
1−𝑥2
ⅆ𝑥
1+𝑥
1+𝑥2
ⅆ𝑥
INTEGRALS
Method of Substitution
If the integrand of the form
sin 𝜃 ⅆ𝜃
cos 𝜃 ⅆ𝜃
tan 𝜃 ⅆ𝜃
cosec 𝜃 ⅆ𝜃
sec 𝜃 ⅆ𝜃
cot 𝜃 ⅆ𝜃
Where 𝜃 is a function of x put 𝑧 = 𝜃
INTEGRALS
•
sin 𝑥
𝑥
ⅆ𝑥
•
cot log 𝑥
𝑥
ⅆ𝑥
•
𝑒𝑥 1+𝑥
cos−1 𝑥𝑒𝑥 ⅆ𝑥
INTEGRALS
• When integrand is the product of two functions & one of them is a function of a function 𝜙 𝑥 & other is 𝑘𝜙′ 𝑥 , where k is a constant , then
put = 𝜙 𝑥
• In other words , If integrand is the form
• 𝑘𝜙 𝑥 𝜙′ 𝑥 then put = 𝜙 𝑥
• Thus if an expression is occurred in the integrand where d. c. is a factor of the integrand and the integrand after leaving this d.c. of become
an integrable function of
• then put = 𝜙 𝑥
• 2 + sin 3𝑥 cos 3𝑥 ⅆ𝑥
•
sin 2𝑥
𝑎2+𝑏2 sin2 𝑥
ⅆ𝑥
•
1+log 𝑥 2
𝑥
ⅆ𝑥
•
𝑥5
1+𝑥3
ⅆ𝑥
•
sin 𝑥
𝑎+𝑏 cos 𝑥
ⅆ𝑥
•
𝑥2
𝑥2+1
ⅆ𝑥
•
𝑥2
𝑥+2
ⅆ𝑥
INTEGRALS
• 𝑥 cos2
𝑥 ⅆ𝑥
• sin 𝑥 ⅆ𝑥
• cos 𝑥 ⅆ𝑥
• sin log 𝑥 ⅆ𝑥
• 𝑥𝑛
log 𝑥 ⅆ𝑥
• log 𝑥 2
ⅆ𝑥
• 𝑥2 + 𝑎2 ⅆ𝑥
• 𝑒𝑎𝑥
sin 𝑏𝑥 ⅆ𝑥
• 𝑥 sec2
2𝑥 ⅆ𝑥
• 𝑥2
log 𝑥 2
ⅆ𝑥
• 𝑥 sin2
𝑥 ⅆ𝑥
• 𝑥 log 𝑥 2
ⅆ𝑥
• 𝑥2
sin 2𝑥 ⅆ𝑥
• 𝑥2
𝑒3𝑥
ⅆ𝑥
• 𝑥2
log 𝑥 ⅆ𝑥
• 𝑒−𝑥
sin 𝑥 ⅆ𝑥
INTEGRALS
Integration of algebraic function
𝑖 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥
𝑖𝑖
1
1+𝑥2 ⅆ𝑥
𝑖𝑖𝑖
1
1−𝑥2
ⅆ𝑥
𝑖𝑣
1
𝑥 𝑥2−1
ⅆ𝑥
INTEGRALS
Integrals of functions which can be reduced to the form
sin 𝜃 , cos 𝜃 , tan 𝜃
cosec 𝜃 , sec 𝜃 , cot 𝜃
Where 𝜃 is a linear expression in 𝑥
INTEGRALS
(iv) cosec 𝑥 ⅆ𝑥 = log cosec 𝑥 − cot 𝑥 + 𝐶 = log tan
𝑥
2
+ 𝐶
(iii) 𝐬𝐞𝐜 𝒙 𝒅𝒙 = 𝐥𝐨𝐠 𝐬𝐞𝐜 𝒙 + 𝐭𝐚𝐧 𝒙 + 𝑪 = 𝒍𝒐𝒈 𝒕𝒂𝒏
𝝅
𝟒
+
𝒙
𝟐
+ 𝑪
Put sec 𝑥 + tan 𝑥 = 𝑧 then ⅆ𝑧 = sec 𝑥 tan 𝑥 + sec2
𝑥 ⅆ𝑥 = ⅆ𝑧 = sec 𝑥 sec 𝑥 + tan 𝑥 ⅆ𝑥
sec 𝑥 ⅆ𝑥 =
sec 𝑥 sec 𝑥+tan 𝑥
sec 𝑥+tan 𝑥
ⅆ𝑥 =
𝑑𝑧
𝑧
= log 𝑧 = log sec 𝑥 + tan 𝑥 + 𝐶
sec 𝑥 + tan 𝑥 =
1
cos 𝑥
+
sin 𝑥
cos 𝑥
=
1+sin 𝑥
cos 𝑥
=
sin2 𝑥+cos2 𝑥+2 sin 𝑥 cos 𝑥
cos2 2−sin2 𝑥
Value of 𝐬𝐞𝐜 𝒙 𝒅𝒙 in another form
=
cos 𝑥+sin 𝑥
cos 𝑥−sin 𝑥
=
1+tan
𝑥
2
1−tan
𝑥
2
=
tan
𝜋
4
+tan
𝑥
2
tan
𝜋
4
−tan
𝑥
2
= tan
𝜋
4
+
𝑥
2
(iv) 𝐜𝐨𝐬𝐞𝐜 𝒙 𝒅𝒙 = 𝐥𝐨𝐠 𝐜𝐨𝐬𝐞𝐜 𝒙 − 𝐜𝐨𝐭 𝒙 + 𝑪 = 𝒍𝒐𝒈 𝐭𝐚𝐧
𝒙
𝟐
+ 𝑪
cosec 𝒙 𝒅𝒙 =
cosec 𝒙 cosec 𝒙−cot 𝒙
cosec 𝑥−cot 𝒙
𝒅𝒙
Let 𝑧 = cosec 𝑥 − cot 𝑥 then ⅆ𝑧 = − cosec 𝑥 cot 𝑥 + csc2
𝑥 ⅆ𝑥 = cosec 𝑥 cosec 𝑥 − cot 𝑥 ⅆ𝑥
=
𝑑𝑧
𝑧
= log 𝑧 = 𝐥𝐨𝐠 𝐜𝐨𝐬𝐞𝐜 𝒙 − 𝐜𝐨𝐭 𝒙 + 𝑪
Value 𝐜𝐨𝐬𝐞𝐜 𝒙 𝒅𝒙 in another form
cosec 𝑥 − cot 𝑥 =
1
sin 𝑥
−
cos 𝑥
sin 𝑥
=
1−cos 𝑥
sin 𝑥
=
2 sin2𝑥
2
2 sin
𝑥
2
cos
𝑥
2
= tan
𝑥
2
= 𝒍𝒐𝒈 𝐭𝐚𝐧
𝒙
𝟐
+ 𝑪
INTEGRALS
• Integral of the form
1 ± sin 𝑥 ⅆ𝑥
𝑑𝑥
1±sin 𝑥
𝑑𝑥
1±sin 𝑥
Change sin 𝑥 into cos
𝜋
2
− 𝑥
• Integral of the form
𝑑𝑥
1±sin 𝑥
can also be evaluated by multiplying and dividing by 1 ∓ sin 𝑥
respectively.
INTEGRALS
Evaluate
𝑖 sin3 𝑥 ⅆ𝑥
𝑖𝑖 cos4 𝑥 ⅆ𝑥
𝑖𝑖𝑖 1 + sin 𝑥 ⅆ𝑥
𝑖𝑣 1 + sin
𝑥
2
ⅆ𝑥
𝑣
𝑑𝑥
1+sin 𝑥
𝑣𝑖
sin 𝑥
1+sin 𝑥
ⅆ𝑥
𝑣𝑖𝑖 1 + 2 tan 𝑥 tan 𝑥 + sec 𝑥 ⅆ𝑥
INTEGRALS
𝑣 Find the value of a and b.
𝑑𝑥
1+sin 𝑥
= tan
𝑥
2
+ 𝑎 + 𝑏
INTEGRALS
• Integration of Exponential Function
Express 𝑎𝑚𝑥+𝑛 𝑎𝑠 𝑏𝑒𝑘𝑥 and then find the integral
𝑎𝑥 = 𝑒𝑥 log 𝑎 = 𝑒log 𝑎𝑥
𝑒𝑘𝑥
ⅆ𝑥 =
𝑒𝑘𝑥
𝑘
Example
𝑎3𝑥+3 ⅆ𝑥
= 𝑎3
𝑎3𝑥
ⅆ𝑥
INTEGRALS
Integration of the algebraic function which are in the form
𝑖 𝑃 𝑥 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥
where 𝑃 𝑥 is a polynomial in 𝑥 𝑎0𝑥𝑚 + 𝑎1𝑥𝑚−1 + … … + 𝑎𝑚𝑥0 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
Put 𝑎𝑥 + 𝑏 = 𝑧
𝑖𝑖
𝑃 𝑥
𝑎𝑥+𝑏 𝑛 ⅆ𝑥
where 𝑃 𝑥 is a polynomial in 𝑥 𝑎0𝑥𝑚 + 𝑎1𝑥𝑚−1 + … … + 𝑎𝑚𝑥0 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
Put 𝑎𝑥 + 𝑏 = 𝑧
INTEGRALS
𝑖
𝑥2+3𝑥−1
𝑥+1 2 ⅆ𝑥 put 𝑥 + 1 = 𝑧
𝑖𝑖
𝑥2
𝑎+𝑏𝑥
ⅆ𝑥
𝑖𝑖𝑖
𝑥6
𝑥−1
ⅆ𝑥
𝑖𝑣 𝑥 1 − 𝑥 23 ⅆ𝑥
𝑣
𝑥6
𝑥−1
ⅆ𝑥
INTEGRALS
If sin 2𝑥 + cos 2𝑥 ⅆ𝑥 =
1
2
sin 2𝑥 − 𝑐 + 𝑎. Find the value of a & c.
INTEGRALS
Example
𝑖 𝑥2 𝑎𝑥 + 𝑏 ⅆ𝑥
𝑖𝑖
𝑥+2
𝑥+1 2 ⅆ𝑥
𝑖𝑖𝑖
𝑥2
𝑎+𝑏𝑥 2 ⅆ𝑥
𝑖𝑣
2𝑥−1
𝑥−1 2 ⅆ𝑥
𝑣
𝑥2
1−𝑥
ⅆ𝑥
𝑣𝑖
𝑥2
1+𝑥
ⅆ𝑥
INTEGRALS
• Integration of the form 𝐬𝐢𝐧𝒎 𝒎 𝐜𝐨𝐬𝒏 𝒏 𝒅𝒙
(i) If power of sin 𝑥 is odd positive integer put 𝑧 = cos 𝑥
(ii) If power of cos 𝑥 is odd positive integer put 𝑧 = sin 𝑥
(iii) If power of both sin 𝑥 and cos 𝑥 are odd positive integers put 𝑧 = sin 𝑥 or 𝑧 = cos 𝑥
(iv) If power of neither cos 𝑥 𝑛𝑜𝑟 sin 𝑥 is odd positive integer , see the sum of power of sin 𝑥 & cos 𝑥
𝑎 If the sum of powers 𝑚 + 𝑛 is even negative integer put 𝑧 = tan 𝑥
𝑏 If the sum of powers 𝑚 + 𝑛 is even positive integer & m , n are integers
Express the integrand as the algebraic sum of sin𝑒 𝑥 & cosine 𝑥 of multiple angle.
Use the following formula whichever is needed
sin2 𝑥 =
1−cos 2𝑥
2
cos2
𝑥 =
1+cos 2𝑥
2
sin3
𝑥 =
3 sin 𝑥−sin 3𝑥
4
cos3
𝑥 =
3 cos 𝑥+cos 3𝑥
4
2 sin 𝑥 cos 𝑥 = sin 2𝑥
INTEGRALS
• Demoivre’s Theorem
If n is appositive integer then
cos 𝜃 + 𝑖 sin 𝜃 𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃
Let 𝑧 = cos 𝜃 + 𝑖 sin 𝜃
1
𝑧
=
1
cos 𝜃+𝑖 sin 𝜃
= cos 𝜃 − 𝑖 sin 𝜃
cos 𝜃 =
1
𝑧
𝑧 +
1
𝑧
cos 𝜃 =
1
2𝑖
𝑧 −
1
𝑧
𝑧𝑛
= cos 𝑥 + 𝑖 sin 𝑥 𝑛
= cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥
1
𝑧𝑛 = cos 𝑥 − 𝑖 sin 𝑥 𝑛
= cos 𝑛𝑥 − 𝑖 sin 𝑛𝑥
𝑧𝑛
+
1
𝑧𝑛 = 2cos 𝑛𝑥
𝑧𝑛 −
1
𝑧𝑛 = 2𝑖 sin 𝑛𝑥
If sum of powers of sin 𝑥 & cos 𝑥 is odd & negative & powers of both sin 𝑥 & cos 𝑥 are integers , then
multiply by suitable power of sin2
𝑥 + cos2
𝑥 .
INTEGRALS
Examole
𝑖 cos3 𝑥 sin 𝑥 ⅆ𝑥
𝑖𝑖 sin3 𝑥 cos3 𝑥 ⅆ𝑥
𝑖𝑖𝑖 sin5 𝑥 ⅆ𝑥
𝑖𝑣
𝑑𝑥
sin 𝑥 cos3 𝑥
𝑣 cos4
𝑥 ⅆ𝑥
𝑣𝑖 sin4 𝑥 cos2 𝑥 ⅆ𝑥
𝑣𝑖𝑖 sin2 𝑥 cos5 𝑥 ⅆ𝑥
INTEGRALS
• Integration of the form 𝐭𝐚𝐧𝒎 𝒙 𝐬𝐞𝐜𝒏 𝒙 𝒅𝒙
𝑖 If the power of sec 𝑥 is even positive integer put 𝑧 = tan 𝑥
𝑖𝑖 If the power of sec 𝑥 is not even positive integer then see power of tan 𝑥
𝑎 If the power of tan 𝑥 is odd positive integer put 𝑧 = sec 𝑥
𝑏 If the power of tan 𝑥 is even +ve integer , then put sec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 tan2 𝑥 & then substitute 𝑧 = tan 𝑥
𝑖𝑖𝑖 If the power of tan 𝑥 is zero & power of sec 𝑥 odd positive integer greater than 1 , then method of integration
by part is used.
INTEGRALS
• Reduction formula for 𝐭𝐚𝐧𝒏 𝒙 𝒅𝒙
tan𝑛
𝑥 ⅆ𝑥 = tan𝑛−2
𝑥 tan2
𝑥 ⅆ𝑥
= tan𝑛−2 𝑥 sec2 𝑥 − 1 ⅆ𝑥 = tan𝑛−2 𝑥 sec2 𝑥 ⅆ𝑥 − tan𝑛−2 𝑥 ⅆ𝑥
=
tan𝑛−1 𝑥
𝑛−1
− tan𝑛−2 𝑥 ⅆ𝑥
• Reduction formula for 𝐭𝐚𝐧𝒏 𝒙 𝒅𝒙
tan𝑛
𝑥 ⅆ𝑥 = tan𝑛−2
𝑥 tan2
𝑥 ⅆ𝑥
= tan𝑛−2
𝑥 sec2
𝑥 − 1 ⅆ𝑥 = tan𝑛−2
𝑥 sec2
𝑥 ⅆ𝑥 − tan𝑛−2
𝑥 ⅆ𝑥
=
tan𝑛−1 𝑥
𝑛−1
− tan𝑛−2
𝑥 ⅆ𝑥
Which is the required reduction formula.
INTEGRALS
𝑖 sec3 𝑥 ⅆ𝑥
𝑖𝑖 sec5 𝑥 ⅆ𝑥
𝑖𝑖𝑖 tan𝑛
𝑥 sec2
𝑥 ⅆ𝑥
𝑖𝑣 tan2 𝑥 sec4 𝑥 ⅆ𝑥
𝑣 tan3
𝑥 ⅆ𝑥
𝑣𝑖 tan 𝑥 ⅆ𝑥
𝑣𝑖𝑖 tan2 𝑥 ⅆ𝑥
𝑣𝑖𝑖𝑖 tan4 𝑥 ⅆ𝑥
𝑖𝑥 tan6 𝑥 ⅆ𝑥
𝑥 tan3
2𝑥 sec 2𝑥 𝑥 ⅆ𝑥
INTEGRALS
• Integration of the form cot𝒎
𝒙 cosec𝒏
𝒙 𝒅𝒙
𝑖 If the power of cosec 𝑥 is the even positive integer put 𝑧 = cot 𝑥
𝑖𝑖 If the power of cosec 𝑥 is not even positive integer , then see power of cot 𝑥
𝑎 If the power of cot 𝑥 is odd positive integer, put 𝑧 = cosec 𝑥
𝑏 If the power of cot 𝑥 is even positive integer put cosec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 cot2 𝑥& the substitute 𝑧 = cot 𝑥
𝑖𝑖𝑖 If the power of cot 𝑥 is zero & power of cosec 𝑥 odd positive integer greater than 1 ,
then method of integration by part is used.
INTEGRALS
• Reduction formula for cot𝒏 𝒙 𝒅𝒙
• cot𝑛
𝑥 ⅆ𝑥 = cot𝑛−2
𝑥 cot2
𝑥 ⅆ𝑥
• = cot𝑛−2 𝑥 cosec2 𝑥 − 1 ⅆ𝑥
• = cot𝑛−2
𝑥 cosec2
𝑥 ⅆ𝑥 − cot𝑛−2
𝑥 ⅆ𝑥 =
cot𝑛−1 𝑥
𝑛−1
− cot𝑛−2
𝑥 ⅆ𝑥
• Reduction formula for cot𝒏
𝒙 𝒅𝒙
• cot𝑛
𝑥 ⅆ𝑥 = cot𝑛−2
𝑥 cot2
𝑥 ⅆ𝑥
• = cot𝑛−2 𝑥 cosec2 𝑥 − 1 ⅆ𝑥
• = cot𝑛−2 𝑥 cosec2 𝑥 ⅆ𝑥 − cot𝑛−2 𝑥 ⅆ𝑥 =
cot𝑛−1 𝑥
𝑛−1
− cot𝑛−2 𝑥 ⅆ𝑥
Which is the required reduction formula.
INTEGRALS
Find
𝑖 cesec3 𝑥 ⅆ𝑥
𝑖𝑖 cesec5 𝑥 ⅆ𝑥
𝑖𝑖𝑖 cesec𝑛
𝑥 cot 𝑥 ⅆ𝑥
𝑖𝑣 cesec4
𝑥 ⅆ𝑥
𝑣 cesec4 𝑥 cot2 𝑥 ⅆ𝑥
INTEGRALS
2 Integration using trigonometric identities
When the integrand involves some trigonometric functions, we use some known identities to find the integral
sin 𝑘𝑥 ⅆ𝑥
cos 𝑘𝑥 ⅆ𝑥
sec 𝑘𝑥 tan 𝑘𝑥 ⅆ𝑥
sec2
𝑘𝑥 ⅆ𝑥
cosec2 𝑘𝑥 ⅆ𝑥
cosec 𝑘𝑥 cot 𝑘𝑥 ⅆ𝑥
INTEGRALS
#Use the formula whichever re applicable
sin2
𝑥 =
1−cos 2𝑥
2
cos2 𝑥 =
1+cos 2𝑥
2
tan2 𝑥 = sec2 𝑥 − 1
cot2
𝑥 = cosec2
𝑥 − 1
sin3
𝑥 =
3 sin 𝑥−sin 3𝑥
4
cos3 𝑥 =
3 cos 𝑥+cos 3𝑥
4
INTEGRALS
𝑥2 + 𝑎2 ⅆ𝑥 =
𝑥 𝑥2+𝑎2
2
+
𝑎2
2
log 𝑥 + 𝑥2 + 𝑎2 + 𝐶
Put 𝑥 = 𝑎 tan 𝜃 𝑜𝑟 𝑎 cot 𝜃
𝑥2 + 𝑎2 ⅆ𝑥 =
𝑥 𝑥2+𝑎2
2
+
𝑎2
2
log 𝑥 + 𝑥2 + 𝑎2 + 𝐶
Put 𝑥 = 𝑎 tan 𝜃 𝑜𝑟 𝑎 cot 𝜃
• 𝑥2 − 𝑎2 ⅆ𝑥 =
𝑥 𝑥2−𝑎2
2
−
𝑎2
2
log 𝑥 + 𝑥2 − 𝑎2 + 𝐶
• Put 𝑥 = 𝑎 sec 𝜃 or 𝑎 csc 𝜃
• 𝑎2 − 𝑥2 ⅆ𝑥 =
𝑥 𝑎2−𝑥2
2
+
𝑎2
2
sin−1 𝑥
𝑎
+ 𝐶
• Put 𝑥 = 𝑎 sin 𝜃 𝑜𝑟 𝑎 cos 𝜃
•
𝑎−𝑥
𝑎+𝑥
ⅆ𝑥 or
𝑎+𝑥
𝑎−𝑥
ⅆ𝑥
• put 𝑥 = 𝑎 cos 2𝜃
•
𝑥
𝑎−𝑥
ⅆ𝑥 or
𝑎−𝑥
𝑥
ⅆ𝑥
• put 𝑥 = 𝑎 sin2 𝜃 𝑜𝑟 𝑎 cos2 𝜃
𝑥2 − 𝑎2 ⅆ𝑥 =
𝑥 𝑥2−𝑎2
2
−
𝑎2
2
log 𝑥 + 𝑥2 − 𝑎2 + 𝐶
Put 𝑥 = 𝑎 sec 𝜃 or 𝑎 cosec 𝜃
𝑎2 − 𝑥2 ⅆ𝑥 =
𝑥 𝑎2−𝑥2
2
+
𝑎2
2
sin−1 𝑥
𝑎
+ 𝐶
Put 𝑥 = 𝑎 sin 𝜃 𝑜𝑟 𝑎 cos 𝜃
𝑎−𝑥
𝑎+𝑥
ⅆ𝑥 or
𝑎+𝑥
𝑎−𝑥
ⅆ𝑥
put 𝑥 = 𝑎 cos 2𝜃
𝑥
𝑎−𝑥
ⅆ𝑥 or
𝑎−𝑥
𝑥
ⅆ𝑥
put 𝑥 = 𝑎 sin2 𝜃 𝑜𝑟 𝑎 cos2 𝜃
𝑥
𝑎+𝑥
ⅆ𝑥 or
𝑎+𝑥
𝑥
ⅆ𝑥
put 𝑥 = 𝑎 tan2 𝜃 𝑜𝑟 𝑎 cot2 𝜃
𝑎−𝑥
𝑥−𝑏
ⅆ𝑥 or
𝑥−𝑏
𝑎−𝑥
ⅆ𝑥
put 𝑥 = 𝑎 sin2 𝜃 + 𝑎 cos2 𝜃
INTEGRALS
𝑎 − 𝑥 𝑥 − 𝑏 ⅆ𝑥
put 𝑥 = 𝑎 sin2 𝜃 + 𝑎 cos2 𝜃
INTEGRALS
If 𝑦 =
𝑑𝑥
1+𝑥2
3
2
& 𝑦 = 0 , 𝑤ℎ𝑒𝑛 𝑥 = 0 Find the value of 𝑦 when 𝑥 = 1.
1 − 𝑥2 ⅆ𝑥
1+𝑥2
1−𝑥2
ⅆ𝑥
1+𝑥
1+𝑥2
ⅆ𝑥
INTEGRALS
• (11) For the evaluation of the integral of the type 𝒑𝒙 + 𝒒 𝒂𝟐 + 𝒃𝒙 + 𝒄 𝒅𝒙,
where 𝑝 , 𝑞 , 𝑎 , 𝑏 , 𝑐 are constants,
we are to find real numbers 𝐴 , 𝐵 such that
𝑝𝑥 + 𝑞 = 𝐴
𝑑
𝑑𝑥
𝒂𝟐 + 𝒃𝒙 + +𝑐 + 𝐵 = 𝐴 2𝑎𝑥 + 𝑏 + 𝐵
To determine 𝐴 and 𝐵, we equate from both sides the coefficients of 𝑥 and the constant terms.
𝐴 and 𝐵 are thus obtained and hence the integral is reduced to one of the known forms
INTEGRALS
• (12) For the evaluation of the integral of the type
𝒑𝒙+𝒒
𝒂𝟐+𝒃𝒙+𝒄
𝒅𝒙 ,
where 𝑝 , 𝑞 , 𝑎 , 𝑏 , 𝑐 are constants,
we are to find real numbers 𝐴 , 𝐵 such that
𝑝𝑥 + 𝑞 = 𝐴
𝑑
𝑑𝑥
𝒂𝟐
+ 𝒃𝒙 + +𝑐 + 𝐵 = 𝐴 2𝑎𝑥 + 𝑏 + 𝐵
To determine 𝐴 and 𝐵, we equate from both sides the coefficients of 𝑥 and the constant terms.
𝐴 and 𝐵 are thus obtained and hence the integral is reduced to one of the known forms
INTEGRALS
(13) To find the integral of the type
𝒑𝒙𝟐+𝒒𝒙+𝒓
𝒂𝒙𝟐+𝒃𝒙+𝒄
𝒅𝒙 ,
• 𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓 = 𝑨 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 + 𝑩 𝟐𝒂𝒙 + 𝒃 + 𝑪
• & find A , B & C
INTEGRALS
• (14) To find the integral of the type
𝟏
𝑿 𝒀
𝒅𝒙
Where X and Y are linear or quadratic expressions in x.
X Y Substitution
Linear Linear 𝑧2 = 𝑌
Quadratic linear 𝑧2 = 𝑌
Linear Quadratic 𝑧 =
1
𝑋
Quadratic Quadratic 𝑧2
=
𝑌
𝑋
𝑜𝑟 𝑧 =
1
𝑋
INTEGRALS
• (15) Integral of the form
𝑖 𝒙 ± 𝒂𝟐 + 𝒙𝟐
𝒏
𝒅𝒙
𝑖𝑖
𝒅𝒙
𝒙± 𝒂𝟐+𝒙𝟐
𝒏
𝑖𝑖𝑖
𝒙± 𝒂𝟐+𝒙𝟐
𝒏
𝒂𝟐+𝒙𝟐 𝒅𝒙
Where n is a positive rational number and 𝑛 ≠ ±1.
Put 𝑧 = 𝒙 ± 𝒂𝟐 + 𝒙𝟐
INTEGRALS
• (16) Integral of the Form
𝑖
𝒙𝒎
𝒂+𝒃𝒙 𝒑 𝒅𝒙 𝑚 being a positive integer
Put 𝑧 = 𝑎 + 𝑏𝑥
𝑖𝑖
𝒅𝒙
𝒙𝒎 𝒂+𝒃𝒙 𝒑 where 𝑚 + 𝑝 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 > 1
Put 𝑧𝑥 = 𝑎 + 𝑏𝑥
INTEGRALS
• 17 𝒙𝒎
𝒂 + 𝒃𝒙𝒏 𝒑
𝒅𝒙 where 𝑚 , 𝑛 & 𝑝 are rational number
Condition 𝑎 if 𝑝 is an integer > 0 , then
Expand 𝒂 + 𝒃𝒙𝒏 𝒑
Condition 𝑏 if p is an integer < 0 then
Put 𝑥 = 𝑧𝑘 , where k is common denominator 𝑚 , 𝑛 and 𝑝
Condition 𝑐 if
𝑚+1
𝑛
is an integer then
Put 𝑎 + 𝑏𝑥𝑛 = 𝑧𝑘 , where 𝑘 = denominator in p.
Condition ⅆ if
𝑚+1
𝑛
+ 𝑝 is an integer then
Put 𝑎 + 𝑏𝑥𝑛 = 𝑥𝑛𝑧𝑘 , where 𝑘 = denominator in p., or put 𝑥 =
1
𝑧
INTEGRALS
• (10) integral of the form
• 𝑖
𝒅𝒙
𝒙−𝒂 𝒎 𝒙−𝒃 𝒏 where m and n are positive integer and 𝑎 ≠ 𝑏
• Put 𝑥 − 𝑎 = 𝑧 𝑥 − 𝑏
• 𝑖𝑖 𝑹 𝒙 , 𝒂𝒙 + 𝒃
𝜶
𝒏 𝒅𝒙 , where R stand for rational function
• Put 𝑧𝑛 = 𝑎𝑥 + 𝑏
• 𝑖𝑖𝑖 𝑹 𝒙 , 𝒂𝒙 + 𝒃
𝜶
𝒏, 𝒂𝒙 + 𝒃
𝜷
𝒎 𝒅𝒙 , where R stand for rational function
• Put 𝑧𝑝 = 𝑎𝑥 + 𝑏 , where 𝑝 = L.C.M. of m and n
• 𝑖𝑣 𝑹 𝒙 ,
𝒂𝒙+𝒃
𝒄𝒙+𝒅
𝜶
𝒏
𝒅𝒙 , where R stand for rational form
• Put 𝑧𝑝
=
𝒂𝒙+𝒃
𝒄𝒙+𝒅
INTEGRALS
• Method of Substitution
• 𝐴 If the integrand of the form
sin 𝜃 ⅆ𝜃 cos 𝜃 ⅆ𝜃 tan 𝜃 ⅆ𝜃 cosec 𝜃 ⅆ𝜃 sec 𝜃 ⅆ𝜃 cot 𝜃 ⅆ𝜃
Where 𝜃 is a function of x put 𝑧 = 𝜃
𝐵 If d.c. of a function 𝑓 𝑥 occurs as a factor of the integrand and integrand after leaving this factor become an
integrable function of 𝑓 𝑥 , 𝑝𝑢𝑡 𝑧 − 𝑓 𝑥 .
𝐶. 𝑖
𝑓′ 𝑥
𝑓 𝑥
ⅆ𝑥 = log 𝑓 𝑥 + 𝐶
𝑖𝑖 if the logarithmic or inverse circular function occurs in the numerator & its d.c., is a factor of the integand put
it equal to 𝑧 .
𝑖𝑖𝑖 if the logarithmic or inverse circular function occurs in the numerator & its d.c., is a factor of the integand put
it equal to z but if d.c. is not a factor of the integrand use integration by parts.
𝑖𝑣 if 𝑒𝑓 𝑥 occurs in the integrand put 𝑧 = 𝑓 𝑥
INTEGRALS
Evaluate
𝑖 tan 𝑥 − 𝑥 5
tan6
𝑥 ⅆ𝑥
𝑖𝑖
cot log 𝑥
𝑥
ⅆ𝑥
𝑖𝑖𝑖
sec2 𝑥 tan 𝑥
sec2 𝑥+tan2 𝑥
ⅆ𝑥
𝑖𝑣
1
𝑥2 𝑥4+1
3
4
ⅆ𝑥
• Evaluate
• tan 𝑥 − 𝑥 5 tan6 𝑥 ⅆ𝑥
•
cot log 𝑥
𝑥
ⅆ𝑥
•
sec2 𝑥 tan 𝑥
sec2 𝑥+tan2 𝑥
ⅆ𝑥
•
1
𝑥2 𝑥4+1
3
4
ⅆ𝑥
INTEGRALS
• Integral of the form
𝒊
𝒅𝒙
𝒂 cos𝟐 𝒙+𝟐𝒃 sin 𝒙 cos 𝑥 +𝒄 sin𝟐 𝒙
𝒊𝒊
𝒅𝒙
𝒂 cos𝟐 𝒙+𝒃
𝒊𝒊𝒊
𝒅𝒙
𝒂+𝒃 sin𝟐 𝒙
Divide numerator & denominator by cos2 𝑥
• Integral of the form
𝒊
𝒅𝒙
𝒂 cos 𝒙+𝟐𝒃 sin 𝒙+𝒄
𝒊𝒊
𝒅𝒙
𝒂+𝒃 cos 𝒙
𝒊𝒊𝒊
𝒅𝒙
𝒂+𝒃 sin 𝒙
Put sin 𝑥 =
2 tan
𝑥
2
1+tan2𝑥
2
& cos 𝑥 =
1−tan2𝑥
2
1+tan2𝑥
2
And then put 𝑧 = tan
𝑥
2
INTEGRALS
• Integral of the form
𝒊
𝒑 sin 𝒙+𝒒 cos 𝒙
asin 𝒙+𝒃 cos 𝒙
𝒅𝒙 𝒊𝒊
sin 𝒙
𝒂 cos 𝒙+𝒃 sin 𝒙
𝒅𝒙 𝒊𝒊𝒊
cos 𝒙
𝒂 cos 𝒙+𝒃 sin 𝒙
𝒅𝒙
Let 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐴 ⅆ𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + 𝐵 ⅆ. 𝑐 . 𝑜𝑓 ⅆ𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
& then find A & B by equating the coefficient of sin 𝑥 & cos 𝑥
INTEGRALS
• Integral of the form
𝑖 sec2 𝑥 ± 𝑎 ⅆ𝑥
Write sec2 𝑥 ± 𝑎 =
sec2 𝑥±𝑎
sec2 𝑥±𝑎
=
sec2 𝑥
sec2 𝑥±𝑎
± 𝑎
cos 𝑥
1±𝑎 cos2 𝑥
In 1st put 𝑧 = tan 𝑥
& in the 2nd integral put 𝑧 = sin 𝑥
𝑖𝑖 cosec2 𝑥 ± 𝑎 ⅆ𝑥
Write cosec2 𝑥 ± 𝑎 =
cosec2 𝑥±𝑎
cosec2 𝑥±𝑎
=
cosec2 𝑥
cosec2 𝑥±𝑎
± 𝑎
sin 𝑥
1±𝑎 sin2 𝑥
In 1st put 𝑧 = cot 𝑥 & in the 2nd integral put 𝑧 = cos 𝑥
• Integral of the form
𝑖 sec2 𝑥 ± 𝑎 ⅆ𝑥
Write sec2 𝑥 ± 𝑎 =
sec2 𝑥±𝑎
sec2 𝑥±𝑎
=
sec2 𝑥
sec2 𝑥±𝑎
± 𝑎
cos 𝑥
1±𝑎 cos2 𝑥
In 1st put 𝑧 = tan 𝑥
& in the 2nd integral put 𝑧 = sin 𝑥
𝑖𝑖 cosec2 𝑥 ± 𝑎 ⅆ𝑥
Write cosec2 𝑥 ± 𝑎 =
cosec2 𝑥±𝑎
cosec2 𝑥±𝑎
=
cosec2 𝑥
cosec2 𝑥±𝑎
± 𝑎
sin 𝑥
1±𝑎 sin2 𝑥
In 1st put 𝑧 = cot 𝑥
& in the 2nd integral put 𝑧 = cos 𝑥
INTEGRALS
𝑖𝑖𝑖 tan2 𝑥 ± 𝑎 ⅆ𝑥
tan2 𝑥 = sec2 𝑥 − 1
Write tan2 𝑥 ± 𝑎 =
sec2 𝑥±𝑎
sec2 𝑥±𝑎
=
sec2 𝑥
sec2 𝑥±𝑎
± 𝑎
cos 𝑥
1±𝑎 cos2 𝑥
In 1st put 𝑧 = tan 𝑥 & in the 2nd integral put 𝑧 = sin 𝑥
𝑖𝑣 cot2 𝑥 ± 𝑎 ⅆ𝑥
cot2
𝑥 = cosec2
𝑥 − 1
Write cot2 𝑥 ± 𝑎 =
cosec2 𝑥±𝑎
cosec2 𝑥±𝑎
=
cosec2 𝑥
cosec2 𝑥±𝑎
± 𝑎
sin 𝑥
1±𝑎 sin2 𝑥
In 1st put 𝑧 = cot 𝑥 & in the 2nd integral put 𝑧 = cos 𝑥
INTEGRALS
𝑖
sin 𝑥
𝑥
ⅆ𝑥
𝑖𝑖
cot log 𝑥
𝑥
ⅆ𝑥
𝑖𝑖𝑖
𝑒𝑥 1+𝑥
cos−1 𝑥𝑒𝑥 ⅆ𝑥
𝑖𝑣
𝑥 tan−1 𝑥2
1+𝑥4 ⅆ𝑥
𝑣
𝑑𝑥
𝑥2 𝑥4+1
3
4
INTEGRALS
If 4𝑒𝑥+6𝑒−𝑥
9𝑒𝑥−4𝑒−𝑥 ⅆ𝑥 = 𝐴𝑥 + 𝐵 log𝑒 9𝑒2𝑥 − 4 + 𝐶 . Find the value of A , B & C.
𝑖
sin 𝑥
𝑥
ⅆ𝑥
𝑖𝑖
cot log 𝑥
𝑥
ⅆ𝑥
𝑖𝑖𝑖
𝑒𝑥 1+𝑥
cos−1 𝑥𝑒𝑥 ⅆ𝑥
𝑖𝑣
𝑥 tan−1 𝑥2
1+𝑥4 ⅆ𝑥
𝑣
𝑑𝑥
𝑥2 𝑥4+1
3
4
If 𝑖𝑣
4𝑒𝑥+6𝑒−𝑥
9𝑒𝑥−4𝑒−𝑥 ⅆ𝑥 = 𝐴𝑥 + 𝐵 log𝑒 9𝑒2𝑥 − 4 + 𝐶 . Find the value of A , B & C.
𝑖𝑣
sin 2𝑥
𝑎2+𝑏2 sin2 𝑥
ⅆ𝑥
𝑖𝑣
𝑥
𝑥2+2
1
3
ⅆ𝑥
𝑖𝑣 tan 𝑥 + cot 𝑥 ⅆ𝑥
𝑖𝑣 tan 𝑥 ⅆ
𝑖𝑣 cot 𝑥 ⅆ𝑥
INTEGRALS
𝑖
sin 2𝑥
𝑎2+𝑏2 sin2 𝑥
ⅆ𝑥
𝑖𝑖
𝑥
𝑥2+2
1
3
ⅆ𝑥
𝑖𝑖𝑖 tan 𝑥 + cot 𝑥 ⅆ𝑥
𝑖𝑣 tan 𝑥 ⅆ𝑥
𝑣 cot 𝑥 ⅆ𝑥
INTEGRALS
When integrand is the product of two functions & one of them is a function of a function 𝜙 𝑥 & other is 𝑘𝜙′ 𝑥 ,
where k is a constant , then put 𝑧 = 𝜙 𝑥
In other words , If integrand is the form
𝑘𝑓 𝜙 𝑥 𝜙′ 𝑥 then put 𝑧 = 𝜙 𝑥
Thus if an expression 𝜙 𝑥 is occurs in the integrand whose d. c. is a factor of the integrand and the integrand
after leaving this d .c . of 𝜙 𝑥 become an integrable function of 𝜙 𝑥
then put z = 𝜙 𝑥
INTEGRALS
𝑖 2 + sin 3𝑥 cos 3𝑥 ⅆ𝑥
𝑖𝑖
sin 2𝑥
𝑎2+𝑏2 sin2 𝑥
ⅆ𝑥
𝑖𝑖𝑖
1+log 𝑥 2
𝑥
ⅆ𝑥
𝑖𝑣
𝑥5
1+𝑥3
ⅆ𝑥
𝑣
sin 𝑥
𝑎+𝑏 cos 𝑥
ⅆ𝑥
𝑣𝑖
𝑥2
𝑥3+1
ⅆ𝑥
𝑣𝑖𝑖
𝑥2
𝑥+2
ⅆ𝑥
𝑣𝑖𝑖𝑖
𝑥
𝑥+2
ⅆ𝑥
INTEGRALS
𝑑𝑥
𝑥 𝑥𝑛+1
Put 𝑧 = 𝑥𝑛 + 1
ⅆ𝑧 =
𝑥 𝑑𝑥
𝑥2−𝑎2 𝑥2−𝑏2
Put 𝑧 = 𝑥2
ⅆ𝑧 = 2𝑥ⅆ𝑥
INTEGRALS
𝑖 𝑥 cos2
𝑥 ⅆ𝑥
𝑖𝑖 sin 𝑥 ⅆ𝑥
𝑖𝑖𝑖 cos 𝑥 ⅆ𝑥
𝑖𝑣 sin log 𝑥 ⅆ𝑥
𝑣 𝑥𝑛
log 𝑥 ⅆ𝑥
𝑣𝑖 log 𝑥 2
ⅆ𝑥
𝑣𝑖𝑖 𝑥2 + 𝑎2 ⅆ𝑥
𝑣𝑖𝑖𝑖 𝑒𝑎𝑥
sin 𝑏𝑥 ⅆ𝑥
𝑖𝑥 𝑥 sec2
2𝑥 ⅆ𝑥
𝑥 𝑥2
log 𝑥 2
ⅆ𝑥
𝑥𝑖 𝑥 sin2
𝑥 ⅆ𝑥
𝑥𝑖𝑖 𝑥 log 𝑥 2
ⅆ𝑥
𝑥𝑖𝑖𝑖 𝑥2
sin 2𝑥 ⅆ𝑥
𝑥𝑖𝑣 𝑥2𝑒3𝑥 ⅆ𝑥
𝑥𝑣 𝑥2
log 𝑥 ⅆ𝑥
𝑥𝑣𝑖 𝑒−𝑥
sin 𝑥 ⅆ𝑥
𝑥𝑣𝑖𝑖
𝑥+sin 𝑥
1+cos 𝑥
ⅆ𝑥

More Related Content

Similar to INTEGRATION.pptx

01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabarHirwanto Iwan
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptxSakibAhmed402053
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integrationLawrence De Vera
 
C3-Chp6&7-Trigonometry.pptx
C3-Chp6&7-Trigonometry.pptxC3-Chp6&7-Trigonometry.pptx
C3-Chp6&7-Trigonometry.pptxdegalanikhil612
 
Semana 07 division de polinomios i álgebra-uni ccesa007
Semana 07   division de polinomios i álgebra-uni ccesa007Semana 07   division de polinomios i álgebra-uni ccesa007
Semana 07 division de polinomios i álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfKyleBrianSLumanglas
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptxAngeloReyes58
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfManarKareem1
 
TRIGONOMETRIC IDENTITIES.pptx
TRIGONOMETRIC IDENTITIES.pptxTRIGONOMETRIC IDENTITIES.pptx
TRIGONOMETRIC IDENTITIES.pptxAngeloReyes58
 
DIFFERENTAL CALCULUS DERIVATIVES FIRST PART
DIFFERENTAL CALCULUS DERIVATIVES FIRST PARTDIFFERENTAL CALCULUS DERIVATIVES FIRST PART
DIFFERENTAL CALCULUS DERIVATIVES FIRST PARTteacherlablidas
 
Ch 5-integration-part-1
Ch 5-integration-part-1Ch 5-integration-part-1
Ch 5-integration-part-1GpmMaths
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007Demetrio Ccesa Rayme
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxTejedaGarcaAngelBala
 

Similar to INTEGRATION.pptx (20)

01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabar
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
MT102 Лекц 4
MT102 Лекц 4MT102 Лекц 4
MT102 Лекц 4
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptx
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
C3-Chp6&7-Trigonometry.pptx
C3-Chp6&7-Trigonometry.pptxC3-Chp6&7-Trigonometry.pptx
C3-Chp6&7-Trigonometry.pptx
 
Semana 07 division de polinomios i álgebra-uni ccesa007
Semana 07   division de polinomios i álgebra-uni ccesa007Semana 07   division de polinomios i álgebra-uni ccesa007
Semana 07 division de polinomios i álgebra-uni ccesa007
 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdf
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
 
MT102 Лекц 2
MT102 Лекц 2MT102 Лекц 2
MT102 Лекц 2
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
 
TRIGONOMETRIC IDENTITIES.pptx
TRIGONOMETRIC IDENTITIES.pptxTRIGONOMETRIC IDENTITIES.pptx
TRIGONOMETRIC IDENTITIES.pptx
 
DIFFERENTAL CALCULUS DERIVATIVES FIRST PART
DIFFERENTAL CALCULUS DERIVATIVES FIRST PARTDIFFERENTAL CALCULUS DERIVATIVES FIRST PART
DIFFERENTAL CALCULUS DERIVATIVES FIRST PART
 
Ch 5-integration-part-1
Ch 5-integration-part-1Ch 5-integration-part-1
Ch 5-integration-part-1
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
 
2 Indefinte Integral.pptx
2 Indefinte Integral.pptx2 Indefinte Integral.pptx
2 Indefinte Integral.pptx
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 

Recently uploaded (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 

INTEGRATION.pptx

  • 1. INTEGRALS Symbol/Terms/Phrases Meaning 𝑓 𝑥 ⅆ𝑥 Integral of f with respect to 𝑥 𝑓(𝑥) in 𝑓 𝑥 ⅆ𝑥 Integrand 𝑥 in 𝑓 𝑥 ⅆ𝑥 Variable of integration Integrate Find the integral An integral of 𝑓 A function F such that 𝐹′(𝑥) = 𝑓 (𝑥) Integration The process of finding the integral Constant of Integration Any real number C, considered as constant function
  • 2. INTEGRATION Integrals of the Form 𝒇 𝒂𝒙 + 𝒃 𝒅𝒙 𝑑 sin(𝑥+𝑘) 𝑑𝑥 = cos(𝑥 + 𝑘) ⟹ cos 𝑥 + 𝑘 ⅆ𝑥 = sin 𝑥 + 𝑘 + 𝑐 It is clear that whenever a constant is added or subtracted with the independent variable x, the fundamental formulae remain the same. Here, if any constant is multiplied with the independent variable x, then the same fundamental formula can be used after dividing it by the coefficient of x
  • 3. INTEGRALS • Integration of algebraic function • 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥 • 1 1+𝑥2 ⅆ𝑥 • 1 1−𝑥2 ⅆ𝑥 • 1 𝑥 𝑥2−1 ⅆ𝑥 • Evaluate • sin3 𝑥 ⅆ𝑥 • cos4 𝑥 ⅆ𝑥 • 1 + sin 𝑥 ⅆ𝑥 • Find the value of a and b. • 𝑑𝑥 1+sin 𝑥 = tan 𝑥 2 + 𝑎 + 𝑏 • 1 + sin 𝑥 2 ⅆ𝑥
  • 4. INTEGRALS • Integration of Exponential Function • Express 𝑎𝑚𝑥+𝑛 𝑎𝑠 𝑏𝑒𝑘𝑥 and then find the integral • 𝑎𝑥 = 𝑒𝑥 log 𝑎 = 𝑒log 𝑎𝑥 • 𝑒𝑘𝑥 ⅆ𝑥 = 𝑒𝑘𝑥 𝑘 • Example • 𝑎3𝑥+3 ⅆ𝑥
  • 5. INTEGRALS • Integration of the algebraic function which are in the form • 𝑃 𝑥 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥 • 𝑃 𝑥 𝑎𝑥+𝑏 𝑛 ⅆ𝑥 • Put 𝑎𝑥 + 𝑏 = 𝑧 • Example • 𝑥2 𝑎𝑥 + 𝑏 ⅆ𝑥 • 𝑥+2 𝑥+1 2 ⅆ𝑥 • 𝑥2 𝑎+𝑏𝑥 2 ⅆ𝑥 • 2𝑥−1 𝑥−1 2 ⅆ𝑥 • 𝑥2 1−𝑥 ⅆ𝑥 • 𝑥2 1+𝑥 ⅆ𝑥
  • 6. INTEGRALS • Integration of the form 𝐬𝐢𝐧𝒎 𝒎 𝐜𝐨𝐬𝒏 𝒏 𝒅𝒙 • If power of sin 𝑥 is odd positive integer put 𝑧 = cos 𝑥 • If power of both sin 𝑥 and cos 𝑥 are odd positive integer put 𝑧 = sin 𝑥 or 𝑧 = cos 𝑥 • If power of neither cos 𝑥 𝑛𝑜𝑟 sin 𝑥 is odd positive integer , see the sum of power of sin 𝑥 & cos 𝑥 • If the sum of power is even negative integer put 𝑧 = tan 𝑥 • If power of is even positive integer & m and n are integer • Express the integrand as the algebraic sum of sin & cos of multiple angle • Examole • cos3 𝑥 sin 𝑥 ⅆ𝑥 • sin3 𝑥 cos3 𝑥 ⅆ𝑥
  • 7. INTEGRALS • Integration of the form 𝐭𝐚𝐧𝒎 𝒙 𝐬𝐞𝐜𝒏 𝒙 𝒅𝒙 • If the power of sec 𝑥 is the even positive integer put 𝑧 = tan 𝑥 • If the power of sec 𝑥 is not even positive integer then see power of tan 𝑥 • If the power of tan 𝑥 is odd positive integer put 𝑧 = sec 𝑥 • If the power of sec 𝑥 is even positive integer put sec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 tan2 𝑥 & the substitute 𝑧 = tan 𝑥 • If the power of tan 𝑥 is zero & power of sec 𝑥 odd positive integer greater than 1 , then method of integration by part is used. put 𝑧 = sec 𝑥 • sec3 𝑥 ⅆ𝑥 • sec5 𝑥 ⅆ𝑥
  • 8. INTEGRALS • Integration of the form cot𝒎 𝒙 cosec𝒏 𝒙 𝒅𝒙 • If the power of cosec 𝑥 is the even positive integer put 𝑧 = cot 𝑥 • If the power of cosec 𝑥 is not even positive integer then see power of cot 𝑥 • If the power of cot 𝑥 is odd positive integer put 𝑧 = cosec 𝑥 • If the power of cot 𝑥 is even positive integer put cosec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 cot2 𝑥& the substitute 𝑧 = cot 𝑥 • If the power of cot 𝑥 is zero & power of cosec 𝑥 odd positive integer greater than 1 , then method of integration by part is used. put 𝑧 = sec 𝑥
  • 9. INTEGRALS • Find • tan𝑛 𝑥 sec2 𝑥 ⅆ𝑥 • tan 𝑥 ⅆ𝑥 • tan2 𝑥 ⅆ𝑥 • tan3 𝑥 ⅆ𝑥 • tan4 𝑥 ⅆ𝑥 • tan6 𝑥 ⅆ𝑥 • csc𝑛 𝑥 cot 𝑥 ⅆ𝑥
  • 10. INTEGRALS 2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the following example. Example 7 Find (i) 2 cos x dx ∫ (ii) sin 2 cos 3 x x dx ∫ (iii) 3 sin x dx • Integration of Trigonometrical Function • sin 𝑘𝑥 ⅆ𝑥 • cos 𝑘𝑥 ⅆ𝑥 • sec 𝑥 tan 𝑥 ⅆ𝑥 • sec2 𝑥 ⅆ𝑥 • cosec2 𝑥 ⅆ𝑥 • cosec 𝑥 cot 𝑥 ⅆ𝑥
  • 11. INTEGRALS • #Use the formula whichever re applicable • sin2 𝑥 = • cos2 𝑥 = • tan2 𝑥 = • cot2 𝑥 = • sin3 𝑥 = • cos3 𝑥 = • tan3 𝑥 = • cot3 𝑥 =
  • 12. INTEGRALS • If 𝑦 = 𝑑𝑥 1+𝑥2 3 2 & 𝑦 = 0 , 𝑤ℎ𝑒𝑛 𝑥 = 0 Find the value of 𝑦 when 𝑥 = 1. 1 − 𝑥2 ⅆ𝑥 1+𝑥2 1−𝑥2 ⅆ𝑥 1+𝑥 1+𝑥2 ⅆ𝑥
  • 13. INTEGRALS Method of Substitution If the integrand of the form sin 𝜃 ⅆ𝜃 cos 𝜃 ⅆ𝜃 tan 𝜃 ⅆ𝜃 cosec 𝜃 ⅆ𝜃 sec 𝜃 ⅆ𝜃 cot 𝜃 ⅆ𝜃 Where 𝜃 is a function of x put 𝑧 = 𝜃
  • 14. INTEGRALS • sin 𝑥 𝑥 ⅆ𝑥 • cot log 𝑥 𝑥 ⅆ𝑥 • 𝑒𝑥 1+𝑥 cos−1 𝑥𝑒𝑥 ⅆ𝑥
  • 15. INTEGRALS • When integrand is the product of two functions & one of them is a function of a function 𝜙 𝑥 & other is 𝑘𝜙′ 𝑥 , where k is a constant , then put = 𝜙 𝑥 • In other words , If integrand is the form • 𝑘𝜙 𝑥 𝜙′ 𝑥 then put = 𝜙 𝑥 • Thus if an expression is occurred in the integrand where d. c. is a factor of the integrand and the integrand after leaving this d.c. of become an integrable function of • then put = 𝜙 𝑥 • 2 + sin 3𝑥 cos 3𝑥 ⅆ𝑥 • sin 2𝑥 𝑎2+𝑏2 sin2 𝑥 ⅆ𝑥 • 1+log 𝑥 2 𝑥 ⅆ𝑥 • 𝑥5 1+𝑥3 ⅆ𝑥 • sin 𝑥 𝑎+𝑏 cos 𝑥 ⅆ𝑥 • 𝑥2 𝑥2+1 ⅆ𝑥 • 𝑥2 𝑥+2 ⅆ𝑥
  • 16. INTEGRALS • 𝑥 cos2 𝑥 ⅆ𝑥 • sin 𝑥 ⅆ𝑥 • cos 𝑥 ⅆ𝑥 • sin log 𝑥 ⅆ𝑥 • 𝑥𝑛 log 𝑥 ⅆ𝑥 • log 𝑥 2 ⅆ𝑥 • 𝑥2 + 𝑎2 ⅆ𝑥 • 𝑒𝑎𝑥 sin 𝑏𝑥 ⅆ𝑥 • 𝑥 sec2 2𝑥 ⅆ𝑥 • 𝑥2 log 𝑥 2 ⅆ𝑥 • 𝑥 sin2 𝑥 ⅆ𝑥 • 𝑥 log 𝑥 2 ⅆ𝑥 • 𝑥2 sin 2𝑥 ⅆ𝑥 • 𝑥2 𝑒3𝑥 ⅆ𝑥 • 𝑥2 log 𝑥 ⅆ𝑥 • 𝑒−𝑥 sin 𝑥 ⅆ𝑥
  • 17. INTEGRALS Integration of algebraic function 𝑖 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥 𝑖𝑖 1 1+𝑥2 ⅆ𝑥 𝑖𝑖𝑖 1 1−𝑥2 ⅆ𝑥 𝑖𝑣 1 𝑥 𝑥2−1 ⅆ𝑥
  • 18. INTEGRALS Integrals of functions which can be reduced to the form sin 𝜃 , cos 𝜃 , tan 𝜃 cosec 𝜃 , sec 𝜃 , cot 𝜃 Where 𝜃 is a linear expression in 𝑥
  • 19. INTEGRALS (iv) cosec 𝑥 ⅆ𝑥 = log cosec 𝑥 − cot 𝑥 + 𝐶 = log tan 𝑥 2 + 𝐶 (iii) 𝐬𝐞𝐜 𝒙 𝒅𝒙 = 𝐥𝐨𝐠 𝐬𝐞𝐜 𝒙 + 𝐭𝐚𝐧 𝒙 + 𝑪 = 𝒍𝒐𝒈 𝒕𝒂𝒏 𝝅 𝟒 + 𝒙 𝟐 + 𝑪 Put sec 𝑥 + tan 𝑥 = 𝑧 then ⅆ𝑧 = sec 𝑥 tan 𝑥 + sec2 𝑥 ⅆ𝑥 = ⅆ𝑧 = sec 𝑥 sec 𝑥 + tan 𝑥 ⅆ𝑥 sec 𝑥 ⅆ𝑥 = sec 𝑥 sec 𝑥+tan 𝑥 sec 𝑥+tan 𝑥 ⅆ𝑥 = 𝑑𝑧 𝑧 = log 𝑧 = log sec 𝑥 + tan 𝑥 + 𝐶 sec 𝑥 + tan 𝑥 = 1 cos 𝑥 + sin 𝑥 cos 𝑥 = 1+sin 𝑥 cos 𝑥 = sin2 𝑥+cos2 𝑥+2 sin 𝑥 cos 𝑥 cos2 2−sin2 𝑥 Value of 𝐬𝐞𝐜 𝒙 𝒅𝒙 in another form = cos 𝑥+sin 𝑥 cos 𝑥−sin 𝑥 = 1+tan 𝑥 2 1−tan 𝑥 2 = tan 𝜋 4 +tan 𝑥 2 tan 𝜋 4 −tan 𝑥 2 = tan 𝜋 4 + 𝑥 2 (iv) 𝐜𝐨𝐬𝐞𝐜 𝒙 𝒅𝒙 = 𝐥𝐨𝐠 𝐜𝐨𝐬𝐞𝐜 𝒙 − 𝐜𝐨𝐭 𝒙 + 𝑪 = 𝒍𝒐𝒈 𝐭𝐚𝐧 𝒙 𝟐 + 𝑪 cosec 𝒙 𝒅𝒙 = cosec 𝒙 cosec 𝒙−cot 𝒙 cosec 𝑥−cot 𝒙 𝒅𝒙 Let 𝑧 = cosec 𝑥 − cot 𝑥 then ⅆ𝑧 = − cosec 𝑥 cot 𝑥 + csc2 𝑥 ⅆ𝑥 = cosec 𝑥 cosec 𝑥 − cot 𝑥 ⅆ𝑥 = 𝑑𝑧 𝑧 = log 𝑧 = 𝐥𝐨𝐠 𝐜𝐨𝐬𝐞𝐜 𝒙 − 𝐜𝐨𝐭 𝒙 + 𝑪 Value 𝐜𝐨𝐬𝐞𝐜 𝒙 𝒅𝒙 in another form cosec 𝑥 − cot 𝑥 = 1 sin 𝑥 − cos 𝑥 sin 𝑥 = 1−cos 𝑥 sin 𝑥 = 2 sin2𝑥 2 2 sin 𝑥 2 cos 𝑥 2 = tan 𝑥 2 = 𝒍𝒐𝒈 𝐭𝐚𝐧 𝒙 𝟐 + 𝑪
  • 20. INTEGRALS • Integral of the form 1 ± sin 𝑥 ⅆ𝑥 𝑑𝑥 1±sin 𝑥 𝑑𝑥 1±sin 𝑥 Change sin 𝑥 into cos 𝜋 2 − 𝑥 • Integral of the form 𝑑𝑥 1±sin 𝑥 can also be evaluated by multiplying and dividing by 1 ∓ sin 𝑥 respectively.
  • 21. INTEGRALS Evaluate 𝑖 sin3 𝑥 ⅆ𝑥 𝑖𝑖 cos4 𝑥 ⅆ𝑥 𝑖𝑖𝑖 1 + sin 𝑥 ⅆ𝑥 𝑖𝑣 1 + sin 𝑥 2 ⅆ𝑥 𝑣 𝑑𝑥 1+sin 𝑥 𝑣𝑖 sin 𝑥 1+sin 𝑥 ⅆ𝑥 𝑣𝑖𝑖 1 + 2 tan 𝑥 tan 𝑥 + sec 𝑥 ⅆ𝑥
  • 22. INTEGRALS 𝑣 Find the value of a and b. 𝑑𝑥 1+sin 𝑥 = tan 𝑥 2 + 𝑎 + 𝑏
  • 23. INTEGRALS • Integration of Exponential Function Express 𝑎𝑚𝑥+𝑛 𝑎𝑠 𝑏𝑒𝑘𝑥 and then find the integral 𝑎𝑥 = 𝑒𝑥 log 𝑎 = 𝑒log 𝑎𝑥 𝑒𝑘𝑥 ⅆ𝑥 = 𝑒𝑘𝑥 𝑘 Example 𝑎3𝑥+3 ⅆ𝑥 = 𝑎3 𝑎3𝑥 ⅆ𝑥
  • 24. INTEGRALS Integration of the algebraic function which are in the form 𝑖 𝑃 𝑥 𝑎𝑥 + 𝑏 𝑛 ⅆ𝑥 where 𝑃 𝑥 is a polynomial in 𝑥 𝑎0𝑥𝑚 + 𝑎1𝑥𝑚−1 + … … + 𝑎𝑚𝑥0 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 Put 𝑎𝑥 + 𝑏 = 𝑧 𝑖𝑖 𝑃 𝑥 𝑎𝑥+𝑏 𝑛 ⅆ𝑥 where 𝑃 𝑥 is a polynomial in 𝑥 𝑎0𝑥𝑚 + 𝑎1𝑥𝑚−1 + … … + 𝑎𝑚𝑥0 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 Put 𝑎𝑥 + 𝑏 = 𝑧
  • 25. INTEGRALS 𝑖 𝑥2+3𝑥−1 𝑥+1 2 ⅆ𝑥 put 𝑥 + 1 = 𝑧 𝑖𝑖 𝑥2 𝑎+𝑏𝑥 ⅆ𝑥 𝑖𝑖𝑖 𝑥6 𝑥−1 ⅆ𝑥 𝑖𝑣 𝑥 1 − 𝑥 23 ⅆ𝑥 𝑣 𝑥6 𝑥−1 ⅆ𝑥
  • 26. INTEGRALS If sin 2𝑥 + cos 2𝑥 ⅆ𝑥 = 1 2 sin 2𝑥 − 𝑐 + 𝑎. Find the value of a & c.
  • 27. INTEGRALS Example 𝑖 𝑥2 𝑎𝑥 + 𝑏 ⅆ𝑥 𝑖𝑖 𝑥+2 𝑥+1 2 ⅆ𝑥 𝑖𝑖𝑖 𝑥2 𝑎+𝑏𝑥 2 ⅆ𝑥 𝑖𝑣 2𝑥−1 𝑥−1 2 ⅆ𝑥 𝑣 𝑥2 1−𝑥 ⅆ𝑥 𝑣𝑖 𝑥2 1+𝑥 ⅆ𝑥
  • 28. INTEGRALS • Integration of the form 𝐬𝐢𝐧𝒎 𝒎 𝐜𝐨𝐬𝒏 𝒏 𝒅𝒙 (i) If power of sin 𝑥 is odd positive integer put 𝑧 = cos 𝑥 (ii) If power of cos 𝑥 is odd positive integer put 𝑧 = sin 𝑥 (iii) If power of both sin 𝑥 and cos 𝑥 are odd positive integers put 𝑧 = sin 𝑥 or 𝑧 = cos 𝑥 (iv) If power of neither cos 𝑥 𝑛𝑜𝑟 sin 𝑥 is odd positive integer , see the sum of power of sin 𝑥 & cos 𝑥 𝑎 If the sum of powers 𝑚 + 𝑛 is even negative integer put 𝑧 = tan 𝑥 𝑏 If the sum of powers 𝑚 + 𝑛 is even positive integer & m , n are integers Express the integrand as the algebraic sum of sin𝑒 𝑥 & cosine 𝑥 of multiple angle. Use the following formula whichever is needed sin2 𝑥 = 1−cos 2𝑥 2 cos2 𝑥 = 1+cos 2𝑥 2 sin3 𝑥 = 3 sin 𝑥−sin 3𝑥 4 cos3 𝑥 = 3 cos 𝑥+cos 3𝑥 4 2 sin 𝑥 cos 𝑥 = sin 2𝑥
  • 29. INTEGRALS • Demoivre’s Theorem If n is appositive integer then cos 𝜃 + 𝑖 sin 𝜃 𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 Let 𝑧 = cos 𝜃 + 𝑖 sin 𝜃 1 𝑧 = 1 cos 𝜃+𝑖 sin 𝜃 = cos 𝜃 − 𝑖 sin 𝜃 cos 𝜃 = 1 𝑧 𝑧 + 1 𝑧 cos 𝜃 = 1 2𝑖 𝑧 − 1 𝑧 𝑧𝑛 = cos 𝑥 + 𝑖 sin 𝑥 𝑛 = cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥 1 𝑧𝑛 = cos 𝑥 − 𝑖 sin 𝑥 𝑛 = cos 𝑛𝑥 − 𝑖 sin 𝑛𝑥 𝑧𝑛 + 1 𝑧𝑛 = 2cos 𝑛𝑥 𝑧𝑛 − 1 𝑧𝑛 = 2𝑖 sin 𝑛𝑥 If sum of powers of sin 𝑥 & cos 𝑥 is odd & negative & powers of both sin 𝑥 & cos 𝑥 are integers , then multiply by suitable power of sin2 𝑥 + cos2 𝑥 .
  • 30. INTEGRALS Examole 𝑖 cos3 𝑥 sin 𝑥 ⅆ𝑥 𝑖𝑖 sin3 𝑥 cos3 𝑥 ⅆ𝑥 𝑖𝑖𝑖 sin5 𝑥 ⅆ𝑥 𝑖𝑣 𝑑𝑥 sin 𝑥 cos3 𝑥 𝑣 cos4 𝑥 ⅆ𝑥 𝑣𝑖 sin4 𝑥 cos2 𝑥 ⅆ𝑥 𝑣𝑖𝑖 sin2 𝑥 cos5 𝑥 ⅆ𝑥
  • 31. INTEGRALS • Integration of the form 𝐭𝐚𝐧𝒎 𝒙 𝐬𝐞𝐜𝒏 𝒙 𝒅𝒙 𝑖 If the power of sec 𝑥 is even positive integer put 𝑧 = tan 𝑥 𝑖𝑖 If the power of sec 𝑥 is not even positive integer then see power of tan 𝑥 𝑎 If the power of tan 𝑥 is odd positive integer put 𝑧 = sec 𝑥 𝑏 If the power of tan 𝑥 is even +ve integer , then put sec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 tan2 𝑥 & then substitute 𝑧 = tan 𝑥 𝑖𝑖𝑖 If the power of tan 𝑥 is zero & power of sec 𝑥 odd positive integer greater than 1 , then method of integration by part is used.
  • 32. INTEGRALS • Reduction formula for 𝐭𝐚𝐧𝒏 𝒙 𝒅𝒙 tan𝑛 𝑥 ⅆ𝑥 = tan𝑛−2 𝑥 tan2 𝑥 ⅆ𝑥 = tan𝑛−2 𝑥 sec2 𝑥 − 1 ⅆ𝑥 = tan𝑛−2 𝑥 sec2 𝑥 ⅆ𝑥 − tan𝑛−2 𝑥 ⅆ𝑥 = tan𝑛−1 𝑥 𝑛−1 − tan𝑛−2 𝑥 ⅆ𝑥 • Reduction formula for 𝐭𝐚𝐧𝒏 𝒙 𝒅𝒙 tan𝑛 𝑥 ⅆ𝑥 = tan𝑛−2 𝑥 tan2 𝑥 ⅆ𝑥 = tan𝑛−2 𝑥 sec2 𝑥 − 1 ⅆ𝑥 = tan𝑛−2 𝑥 sec2 𝑥 ⅆ𝑥 − tan𝑛−2 𝑥 ⅆ𝑥 = tan𝑛−1 𝑥 𝑛−1 − tan𝑛−2 𝑥 ⅆ𝑥 Which is the required reduction formula.
  • 33. INTEGRALS 𝑖 sec3 𝑥 ⅆ𝑥 𝑖𝑖 sec5 𝑥 ⅆ𝑥 𝑖𝑖𝑖 tan𝑛 𝑥 sec2 𝑥 ⅆ𝑥 𝑖𝑣 tan2 𝑥 sec4 𝑥 ⅆ𝑥 𝑣 tan3 𝑥 ⅆ𝑥 𝑣𝑖 tan 𝑥 ⅆ𝑥 𝑣𝑖𝑖 tan2 𝑥 ⅆ𝑥 𝑣𝑖𝑖𝑖 tan4 𝑥 ⅆ𝑥 𝑖𝑥 tan6 𝑥 ⅆ𝑥 𝑥 tan3 2𝑥 sec 2𝑥 𝑥 ⅆ𝑥
  • 34. INTEGRALS • Integration of the form cot𝒎 𝒙 cosec𝒏 𝒙 𝒅𝒙 𝑖 If the power of cosec 𝑥 is the even positive integer put 𝑧 = cot 𝑥 𝑖𝑖 If the power of cosec 𝑥 is not even positive integer , then see power of cot 𝑥 𝑎 If the power of cot 𝑥 is odd positive integer, put 𝑧 = cosec 𝑥 𝑏 If the power of cot 𝑥 is even positive integer put cosec2 𝑥 − 1 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 cot2 𝑥& the substitute 𝑧 = cot 𝑥 𝑖𝑖𝑖 If the power of cot 𝑥 is zero & power of cosec 𝑥 odd positive integer greater than 1 , then method of integration by part is used.
  • 35. INTEGRALS • Reduction formula for cot𝒏 𝒙 𝒅𝒙 • cot𝑛 𝑥 ⅆ𝑥 = cot𝑛−2 𝑥 cot2 𝑥 ⅆ𝑥 • = cot𝑛−2 𝑥 cosec2 𝑥 − 1 ⅆ𝑥 • = cot𝑛−2 𝑥 cosec2 𝑥 ⅆ𝑥 − cot𝑛−2 𝑥 ⅆ𝑥 = cot𝑛−1 𝑥 𝑛−1 − cot𝑛−2 𝑥 ⅆ𝑥 • Reduction formula for cot𝒏 𝒙 𝒅𝒙 • cot𝑛 𝑥 ⅆ𝑥 = cot𝑛−2 𝑥 cot2 𝑥 ⅆ𝑥 • = cot𝑛−2 𝑥 cosec2 𝑥 − 1 ⅆ𝑥 • = cot𝑛−2 𝑥 cosec2 𝑥 ⅆ𝑥 − cot𝑛−2 𝑥 ⅆ𝑥 = cot𝑛−1 𝑥 𝑛−1 − cot𝑛−2 𝑥 ⅆ𝑥 Which is the required reduction formula.
  • 36. INTEGRALS Find 𝑖 cesec3 𝑥 ⅆ𝑥 𝑖𝑖 cesec5 𝑥 ⅆ𝑥 𝑖𝑖𝑖 cesec𝑛 𝑥 cot 𝑥 ⅆ𝑥 𝑖𝑣 cesec4 𝑥 ⅆ𝑥 𝑣 cesec4 𝑥 cot2 𝑥 ⅆ𝑥
  • 37. INTEGRALS 2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral sin 𝑘𝑥 ⅆ𝑥 cos 𝑘𝑥 ⅆ𝑥 sec 𝑘𝑥 tan 𝑘𝑥 ⅆ𝑥 sec2 𝑘𝑥 ⅆ𝑥 cosec2 𝑘𝑥 ⅆ𝑥 cosec 𝑘𝑥 cot 𝑘𝑥 ⅆ𝑥
  • 38. INTEGRALS #Use the formula whichever re applicable sin2 𝑥 = 1−cos 2𝑥 2 cos2 𝑥 = 1+cos 2𝑥 2 tan2 𝑥 = sec2 𝑥 − 1 cot2 𝑥 = cosec2 𝑥 − 1 sin3 𝑥 = 3 sin 𝑥−sin 3𝑥 4 cos3 𝑥 = 3 cos 𝑥+cos 3𝑥 4
  • 39. INTEGRALS 𝑥2 + 𝑎2 ⅆ𝑥 = 𝑥 𝑥2+𝑎2 2 + 𝑎2 2 log 𝑥 + 𝑥2 + 𝑎2 + 𝐶 Put 𝑥 = 𝑎 tan 𝜃 𝑜𝑟 𝑎 cot 𝜃 𝑥2 + 𝑎2 ⅆ𝑥 = 𝑥 𝑥2+𝑎2 2 + 𝑎2 2 log 𝑥 + 𝑥2 + 𝑎2 + 𝐶 Put 𝑥 = 𝑎 tan 𝜃 𝑜𝑟 𝑎 cot 𝜃 • 𝑥2 − 𝑎2 ⅆ𝑥 = 𝑥 𝑥2−𝑎2 2 − 𝑎2 2 log 𝑥 + 𝑥2 − 𝑎2 + 𝐶 • Put 𝑥 = 𝑎 sec 𝜃 or 𝑎 csc 𝜃 • 𝑎2 − 𝑥2 ⅆ𝑥 = 𝑥 𝑎2−𝑥2 2 + 𝑎2 2 sin−1 𝑥 𝑎 + 𝐶 • Put 𝑥 = 𝑎 sin 𝜃 𝑜𝑟 𝑎 cos 𝜃 • 𝑎−𝑥 𝑎+𝑥 ⅆ𝑥 or 𝑎+𝑥 𝑎−𝑥 ⅆ𝑥 • put 𝑥 = 𝑎 cos 2𝜃 • 𝑥 𝑎−𝑥 ⅆ𝑥 or 𝑎−𝑥 𝑥 ⅆ𝑥 • put 𝑥 = 𝑎 sin2 𝜃 𝑜𝑟 𝑎 cos2 𝜃 𝑥2 − 𝑎2 ⅆ𝑥 = 𝑥 𝑥2−𝑎2 2 − 𝑎2 2 log 𝑥 + 𝑥2 − 𝑎2 + 𝐶 Put 𝑥 = 𝑎 sec 𝜃 or 𝑎 cosec 𝜃 𝑎2 − 𝑥2 ⅆ𝑥 = 𝑥 𝑎2−𝑥2 2 + 𝑎2 2 sin−1 𝑥 𝑎 + 𝐶 Put 𝑥 = 𝑎 sin 𝜃 𝑜𝑟 𝑎 cos 𝜃 𝑎−𝑥 𝑎+𝑥 ⅆ𝑥 or 𝑎+𝑥 𝑎−𝑥 ⅆ𝑥 put 𝑥 = 𝑎 cos 2𝜃 𝑥 𝑎−𝑥 ⅆ𝑥 or 𝑎−𝑥 𝑥 ⅆ𝑥 put 𝑥 = 𝑎 sin2 𝜃 𝑜𝑟 𝑎 cos2 𝜃 𝑥 𝑎+𝑥 ⅆ𝑥 or 𝑎+𝑥 𝑥 ⅆ𝑥 put 𝑥 = 𝑎 tan2 𝜃 𝑜𝑟 𝑎 cot2 𝜃 𝑎−𝑥 𝑥−𝑏 ⅆ𝑥 or 𝑥−𝑏 𝑎−𝑥 ⅆ𝑥 put 𝑥 = 𝑎 sin2 𝜃 + 𝑎 cos2 𝜃
  • 40. INTEGRALS 𝑎 − 𝑥 𝑥 − 𝑏 ⅆ𝑥 put 𝑥 = 𝑎 sin2 𝜃 + 𝑎 cos2 𝜃
  • 41. INTEGRALS If 𝑦 = 𝑑𝑥 1+𝑥2 3 2 & 𝑦 = 0 , 𝑤ℎ𝑒𝑛 𝑥 = 0 Find the value of 𝑦 when 𝑥 = 1. 1 − 𝑥2 ⅆ𝑥 1+𝑥2 1−𝑥2 ⅆ𝑥 1+𝑥 1+𝑥2 ⅆ𝑥
  • 42. INTEGRALS • (11) For the evaluation of the integral of the type 𝒑𝒙 + 𝒒 𝒂𝟐 + 𝒃𝒙 + 𝒄 𝒅𝒙, where 𝑝 , 𝑞 , 𝑎 , 𝑏 , 𝑐 are constants, we are to find real numbers 𝐴 , 𝐵 such that 𝑝𝑥 + 𝑞 = 𝐴 𝑑 𝑑𝑥 𝒂𝟐 + 𝒃𝒙 + +𝑐 + 𝐵 = 𝐴 2𝑎𝑥 + 𝑏 + 𝐵 To determine 𝐴 and 𝐵, we equate from both sides the coefficients of 𝑥 and the constant terms. 𝐴 and 𝐵 are thus obtained and hence the integral is reduced to one of the known forms
  • 43. INTEGRALS • (12) For the evaluation of the integral of the type 𝒑𝒙+𝒒 𝒂𝟐+𝒃𝒙+𝒄 𝒅𝒙 , where 𝑝 , 𝑞 , 𝑎 , 𝑏 , 𝑐 are constants, we are to find real numbers 𝐴 , 𝐵 such that 𝑝𝑥 + 𝑞 = 𝐴 𝑑 𝑑𝑥 𝒂𝟐 + 𝒃𝒙 + +𝑐 + 𝐵 = 𝐴 2𝑎𝑥 + 𝑏 + 𝐵 To determine 𝐴 and 𝐵, we equate from both sides the coefficients of 𝑥 and the constant terms. 𝐴 and 𝐵 are thus obtained and hence the integral is reduced to one of the known forms
  • 44. INTEGRALS (13) To find the integral of the type 𝒑𝒙𝟐+𝒒𝒙+𝒓 𝒂𝒙𝟐+𝒃𝒙+𝒄 𝒅𝒙 , • 𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓 = 𝑨 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 + 𝑩 𝟐𝒂𝒙 + 𝒃 + 𝑪 • & find A , B & C
  • 45. INTEGRALS • (14) To find the integral of the type 𝟏 𝑿 𝒀 𝒅𝒙 Where X and Y are linear or quadratic expressions in x. X Y Substitution Linear Linear 𝑧2 = 𝑌 Quadratic linear 𝑧2 = 𝑌 Linear Quadratic 𝑧 = 1 𝑋 Quadratic Quadratic 𝑧2 = 𝑌 𝑋 𝑜𝑟 𝑧 = 1 𝑋
  • 46. INTEGRALS • (15) Integral of the form 𝑖 𝒙 ± 𝒂𝟐 + 𝒙𝟐 𝒏 𝒅𝒙 𝑖𝑖 𝒅𝒙 𝒙± 𝒂𝟐+𝒙𝟐 𝒏 𝑖𝑖𝑖 𝒙± 𝒂𝟐+𝒙𝟐 𝒏 𝒂𝟐+𝒙𝟐 𝒅𝒙 Where n is a positive rational number and 𝑛 ≠ ±1. Put 𝑧 = 𝒙 ± 𝒂𝟐 + 𝒙𝟐
  • 47. INTEGRALS • (16) Integral of the Form 𝑖 𝒙𝒎 𝒂+𝒃𝒙 𝒑 𝒅𝒙 𝑚 being a positive integer Put 𝑧 = 𝑎 + 𝑏𝑥 𝑖𝑖 𝒅𝒙 𝒙𝒎 𝒂+𝒃𝒙 𝒑 where 𝑚 + 𝑝 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 > 1 Put 𝑧𝑥 = 𝑎 + 𝑏𝑥
  • 48. INTEGRALS • 17 𝒙𝒎 𝒂 + 𝒃𝒙𝒏 𝒑 𝒅𝒙 where 𝑚 , 𝑛 & 𝑝 are rational number Condition 𝑎 if 𝑝 is an integer > 0 , then Expand 𝒂 + 𝒃𝒙𝒏 𝒑 Condition 𝑏 if p is an integer < 0 then Put 𝑥 = 𝑧𝑘 , where k is common denominator 𝑚 , 𝑛 and 𝑝 Condition 𝑐 if 𝑚+1 𝑛 is an integer then Put 𝑎 + 𝑏𝑥𝑛 = 𝑧𝑘 , where 𝑘 = denominator in p. Condition ⅆ if 𝑚+1 𝑛 + 𝑝 is an integer then Put 𝑎 + 𝑏𝑥𝑛 = 𝑥𝑛𝑧𝑘 , where 𝑘 = denominator in p., or put 𝑥 = 1 𝑧
  • 49. INTEGRALS • (10) integral of the form • 𝑖 𝒅𝒙 𝒙−𝒂 𝒎 𝒙−𝒃 𝒏 where m and n are positive integer and 𝑎 ≠ 𝑏 • Put 𝑥 − 𝑎 = 𝑧 𝑥 − 𝑏 • 𝑖𝑖 𝑹 𝒙 , 𝒂𝒙 + 𝒃 𝜶 𝒏 𝒅𝒙 , where R stand for rational function • Put 𝑧𝑛 = 𝑎𝑥 + 𝑏 • 𝑖𝑖𝑖 𝑹 𝒙 , 𝒂𝒙 + 𝒃 𝜶 𝒏, 𝒂𝒙 + 𝒃 𝜷 𝒎 𝒅𝒙 , where R stand for rational function • Put 𝑧𝑝 = 𝑎𝑥 + 𝑏 , where 𝑝 = L.C.M. of m and n • 𝑖𝑣 𝑹 𝒙 , 𝒂𝒙+𝒃 𝒄𝒙+𝒅 𝜶 𝒏 𝒅𝒙 , where R stand for rational form • Put 𝑧𝑝 = 𝒂𝒙+𝒃 𝒄𝒙+𝒅
  • 50. INTEGRALS • Method of Substitution • 𝐴 If the integrand of the form sin 𝜃 ⅆ𝜃 cos 𝜃 ⅆ𝜃 tan 𝜃 ⅆ𝜃 cosec 𝜃 ⅆ𝜃 sec 𝜃 ⅆ𝜃 cot 𝜃 ⅆ𝜃 Where 𝜃 is a function of x put 𝑧 = 𝜃 𝐵 If d.c. of a function 𝑓 𝑥 occurs as a factor of the integrand and integrand after leaving this factor become an integrable function of 𝑓 𝑥 , 𝑝𝑢𝑡 𝑧 − 𝑓 𝑥 . 𝐶. 𝑖 𝑓′ 𝑥 𝑓 𝑥 ⅆ𝑥 = log 𝑓 𝑥 + 𝐶 𝑖𝑖 if the logarithmic or inverse circular function occurs in the numerator & its d.c., is a factor of the integand put it equal to 𝑧 . 𝑖𝑖𝑖 if the logarithmic or inverse circular function occurs in the numerator & its d.c., is a factor of the integand put it equal to z but if d.c. is not a factor of the integrand use integration by parts. 𝑖𝑣 if 𝑒𝑓 𝑥 occurs in the integrand put 𝑧 = 𝑓 𝑥
  • 51. INTEGRALS Evaluate 𝑖 tan 𝑥 − 𝑥 5 tan6 𝑥 ⅆ𝑥 𝑖𝑖 cot log 𝑥 𝑥 ⅆ𝑥 𝑖𝑖𝑖 sec2 𝑥 tan 𝑥 sec2 𝑥+tan2 𝑥 ⅆ𝑥 𝑖𝑣 1 𝑥2 𝑥4+1 3 4 ⅆ𝑥 • Evaluate • tan 𝑥 − 𝑥 5 tan6 𝑥 ⅆ𝑥 • cot log 𝑥 𝑥 ⅆ𝑥 • sec2 𝑥 tan 𝑥 sec2 𝑥+tan2 𝑥 ⅆ𝑥 • 1 𝑥2 𝑥4+1 3 4 ⅆ𝑥
  • 52. INTEGRALS • Integral of the form 𝒊 𝒅𝒙 𝒂 cos𝟐 𝒙+𝟐𝒃 sin 𝒙 cos 𝑥 +𝒄 sin𝟐 𝒙 𝒊𝒊 𝒅𝒙 𝒂 cos𝟐 𝒙+𝒃 𝒊𝒊𝒊 𝒅𝒙 𝒂+𝒃 sin𝟐 𝒙 Divide numerator & denominator by cos2 𝑥 • Integral of the form 𝒊 𝒅𝒙 𝒂 cos 𝒙+𝟐𝒃 sin 𝒙+𝒄 𝒊𝒊 𝒅𝒙 𝒂+𝒃 cos 𝒙 𝒊𝒊𝒊 𝒅𝒙 𝒂+𝒃 sin 𝒙 Put sin 𝑥 = 2 tan 𝑥 2 1+tan2𝑥 2 & cos 𝑥 = 1−tan2𝑥 2 1+tan2𝑥 2 And then put 𝑧 = tan 𝑥 2
  • 53. INTEGRALS • Integral of the form 𝒊 𝒑 sin 𝒙+𝒒 cos 𝒙 asin 𝒙+𝒃 cos 𝒙 𝒅𝒙 𝒊𝒊 sin 𝒙 𝒂 cos 𝒙+𝒃 sin 𝒙 𝒅𝒙 𝒊𝒊𝒊 cos 𝒙 𝒂 cos 𝒙+𝒃 sin 𝒙 𝒅𝒙 Let 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐴 ⅆ𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + 𝐵 ⅆ. 𝑐 . 𝑜𝑓 ⅆ𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 & then find A & B by equating the coefficient of sin 𝑥 & cos 𝑥
  • 54. INTEGRALS • Integral of the form 𝑖 sec2 𝑥 ± 𝑎 ⅆ𝑥 Write sec2 𝑥 ± 𝑎 = sec2 𝑥±𝑎 sec2 𝑥±𝑎 = sec2 𝑥 sec2 𝑥±𝑎 ± 𝑎 cos 𝑥 1±𝑎 cos2 𝑥 In 1st put 𝑧 = tan 𝑥 & in the 2nd integral put 𝑧 = sin 𝑥 𝑖𝑖 cosec2 𝑥 ± 𝑎 ⅆ𝑥 Write cosec2 𝑥 ± 𝑎 = cosec2 𝑥±𝑎 cosec2 𝑥±𝑎 = cosec2 𝑥 cosec2 𝑥±𝑎 ± 𝑎 sin 𝑥 1±𝑎 sin2 𝑥 In 1st put 𝑧 = cot 𝑥 & in the 2nd integral put 𝑧 = cos 𝑥 • Integral of the form 𝑖 sec2 𝑥 ± 𝑎 ⅆ𝑥 Write sec2 𝑥 ± 𝑎 = sec2 𝑥±𝑎 sec2 𝑥±𝑎 = sec2 𝑥 sec2 𝑥±𝑎 ± 𝑎 cos 𝑥 1±𝑎 cos2 𝑥 In 1st put 𝑧 = tan 𝑥 & in the 2nd integral put 𝑧 = sin 𝑥 𝑖𝑖 cosec2 𝑥 ± 𝑎 ⅆ𝑥 Write cosec2 𝑥 ± 𝑎 = cosec2 𝑥±𝑎 cosec2 𝑥±𝑎 = cosec2 𝑥 cosec2 𝑥±𝑎 ± 𝑎 sin 𝑥 1±𝑎 sin2 𝑥 In 1st put 𝑧 = cot 𝑥 & in the 2nd integral put 𝑧 = cos 𝑥
  • 55. INTEGRALS 𝑖𝑖𝑖 tan2 𝑥 ± 𝑎 ⅆ𝑥 tan2 𝑥 = sec2 𝑥 − 1 Write tan2 𝑥 ± 𝑎 = sec2 𝑥±𝑎 sec2 𝑥±𝑎 = sec2 𝑥 sec2 𝑥±𝑎 ± 𝑎 cos 𝑥 1±𝑎 cos2 𝑥 In 1st put 𝑧 = tan 𝑥 & in the 2nd integral put 𝑧 = sin 𝑥 𝑖𝑣 cot2 𝑥 ± 𝑎 ⅆ𝑥 cot2 𝑥 = cosec2 𝑥 − 1 Write cot2 𝑥 ± 𝑎 = cosec2 𝑥±𝑎 cosec2 𝑥±𝑎 = cosec2 𝑥 cosec2 𝑥±𝑎 ± 𝑎 sin 𝑥 1±𝑎 sin2 𝑥 In 1st put 𝑧 = cot 𝑥 & in the 2nd integral put 𝑧 = cos 𝑥
  • 56. INTEGRALS 𝑖 sin 𝑥 𝑥 ⅆ𝑥 𝑖𝑖 cot log 𝑥 𝑥 ⅆ𝑥 𝑖𝑖𝑖 𝑒𝑥 1+𝑥 cos−1 𝑥𝑒𝑥 ⅆ𝑥 𝑖𝑣 𝑥 tan−1 𝑥2 1+𝑥4 ⅆ𝑥 𝑣 𝑑𝑥 𝑥2 𝑥4+1 3 4
  • 57. INTEGRALS If 4𝑒𝑥+6𝑒−𝑥 9𝑒𝑥−4𝑒−𝑥 ⅆ𝑥 = 𝐴𝑥 + 𝐵 log𝑒 9𝑒2𝑥 − 4 + 𝐶 . Find the value of A , B & C. 𝑖 sin 𝑥 𝑥 ⅆ𝑥 𝑖𝑖 cot log 𝑥 𝑥 ⅆ𝑥 𝑖𝑖𝑖 𝑒𝑥 1+𝑥 cos−1 𝑥𝑒𝑥 ⅆ𝑥 𝑖𝑣 𝑥 tan−1 𝑥2 1+𝑥4 ⅆ𝑥 𝑣 𝑑𝑥 𝑥2 𝑥4+1 3 4 If 𝑖𝑣 4𝑒𝑥+6𝑒−𝑥 9𝑒𝑥−4𝑒−𝑥 ⅆ𝑥 = 𝐴𝑥 + 𝐵 log𝑒 9𝑒2𝑥 − 4 + 𝐶 . Find the value of A , B & C. 𝑖𝑣 sin 2𝑥 𝑎2+𝑏2 sin2 𝑥 ⅆ𝑥 𝑖𝑣 𝑥 𝑥2+2 1 3 ⅆ𝑥 𝑖𝑣 tan 𝑥 + cot 𝑥 ⅆ𝑥 𝑖𝑣 tan 𝑥 ⅆ 𝑖𝑣 cot 𝑥 ⅆ𝑥
  • 58. INTEGRALS 𝑖 sin 2𝑥 𝑎2+𝑏2 sin2 𝑥 ⅆ𝑥 𝑖𝑖 𝑥 𝑥2+2 1 3 ⅆ𝑥 𝑖𝑖𝑖 tan 𝑥 + cot 𝑥 ⅆ𝑥 𝑖𝑣 tan 𝑥 ⅆ𝑥 𝑣 cot 𝑥 ⅆ𝑥
  • 59. INTEGRALS When integrand is the product of two functions & one of them is a function of a function 𝜙 𝑥 & other is 𝑘𝜙′ 𝑥 , where k is a constant , then put 𝑧 = 𝜙 𝑥 In other words , If integrand is the form 𝑘𝑓 𝜙 𝑥 𝜙′ 𝑥 then put 𝑧 = 𝜙 𝑥 Thus if an expression 𝜙 𝑥 is occurs in the integrand whose d. c. is a factor of the integrand and the integrand after leaving this d .c . of 𝜙 𝑥 become an integrable function of 𝜙 𝑥 then put z = 𝜙 𝑥
  • 60. INTEGRALS 𝑖 2 + sin 3𝑥 cos 3𝑥 ⅆ𝑥 𝑖𝑖 sin 2𝑥 𝑎2+𝑏2 sin2 𝑥 ⅆ𝑥 𝑖𝑖𝑖 1+log 𝑥 2 𝑥 ⅆ𝑥 𝑖𝑣 𝑥5 1+𝑥3 ⅆ𝑥 𝑣 sin 𝑥 𝑎+𝑏 cos 𝑥 ⅆ𝑥 𝑣𝑖 𝑥2 𝑥3+1 ⅆ𝑥 𝑣𝑖𝑖 𝑥2 𝑥+2 ⅆ𝑥 𝑣𝑖𝑖𝑖 𝑥 𝑥+2 ⅆ𝑥
  • 61. INTEGRALS 𝑑𝑥 𝑥 𝑥𝑛+1 Put 𝑧 = 𝑥𝑛 + 1 ⅆ𝑧 = 𝑥 𝑑𝑥 𝑥2−𝑎2 𝑥2−𝑏2 Put 𝑧 = 𝑥2 ⅆ𝑧 = 2𝑥ⅆ𝑥
  • 62. INTEGRALS 𝑖 𝑥 cos2 𝑥 ⅆ𝑥 𝑖𝑖 sin 𝑥 ⅆ𝑥 𝑖𝑖𝑖 cos 𝑥 ⅆ𝑥 𝑖𝑣 sin log 𝑥 ⅆ𝑥 𝑣 𝑥𝑛 log 𝑥 ⅆ𝑥 𝑣𝑖 log 𝑥 2 ⅆ𝑥 𝑣𝑖𝑖 𝑥2 + 𝑎2 ⅆ𝑥 𝑣𝑖𝑖𝑖 𝑒𝑎𝑥 sin 𝑏𝑥 ⅆ𝑥 𝑖𝑥 𝑥 sec2 2𝑥 ⅆ𝑥 𝑥 𝑥2 log 𝑥 2 ⅆ𝑥 𝑥𝑖 𝑥 sin2 𝑥 ⅆ𝑥 𝑥𝑖𝑖 𝑥 log 𝑥 2 ⅆ𝑥 𝑥𝑖𝑖𝑖 𝑥2 sin 2𝑥 ⅆ𝑥 𝑥𝑖𝑣 𝑥2𝑒3𝑥 ⅆ𝑥 𝑥𝑣 𝑥2 log 𝑥 ⅆ𝑥 𝑥𝑣𝑖 𝑒−𝑥 sin 𝑥 ⅆ𝑥 𝑥𝑣𝑖𝑖 𝑥+sin 𝑥 1+cos 𝑥 ⅆ𝑥