Digital Image Processing 
Image Restoration 
Noise models and additive noise removal 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 1
Image Restoration 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 2
Image Restoration 
 What is noise (in the context of image processing) and how can it 
be modeled? 
 What are the main types of noise that may affect an image? 
 What are the possible solutions? 
 Subjective Vs Objective (Enhancement Vs Restoration) 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 3
Degradation Model for a Digital Image 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 4
Noise Models 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 5
Noise and Noise Models 
 Gaussian (normal) 
 Impulse (salt-and-pepper) 
 Uniform 
 Rayleigh 
 Gamma (Erlang) 
 Exponential 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 6
Effect of Noise on Images & Histograms 
 Gaussian 
 Exponential 
 Impulse 
(salt-and-pepper) 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 7
Effect of Noise on Images & Histograms 
 Rayleigh 
 Gamma (Erlang) 
 Uniform 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 8
Noise Models: Gaussian Noise 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 9
Noise Models: Rayleigh Noise 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 10
Noise Models: Erlang (Gamma) Noise 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 11
Noise Models: Exponential Noise 
Where 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 12
Noise Models: Uniform Noise 
1 , if 
   
  
0 otherwise 
  
p ( z ) 
b a 
a z b 
The mean and variance are 
given by 
 
 
 
a b 2 b  a 
, ( ) 
12 
 
   
2 
2 
 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 13
Noise Models: Impulse (Salt and Pepper) Noise 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 14
Effect of Noise on Images & Histograms 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 15
Effect of Noise on Images & Histograms 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 16
Effect of Noise on Images & Histograms 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 17
Periodic Noise (Example) 
 Spatially Dependent Case 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 18
Applicability of various noise models 
5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 19

Noise Models

  • 1.
    Digital Image Processing Image Restoration Noise models and additive noise removal 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 1
  • 2.
    Image Restoration 5/13/2013COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 2
  • 3.
    Image Restoration What is noise (in the context of image processing) and how can it be modeled?  What are the main types of noise that may affect an image?  What are the possible solutions?  Subjective Vs Objective (Enhancement Vs Restoration) 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 3
  • 4.
    Degradation Model fora Digital Image 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 4
  • 5.
    Noise Models 5/13/2013COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 5
  • 6.
    Noise and NoiseModels  Gaussian (normal)  Impulse (salt-and-pepper)  Uniform  Rayleigh  Gamma (Erlang)  Exponential 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 6
  • 7.
    Effect of Noiseon Images & Histograms  Gaussian  Exponential  Impulse (salt-and-pepper) 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 7
  • 8.
    Effect of Noiseon Images & Histograms  Rayleigh  Gamma (Erlang)  Uniform 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 8
  • 9.
    Noise Models: GaussianNoise 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 9
  • 10.
    Noise Models: RayleighNoise 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 10
  • 11.
    Noise Models: Erlang(Gamma) Noise 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 11
  • 12.
    Noise Models: ExponentialNoise Where 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 12
  • 13.
    Noise Models: UniformNoise 1 , if      0 otherwise   p ( z ) b a a z b The mean and variance are given by    a b 2 b  a , ( ) 12     2 2  5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 13
  • 14.
    Noise Models: Impulse(Salt and Pepper) Noise 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 14
  • 15.
    Effect of Noiseon Images & Histograms 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 15
  • 16.
    Effect of Noiseon Images & Histograms 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 16
  • 17.
    Effect of Noiseon Images & Histograms 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 17
  • 18.
    Periodic Noise (Example)  Spatially Dependent Case 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 18
  • 19.
    Applicability of variousnoise models 5/13/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 19