Graphing Trig
 Functions
Graphing Trig
1) Sine Curve
             Functions
Graphing Trig
1) Sine Curve
             Functions
                y
                1




                -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1              y  sin x


 2                    2   3           4   x

                  -1
Graphing Trig
  1) Sine Curve
                 Functions
                        y
                        1              y  sin x


 2                          2   3           4   x

                        -1

  domain : all real x
Graphing Trig
  1) Sine Curve
                 Functionsy
                          1             y  sin x

 2                           2   3           4   x
                      -1

  domain : all real x
    range : - 1  y  1
Graphing Trig
  1) Sine Curve
                 Functionsy
                                  period
                          1                      y  sin x

 2                                    2   3           4   x
                      -1

  domain : all real x
    range : - 1  y  1
Graphing Trig
  1) Sine Curve
                 Functionsy
                                        period
                          1                              y  sin x

 2                                          2     3           4   x
                      -1
                              In general;
  domain : all real x             y  a sin bx  c 
    range : - 1  y  1                   2
                                 period       units
                                           b
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                y  sin x
             amplitude

 2                                       2     3           4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2
                              period       units
                                        b
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                y  sin x
             amplitude

 2                                       2     3           4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2
                              period       units
                                        b
                             amplitude  a units
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                  y  sin x
             amplitude

 2                                       2      3            4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2                     period
                              period       units divisions 
                                        b                       4
                             amplitude  a units
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                  y  sin x
             amplitude

 2                                       2      3            4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2                     period
                              period       units divisions 
                                        b                       4
                                                          c
                             amplitude  a units shift  to left
                                                          b

e.g. y  5 sin  9 x  
                       
                     2

e.g. y  5 sin  9 x  
                                     2
                     2    period       units
                                        9

e.g. y  5 sin  9 x  
                                   2
                     2    period      units
                                      9
                            amplitude  5 units

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                         18
                            amplitude  5 units

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y                              9x   
                                                  y  5 sin         
                              5                                   2 


                                                  2
                                                          x
                        9     -5           9         9
2) Cosine Curve
2) Cosine Curve   y  a cosbx  c 
2) Cosine Curve    y  a cosbx  c 
                           2
                  period     units
                            b
2) Cosine Curve     y  a cosbx  c 
                            2
                   period     units
                             b
                  amplitude  a units
2) Cosine Curve     y  a cosbx  c 
                            2                   period
                   period     units divisions 
                             b                     4
                  amplitude  a units
2) Cosine Curve     y  a cosbx  c 
                            2                   period
                   period     units divisions 
                             b                      4
                                             c
                  amplitude  a units shift  to left
                                             b
2) Cosine Curve       y  a cosbx  c 
                              2                   period
                     period     units divisions 
                               b                      4
                                               c
                    amplitude  a units shift  to left
                                               b
                 x    2
 e.g. y  4 cos       
                 8     
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period 
                8                      1
                                         8
                                      16
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period 
                8                      1
                                         8
                                      16
                            amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period          divisions  4
                8                      1
                                         8
                                      16
                            amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
                              amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
                                            y  4 cos     2
                                                              
                                                         x
             6                                         
                                                       8     
             2

  8                    8         16    x
             -2
3) Tangent Curve
3) Tangent Curve   y  a tan bx  c 
3) Tangent Curve   y  a tan bx  c 
                              
                   period        units
                              b
3) Tangent Curve   y  a tan bx  c     divisions 
                                                      period
                                                       2
                   period        units
                              b
3) Tangent Curve   y  a tan bx  c     divisions 
                                                      period
                                                 c
                                                        2
                   period        units   shift  to left
                              b                   b
3) Tangent Curve        y  a tan bx  c    divisions 
                                                          period
                                                     c
                                                            2
                       period        units   shift  to left
                                  b                   b

 e.g. y  e tan x  2 
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                     
                                  period 
                                              
                                          1
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                                            1
                                  period                 divisions 
                                                                     2
                                          1
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                                             1
                                  period                 divisions 
                                                                      2
                                          1              shift  2 to right
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y
                                           y  e tan x  2 




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y
                                           y  e tan x  2 



                                                        Exercise 14C; 2b, 3b,
                    1              2               x    4b, 5bce, 8, 9, 10b, 13,
                                                             15, 16, 17, 20

12X1 T03 02 graphing trig functions

  • 1.
  • 2.
    Graphing Trig 1) SineCurve Functions
  • 3.
    Graphing Trig 1) SineCurve Functions y 1 -1
  • 4.
    Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 5.
    Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 6.
    Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 7.
    Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 8.
    Graphing Trig 1) Sine Curve Functions y 1 y  sin x  2   2 3 4 x -1
  • 9.
    Graphing Trig 1) Sine Curve Functions y 1 y  sin x  2   2 3 4 x -1 domain : all real x
  • 10.
    Graphing Trig 1) Sine Curve Functionsy 1 y  sin x  2   2 3 4 x -1 domain : all real x range : - 1  y  1
  • 11.
    Graphing Trig 1) Sine Curve Functionsy period 1 y  sin x  2   2 3 4 x -1 domain : all real x range : - 1  y  1
  • 12.
    Graphing Trig 1) Sine Curve Functionsy period 1 y  sin x  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b
  • 13.
    Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b
  • 14.
    Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b amplitude  a units
  • 15.
    Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period period  units divisions  b 4 amplitude  a units
  • 16.
    Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period period  units divisions  b 4 c amplitude  a units shift  to left b
  • 17.
     e.g. y 5 sin  9 x      2
  • 18.
     e.g. y 5 sin  9 x     2  2 period  units 9
  • 19.
     e.g. y 5 sin  9 x     2  2 period  units 9 amplitude  5 units
  • 20.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18 amplitude  5 units
  • 21.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18
  • 22.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 23.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 24.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 25.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 26.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 27.
     e.g. y 5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y  9x    y  5 sin   5  2    2  x 9 -5 9 9
  • 28.
  • 29.
    2) Cosine Curve y  a cosbx  c 
  • 30.
    2) Cosine Curve y  a cosbx  c  2 period  units b
  • 31.
    2) Cosine Curve y  a cosbx  c  2 period  units b amplitude  a units
  • 32.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 amplitude  a units
  • 33.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b
  • 34.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 e.g. y  4 cos   8 
  • 35.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  8  1 8  16
  • 36.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  8  1 8  16 amplitude  4
  • 37.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8  16 amplitude  4
  • 38.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down amplitude  4
  • 39.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 40.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 41.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 42.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 43.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 44.
    2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 y  4 cos     2  x 6  8  2  8 8 16 x -2
  • 45.
  • 46.
    3) Tangent Curve y  a tan bx  c 
  • 47.
    3) Tangent Curve y  a tan bx  c   period  units b
  • 48.
    3) Tangent Curve y  a tan bx  c  divisions  period  2 period  units b
  • 49.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b
  • 50.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2 
  • 51.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   period   1
  • 52.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1
  • 53.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right
  • 54.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 55.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 56.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 57.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y y  e tan x  2  1 2 x
  • 58.
    3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y y  e tan x  2  Exercise 14C; 2b, 3b, 1 2 x 4b, 5bce, 8, 9, 10b, 13, 15, 16, 17, 20