Inverse Sine, Cosine, and Tangent
Functions
*One-to-One Function
6.1 Inverse Trigonometric
Functions
Function and One-to-One
Function One-to-one
 For each x, there is
exactly one y.
 The graph “passes”
the vertical line test.
 For each y, there is
exactly one x.
 The graph “passes”
the horizontal line
test.
 If a function is one-to-
one, the inverse will
also be a function.
Inverse -
 The relation obtained by interchanging the x and
y values of a function.
 The inverse of a function that is NOT one-to-one
can be made a function by limiting the domain of
the original function to make it one-to-one.
 The domain of a function is the range of its
inverse.
 The range of a function is the domain of its
inverse.
Graph 2 2siny x x 
  
-2 -1
2
1
-2
-1
21
1
siny x

Graph cos 0y x x   
-1 4321
3
-1
2
1
1
cosy x

Graph 2 2tany x x 
  
-2 -1
2
1
-2
-1
21
1
tany x

Evaluate – exact value
 1 1
2sin
Evaluate – exact value
 1 2
2sin 
Evaluate – exact value
 1
cos 0
Evaluate – exact value
 1 1
2cos

Evaluate – exact value
 1
tan 1
Evaluate – exact value
 1
tan 3

Evaluate - approximation
1
sin 0.37
 1
cos 0.82

 1
tan 4.21

0.38
2.53
1.34 
1 3
2cos cos
 
 
1
6sin sin  
  
1
cos cos 0.75
  
1
9sin sin 
  
p. 457 # 1 - 4, 13 - 44
Assignment

6.1 inverse trig functions

  • 1.
    Inverse Sine, Cosine,and Tangent Functions *One-to-One Function 6.1 Inverse Trigonometric Functions
  • 2.
    Function and One-to-One FunctionOne-to-one  For each x, there is exactly one y.  The graph “passes” the vertical line test.  For each y, there is exactly one x.  The graph “passes” the horizontal line test.  If a function is one-to- one, the inverse will also be a function.
  • 3.
    Inverse -  Therelation obtained by interchanging the x and y values of a function.  The inverse of a function that is NOT one-to-one can be made a function by limiting the domain of the original function to make it one-to-one.  The domain of a function is the range of its inverse.  The range of a function is the domain of its inverse.
  • 4.
    Graph 2 2sinyx x     -2 -1 2 1 -2 -1 21 1 siny x 
  • 5.
    Graph cos 0yx x    -1 4321 3 -1 2 1 1 cosy x 
  • 6.
    Graph 2 2tanyx x     -2 -1 2 1 -2 -1 21 1 tany x 
  • 7.
    Evaluate – exactvalue  1 1 2sin
  • 8.
    Evaluate – exactvalue  1 2 2sin 
  • 9.
    Evaluate – exactvalue  1 cos 0
  • 10.
    Evaluate – exactvalue  1 1 2cos 
  • 11.
    Evaluate – exactvalue  1 tan 1
  • 12.
    Evaluate – exactvalue  1 tan 3 
  • 13.
    Evaluate - approximation 1 sin0.37  1 cos 0.82   1 tan 4.21  0.38 2.53 1.34 
  • 14.
    1 3 2cos cos    1 6sin sin     
  • 15.
    1 cos cos 0.75   1 9sin sin    
  • 16.
    p. 457 #1 - 4, 13 - 44 Assignment